A Monte Carlo Approach to Stability Verification

Brendan Patch
The University of Queensland
University of Amsterdam

Joint work with:
Neil Walton
Michel Mandjes

ANZAPW
April 2015
Example: M/M/1 Queue

Work arrives to the system according to a Poisson process of rate λ and has service time $\text{Exp}(\mu)$.
Example: M/M/1 Queue

Work arrives to the system according to a Poisson process of rate λ and has service time $\text{Exp}(1)$.

\[
\lambda \\
\rightarrow
\]

Number in System

| 3 |
| 2 |
| 1 |

t
Work arrives to the system according to a Poisson process of rate λ and has service time $\text{Exp}(1)$.

Example: M/M/1 Queue
Example: M/M/1 Queue

Work arrives to the system according to a Poisson process of rate λ and has service time $\text{Exp}(1)$.
Example: M/M/1 Queue

Work arrives to the system according to a Poisson process of rate λ and has service time $\text{Exp}(1)$.
Example: M/M/1 Queue

Work arrives to the system according to a Poisson process of rate λ and has service time $\text{Exp}(1)$.
Example: M/M/1 Queue

Work arrives to the system according to a Poisson process of rate λ and has service time $\text{Exp}(1)$.

λ
Example: M/M/1 Queue

Work arrives to the system according to a Poisson process of rate λ and has service time $\text{Exp}(1)$.
Sample Paths of the M/M/1 Queue

Figure: $X(t)$ is the number in the queue at time t and $\mu = 1$.
Sample Paths of the M/M/1 Queue

Figure: $X(t)$ is the number in the queue at time t and $\mu = 1$.

- $\lambda = 0.5$
- $\lambda = 2$
- $\lambda = 1.05$
Sample Paths of the M/M/1 Queue

Figure: $X(t)$ is the number in the queue at time t and $\mu = 1$.
Figure: $X(t)$ is the number in the queue at time t and $\mu = 1$.

Sample Paths of the M/M/1 Queue
Sample Paths of the M/M/1 Queue

Figure: $X(t)$ is the number in the queue at time t and $\mu = 1$. Different λ implies different behaviour.
Sample Paths of the M/M/1 Queue

Figure: $X(t)$ is the number in the queue at time t and $\mu = 1$.

- Different λ implies different behaviour.
For state space $\mathcal{X} \subset \mathbb{N}^J$ study $f : \mathcal{X} \rightarrow [0, \infty)$.

E.g. $f(x) = \sum_i x(i) = |x|$

Assume $X(\cdot)$ has bounded increments.
Definition of Stability for a Parameter value

The parameter λ is **stable** if there exists $\delta > 0$, $\tau_x > 0$, and $\kappa > 0$ such that

$$\mathbb{E} \left[|X_\lambda(\tau_x)| - |X_\lambda(0)| \bigg| X_\lambda(0) = x \right] \leq -\delta \tau_x$$

for all x such that $|x| \geq \kappa$.

\[\bullet X_\lambda(0) \]
Definition of Stability for a Parameter value

The parameter λ is **stable** if there exists $\delta > 0$, $\tau_x > 0$, and $\kappa > 0$ such that

$$\mathbb{E} \left[|X_\lambda(\tau_x)| - |X_\lambda(0)| \mid X_\lambda(0) = x \right] \leq -\delta \tau_x$$

for all x such that $|x| \geq \kappa$.
Definition of Stability for a Parameter value

The parameter λ is **stable** if there exists $\delta > 0$, $\tau_x > 0$, and $\kappa > 0$ such that

$$\mathbb{E} \left[|X_\lambda(\tau_x)| - |X_\lambda(0)| \middle| X_\lambda(0) = x \right] \leq -\delta \tau_x$$

for all x such that $|x| \geq \kappa$.
The parameter λ is **stable** if there exists $\delta > 0$, $\tau_x > 0$, and $\kappa > 0$ such that

$$\mathbb{E} \left[|X_\lambda(\tau_x)| - |X_\lambda(0)| \mid X_\lambda(0) = x \right] \leq -\delta \tau_x$$

for all x such that $|x| \geq \kappa$.

Definition of Stability for a Parameter value
The parameter \(\lambda \) is **UNSTABLE** if there exists \(\delta > 0 \), \(\tau_x > 0 \), and \(\kappa > 0 \) such that

\[
\mathbb{E} \left[|X_{\lambda}(\tau_x)| - |X_{\lambda}(0)| \, \mid \, X_{\lambda}(0) = x \right] \geq \delta \tau_x
\]

for all \(x \) such that \(|x| \geq \kappa \).
• The parameter set \mathcal{L} is unstable if there is a subset $\tilde{\mathcal{L}} \subset \mathcal{L}$ of positive Lebesgue measure such that all $\lambda \in \tilde{\mathcal{L}}$ are unstable.

