Functional Calculus for Phase-type distributions

Azucena Campillo Navarro1, Mogens Bladt2, Bo Friis Nielsen1.

1Technical University of Denmark
Department of Applied Mathematics and Compute Science.

2Autonomous National University of Mexico.

Adelaide, South Australia, April 2015.
Phase–type distribution

Let \(\{X_t\}_{t \geq 0} \) be a Markov jump process with the following properties:
Let $\{X_t\}_{t \geq 0}$ be a Markov jump process with the following properties:

- The finite state space of $\{X_t\}_{t \geq 0}$ is denoted by $E = \{1, 2, \ldots, p, p+1\}$, where $\{1, 2, \ldots, p\}$ are transient, $p+1$ is absorbing.
Phase–type distribution

Let \(\{X_t\}_{t \geq 0} \) be a Markov jump process with the following properties:

- The finite state space of \(\{X_t\}_{t \geq 0} \) is denoted by

\[
E = \{1, 2, \ldots, p, p + 1\},
\]
Phase-type distribution

Let \(\{X_t\}_{t \geq 0} \) be a Markov jump process with the following properties:

- The finite state space of \(\{X_t\}_{t \geq 0} \) is denoted by

 \[E = \{1, 2, \ldots, p, p+1\}, \]

 where

 \(\{1, 2, \ldots, p\} \) are transient,
Phase–type distribution

Let \(\{X_t\}_{t \geq 0} \) be a Markov jump process with the following properties:

1. The finite state space of \(\{X_t\}_{t \geq 0} \) is denoted by
 \[
 E = \{1, 2, \ldots, p, p + 1\},
 \]
 where
 \[
 \{1, 2, \ldots, p\} \text{ are transient},
 \]
 \[
 p + 1 \text{ is absorbing}.
 \]
Let \(\{X_t\}_{t \geq 0} \) be a Markov jump process with the following properties:

- The finite state space of \(\{X_t\}_{t \geq 0} \) is denoted by
 \[
 E = \{1, 2, \ldots, p, p + 1\},
 \]
 where
 \[
 \{1, 2, \ldots, p\} \text{ are transient,}
 \]
 \[
 p + 1 \text{ is absorbing.}
 \]
- The intensity matrix of \(\{X_t\}_{t \geq 0} \) is
Phase–type distribution

Let \(\{X_t\}_{t \geq 0} \) be a Markov jump process with the following properties:

- The finite state space of \(\{X_t\}_{t \geq 0} \) is denoted by
 \[
 E = \{1, 2, \ldots, p, p + 1\},
 \]
 where
 \[
 \{1, 2, \ldots, p\} \text{ are transient,}
 \]
 \[
 p + 1 \text{ is absorbing.}
 \]
- The intensity matrix of \(\{X_t\}_{t \geq 0} \) is
 \[
 \begin{pmatrix}
 T & t \\
 0 & 0
 \end{pmatrix},
 \]
Phase–type distribution

Let \(\{X_t\}_{t \geq 0} \) be a Markov jump process with the following properties:

- The finite state space of \(\{X_t\}_{t \geq 0} \) is denoted by
 \[
 E = \{1, 2, \ldots, p, p + 1\},
 \]
 where
 \[\{1, 2, \ldots, p\}\] are transient,
 \[p + 1\] is absorbing.

- The intensity matrix of \(\{X_t\}_{t \geq 0} \) is
 \[
 \begin{pmatrix}
 T & t \\
 0 & 0 \\
 \end{pmatrix},
 \]
 where
 \(T\) is a sub-intensity matrix,
Phase-type distribution

Let $\{X_t\}_{t \geq 0}$ be a Markov jump process with the following properties:

- The finite state space of $\{X_t\}_{t \geq 0}$ is denoted by

$$ E = \{1, 2, \ldots, p, p + 1\}, $$

where $\{1, 2, \ldots, p\}$ are transient,

$$ p + 1 \text{ is absorbing}. $$

- The intensity matrix of $\{X_t\}_{t \geq 0}$ is

$$
\begin{pmatrix}
T & t \\
0 & 0
\end{pmatrix},
$$

where

T is a sub-intensity matrix,

t is a p-dimensional column vector given by $t = -Te.$
Phase–type distribution

- The initial distribution of the process $\{X_t\}_{t \geq 0}$ is
Phase–type distribution

- The initial distribution of the process \(\{X_t\}_{t \geq 0} \) is

\[
\pi = (\pi_1, \ldots, \pi_p),
\]
Phase–type distribution

The initial distribution of the process \(\{X_t\}_{t \geq 0} \) is

\[
\pi = (\pi_1, \ldots, \pi_p),
\]

where

\[
\pi_i = \mathbb{P}(X_0 = i) \quad \text{and} \quad \mathbb{P}(X_0 = p + 1) = 0.
\]
Phase–type distribution

- The initial distribution of the process \(\{X_t\}_{t \geq 0} \) is

\[
\pi = (\pi_1, \ldots, \pi_p),
\]

where

\[
\pi_i = \mathbb{P}(X_0 = i) \quad \text{and} \quad \mathbb{P}(X_0 = p + 1) = 0.
\]

Definition

The time until absorption

\[
\tau = \inf\{t \geq 0 \mid X_t = p + 1\}
\]

is said to have a phase-type distribution.
Phase–type distribution

- The initial distribution of the process \(\{X_t\}_{t \geq 0} \) is

\[
\pi = (\pi_1, \ldots, \pi_p),
\]

where

\[
\pi_i = P(X_0 = i) \quad \text{and} \quad P(X_0 = p + 1) = 0.
\]

Definition

The time until absorption

\[
\tau = \inf\{t \geq 0 \mid X_t = p + 1\}
\]

is said to have a phase-type distribution.