• The parameter set is stable if all $\lambda \in \mathcal{L}$ are stable.

• Not stable is not necessarily unstable!
Stability of M/M/1 Queue

• For $x > \tau$

\[
\mathbb{E} \left[X(\tau) - X(0) \mid X(0) = x \right] = (\lambda - \mu) \tau,
\]

and the jumps are bounded. Hence $\lambda > \mu$ is an unstable parameter set under our definition.
If a parameter set contains a measurable amount of the red region then it is unstable.
Stability of M/M/1 Queue

If a parameter set contains a measurable amount of the red region then it is unstable.

• Is $\mathcal{L} = \{(\lambda, \mu) : \lambda \in [0, 1], \mu \in [2, 3]\}$ unstable?
Stability of M/M/1 Queue

If a parameter set contains a measurable amount of the red region then it is unstable.

\[\lambda, \mu \]

Is \(L = \{ (\lambda, \mu) : \lambda \in [0, 1], \mu \in [2, 3] \} \) unstable? NO, it is stable, \(\lambda < \mu \) for all \((\lambda, \mu) \in L \).
Stability of M/M/1 Queue

If a parameter set contains a measurable amount of the red region then it is unstable.

- Is $L = \{(\lambda, \mu) : \lambda \in [0, 1], \mu \in [2, 2]\}$ unstable? NO, it is stable, $\lambda < \mu$ for all $(\lambda, \mu) \in L$.
- Is $L = \{(\lambda, \mu) : \lambda \in [1, 2], \mu \in [0.5, 2]\}$ unstable?
Stability of M/M/1 Queue

If a parameter set contains a measurable amount of the red region then it is unstable.

- Is $\mathcal{L} = \{ (\lambda, \mu) : \lambda \in [0, 1], \mu \in [2, 2] \}$ unstable? NO, it is stable, $\lambda < \mu$ for all $(\lambda, \mu) \in \mathcal{L}$.
- Is $\mathcal{L} = \{ (\lambda, \mu) : \lambda \in [1, 2], \mu \in [0.5, 2] \}$ unstable? YES. $\lambda > \mu$ for a measurable amount of $(\lambda, \mu) \in \mathcal{L}$.
Sometimes an analytical result is more difficult.

- E.g. Dai 1995
- Three parameters, FCFS
A goal of my PhD is to develop algorithms that:

- Give the stability region of complex queueing networks.
- Are substantially more efficient than brute force.
- Are proven to work.
A goal of my PhD is to develop algorithms that:

- Give the stability region of complex queueing networks.
- Are substantially more efficient than brute force.
- Are proven to work.

Let’s see what we have so far...
Not all unstable parameters “equally” unstable

- Find most “unstable” $\lambda \in \mathcal{L}$ then test for stability.
- Optimisation problem.
- Simulated annealing?
M/M/1 Instability

- Find most "unstable" $\lambda \in \mathcal{L}$ then test for stability.
- Optimisation problem.
- Simulated annealing?
Algorithm: \(S_k = (Y_k, \Lambda_k) \) \(k=1,2,... \) attains values in \((X, L) \).

1. Given \(S_k = (x, \lambda) \) we sample \(\gamma \) uniformly from \(L \).
2. Let \(X_\gamma(t) \) run until \(\tau_x \), with \(X_\gamma(0) = x \). Set \(y = X_\gamma(\tau_x) \).
3. If \(|y| > |x| \) then set \(S_{k+1} = (y, \gamma) \); otherwise, set

\[
S_{k+1} = \begin{cases} (y, \gamma) & \text{with probability } e^{\eta(|y| - |x|)}, \\ (x, \lambda) & \text{otherwise}. \end{cases}
\]
Stability Verification Algorithm

Algorithm: $S_k = (Y_k, \Lambda_k)_{k=1,2,\ldots}$ attains values in $(\mathcal{X}, \mathcal{L})$.

1. Given $S_k = (x, \lambda)$ we sample γ uniformly from \mathcal{L}.
2. Let $X_{\gamma}(t)$ run until τ_x, with $X_{\gamma}(0) = x$. Set $y = X_{\gamma}(\tau_x)$.
3. If $|y| > |x|$ then set $S_{k+1} = (y, \gamma)$; otherwise, set

$$S_{k+1} = \begin{cases}
(y, \gamma) & \text{with probability } e^{\eta(|y| - |x|)}, \\
(x, \lambda) & \text{otherwise.}
\end{cases}$$
Algorithm: $S_k = (Y_k, \Lambda_k)_{k=1,2,...}$ attains values in $(\mathcal{X}, \mathcal{L})$.

1. Given $S_k = (x, \lambda)$ we sample γ uniformly from \mathcal{L}.
2. Let $X_{\gamma}(t)$ run until τ_x, with $X_{\gamma}(0) = x$. Set $y = X_{\gamma}(\tau_x)$.
3. If $|y| > |x|$ then set $S_{k+1} = (y, \gamma)$; otherwise, set $S_{k+1} = \begin{cases} (y, \gamma) & \text{with probability } e^{\eta(|y|-|x|)}, \\ (x, \lambda) & \text{otherwise}. \end{cases}$
Stability Verification Algorithm

Algorithm: \(S_k = (Y_k, \Lambda_k)_{k=1,2,...} \) attains values in \((\mathcal{X}, \mathcal{L})\).

1. Given \(S_k = (x, \lambda) \) we sample \(\gamma \) uniformly from \(\mathcal{L} \).
2. Let \(X_\gamma(t) \) run until \(\tau_x \), with \(X_\gamma(0) = x \). Set \(y = X_\gamma(\tau_x) \).
3. If \(|y| > |x| \) then set \(S_{k+1} = (y, \gamma) \); otherwise, set

\[
S_{k+1} = \begin{cases}
(y, \gamma) & \text{with probability } e^{\eta(|y| - |x|)}, \\
(x, \lambda) & \text{otherwise}.
\end{cases}
\]
Stability Verification Algorithm

Algorithm: \(S_k = (Y_k, \Lambda_k)_{k=1,2,...} \) attains values in \((\mathcal{X}, \mathcal{L})\).

1. Given \(S_k = (x, \lambda) \) we sample \(\gamma \) uniformly from \(\mathcal{L} \).
2. Let \(X_\gamma(t) \) run until \(\tau_x \), with \(X_\gamma(0) = x \). Set \(y = X_\gamma(\tau_x) \).
3. If \(|y| > |x| \) then set \(S_{k+1} = (y, \gamma) \); otherwise, set
 \[
 S_{k+1} = \begin{cases}
 (y, \gamma) & \text{with probability } e^{\eta(|y| - |x|)}, \\
 (x, \lambda) & \text{otherwise.}
 \end{cases}
 \]
Stability Verification Algorithm

Algorithm: \(S_k = (Y_k, \Lambda_k)_{k=1,2,...} \) attains values in \((\mathcal{X}, \mathcal{L})\).

1. Given \(S_k = (x, \lambda) \) we sample \(\gamma \) uniformly from \(\mathcal{L} \).
2. Let \(X_\gamma(t) \) run until \(\tau_x \), with \(X_\gamma(0) = x \). Set \(y = X_\gamma(\tau_x) \).
3. If \(|y| > |x| \) then set \(S_{k+1} = (y, \gamma) \); otherwise, set

\[
S_{k+1} = \begin{cases}
(y, \gamma) & \text{with probability } e^{\eta(|y| - |x|)}, \\
(x, \lambda) & \text{otherwise.}
\end{cases}
\]
Stability Verification Algorithm

Algorithm: $S_k = (Y_k, \Lambda_k)_{k=1,2,...}$ attains values in (X, L).

1. Given $S_k = (x, \lambda)$ we sample γ uniformly from L.
2. Let $X_\gamma(t)$ run until τ_x, with $X_\gamma(0) = x$. Set $y = X_\gamma(\tau_x)$.
3. If $|y| > |x|$ then set $S_{k+1} = (y, \gamma)$; otherwise, set

 $S_{k+1} = \begin{cases} (y, \gamma) & \text{with probability} \quad e^{\eta(|y| - |x|)}, \\ (x, \lambda) & \text{otherwise.} \end{cases}$
Stability Verification Algorithm

Algorithm: $S_k = (Y_k, \Lambda_k)_{k=1,2,...}$ attains values in (X, L).

1. Given $S_k = (x, \lambda)$ we sample γ uniformly from L.
2. Let $X_\gamma(t)$ run until τ_x, with $X_\gamma(0) = x$. Set $y = X_\gamma(\tau_x)$.
3. If $|y| > |x|$ then set $S_{k+1} = (y, \gamma)$; otherwise, set

$$S_{k+1} = \begin{cases} (y, \gamma) & \text{with probability } e^{\eta(|y| - |x|)}, \\ (x, \lambda) & \text{otherwise.} \end{cases}$$
Algorithm: $S_k = (Y_k, \Lambda_k)_{k=1,2,...}$ attains values in (X, L).

1. Given $S_k = (x, \lambda)$ we sample γ uniformly from L.
2. Let $X_\gamma(t)$ run until τ_x, with $X_\gamma(0) = x$. Set $y = X_\gamma(\tau_x)$.
3. If $|y| > |x|$ then set $S_{k+1} = (y, \gamma)$; otherwise, set

$$S_{k+1} = \begin{cases} (y, \gamma) & \text{with probability } e^{\eta(|y| - |x|)} , \\ (x, \lambda) & \text{otherwise.} \end{cases}$$
Stability Verification Algorithm

Algorithm: $S_k = (Y_k, \Lambda_k)_{k=1,2,...}$ attains values in (X, L).

1. Given $S_k = (x, \lambda)$ we sample γ uniformly from L.
2. Let $X_\gamma(t)$ run until τ_x, with $X_\gamma(0) = x$. Set $y = X_\gamma(\tau_x)$.
3. If $|y| > |x|$ then set $S_{k+1} = (y, \gamma)$; otherwise, set

$$S_{k+1} = \begin{cases} (y, \gamma) & \text{with probability } e^{\eta(|y| - |x|)}, \\ (x, \lambda) & \text{otherwise.} \end{cases}$$
Stability Verification Algorithm

Algorithm: \(S_k = (Y_k, \Lambda_k) \) \(k=1,2,\ldots \) attains values in \((X, \mathcal{L})\).

1. Given \(S_k = (x, \lambda) \) we sample \(\gamma \) uniformly from \(\mathcal{L} \).
2. Let \(X_\gamma(t) \) run until \(\tau_x \), with \(X_\gamma(0) = x \). Set \(y = X_\gamma(\tau_x) \).
3. If \(|y| > |x| \) then set \(S_{k+1} = (y, \gamma) \); otherwise, set

\[
S_{k+1} = \begin{cases}
(y, \gamma) & \text{with probability } e^{\eta(|y| - |x|)}, \\
(x, \lambda) & \text{otherwise.}
\end{cases}
\]
Stability Verification Algorithm

Algorithm: \(S_k = (Y_k, \Lambda_k)_{k=1,2,...} \) attains values in \((\mathcal{X}, \mathcal{L})\).

1. Given \(S_k = (x, \lambda) \) we sample \(\gamma \) uniformly from \(\mathcal{L} \).
2. Let \(X_\gamma(t) \) run until \(\tau_x \), with \(X_\gamma(0) = x \). Set \(y = X_\gamma(\tau_x) \).
3. If \(|y| > |x|\) then set \(S_{k+1} = (y, \gamma) \); otherwise, set

\[
S_{k+1} = \begin{cases}
(y, \gamma) & \text{with probability } e^{\eta(|y| - |x|)}, \\
(x, \lambda) & \text{otherwise.}
\end{cases}
\]
Stability Verification Algorithm

- Asymptotically (or sooner) accept only unstable samples (if they are there).
- Detect any unstable drift.
• Asymptotically (or sooner) accept only unstable samples (if they are there).
• Detect any unstable drift.
Stability Verification Algorithm

- Asymptotically (or sooner) accept only unstable samples (if they are there).
- Detect any unstable drift.
• Asymptotically (or sooner) accept only unstable samples (if they are there).
• Detect any unstable drift.
Stability Verification Algorithm

- Asymptotically (or sooner) accept only unstable samples (if they are there).
- Detect any unstable drift.
• Asymptotically (or sooner) accept only unstable samples (if they are there).
• Detect any unstable drift.
Theorem 1

If the set \mathcal{L} is stable then

$$
\liminf_{k \to \infty} \frac{|Y_k|}{k} = 0.
$$

Theorem 2

If the set \mathcal{L} is unstable then

$$
\liminf_{k \to \infty} \frac{|Y_k|}{k} > 0.
$$
Example

$\lambda = 1$

μ_1

μ_3

μ_1

μ_1

μ_1

μ_2
Figure: Unstable \mathcal{L}?
Figure: Stable \mathcal{L}?
• Hypothesis test for stability
• Adapting algorithm to estimate unstable region
• More interesting test cases and real world tools.
• Other Monte Carlo methods: Cross Entropy, Particle Filters, etc.

To be continued...