- \((\pi, T)\) is a representation of the phase-type distribution.

We write \(\tau \sim \text{PH} (\pi, T)\).
Path of a phase–type distribution
Path of a phase–type distribution

\[X_t \]

\[p + 1 \]

\[p \]

\[5 \]

\[4 \]

\[3 \]

\[2 \]

\[1 \]

\[t \]
Path of a phase–type distribution
Path of a phase–type distribution
Path of a phase–type distribution

\[X_t \]

\[p + 1 \]

\[p \]
Path of a phase–type distribution
Path of a phase-type distribution
Path of a phase-type distribution

\[X_t \]

\(p + 1 \)

\(p \)

\(1 \)

\(2 \)

\(3 \)

\(4 \)

\(5 \)
Path of a phase-type distribution
If $\tau \sim \text{PH} (\pi, T)$, the density f of τ is

$$f(x) = \pi \exp(Tx) t.$$
Some properties of Phase–type distributions

- If $\tau \sim \text{PH}(\pi, T)$, the density f of τ is
 \[f(x) = \pi \exp(Tx) t. \]

- T is invertible and
 \[\int_{0}^{\infty} \exp(Tx) \, dx = (-T)^{-1}. \]
Motivation

Let $\tau \sim \text{PH}(\pi, T)$.

$\mathbb{E}(\cos(\tau)) = ?$

- One way is to consider
Motivation

Let $\tau \sim \text{PH}(\pi, T)$.

One way is to consider

$$\mathbb{E}(\cos(\tau)) = ?$$

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2},$$
Let $\tau \sim \text{PH}(\pi, T)$.

\[\mathbb{E}(\cos(\tau)) = ? \]

- One way is to consider

\[\cos(x) = \frac{e^{ix} + e^{-ix}}{2}, \]

\[
\mathbb{E}(\cos(\tau)) = \int_0^\infty \frac{e^{ix} + e^{-ix}}{2} \pi e^{Tx} t \, dx
\]

\[
= \frac{\pi}{2} \int_0^\infty e^{(i+T)x} dx \, t + \frac{\pi}{2} \int_0^\infty e^{(T-i)x} dx \, t
\]

\[
= \frac{\pi}{2} (-iI - T)^{-1} t + \frac{\pi}{2} (iI - T)^{-1} t
\]

\[
= \pi (-T) (I + T)^{-2} t.
\]
Motivation

What about other functions?
What about other functions?

\[E(sin(\tau)) = ?. \]
What about other functions?

\[
\mathbb{E}(\sin(\tau)) = ?. \\
\mathbb{E}(\tau^\alpha) = ?, \text{ with } \alpha > 0.
\]
What about other functions?

\[\mathbb{E}(\sin(\tau)) = ?. \]

\[\mathbb{E}(\tau^\alpha) = ?, \quad \text{with} \quad \alpha > 0. \]

\[\mathbb{E}(\omega(\tau)) = ?, \quad \text{with} \quad \omega = ?. \]
Let \(\tau \sim PH(\pi, T) \) and \(\omega \) be a function with Laplace transform

\[
L_\omega(s) = \int_0^\infty e^{-sx} \omega(x) \, dx
\]

which exists for all \(s > 0 \). Then

\[
\mathbb{E}(\omega(\tau)) = \pi L_\omega(-T)t,
\]

where \(t = -Te \).
To prove this theorem observe that:
Proof:

To prove this theorem observe that:

$$\mathbb{E}(\omega(\tau)) = \pi \int_0^\infty e^{T_x \omega(x)} dx \mathbf{t},$$
Proof:

To prove this theorem observe that:

\[E(\omega(\tau)) = \pi \int_0^\infty e^{T_x} \omega(x) \, dx, \]

so the proof is reduced to calculate

\[\int_0^\infty e^{T_x} \omega(x) \, dx. \]
Proof:

To prove this theorem observe that:

$$E(\omega(\tau)) = \pi \int_0^\infty e^{Tx} \omega(x) \, dx \, t,$$

so the proof is reduced to calculate

$$\int_0^\infty e^{Tx} \omega(x) \, dx.$$

Here we will use functional calculus!
Definition (Cauchy integral formula)

Let A be a finite dimensional matrix and let γ be a simple closed path which encloses the eigenvalues of A. If f is a function which is analytic on and inside the path γ, then we define

$$f(A) = \frac{1}{2\pi i} \oint_{\gamma} f(z)(zI - A)^{-1} dz.$$
Proof:

We take

\[\int_0^\infty e^{-sx}\omega(x)\,dx = L_\omega(s) = f(s), \]

because we want to calculate

\[L_\omega(-T). \]
Proof:

We take

\[\int_0^\infty e^{-sx} \omega(x) \, dx = L_\omega(s) = f(s), \]

because we want calculate

\[L_\omega(-T). \]

We know
Proof:

We take

\[
\int_0^\infty e^{-sx} \omega(x) \, dx = L_\omega(s) = f(s),
\]

because we want calculate

\[L_\omega(-T). \]

We know

- The Laplace transform \(L_\omega(s) \) is analytic in the positive half-plane.
Proof:

We take

\[\int_0^\infty e^{-sx} \omega(x) \, dx = L_\omega(s) = f(s), \]

because we want calculate

\[L_\omega(-T). \]

We know

- The Laplace transform \(L_\omega(s) \) is analytic in the positive half-plane.
- \(-T\) has a finite number of eigenvalues which have positive real part.
Proof:

We take

\[\int_0^\infty e^{-sx} \omega(x) \, dx = L_\omega(s) = f(s), \]

because we want to calculate

\[L_\omega(-T). \]

We know

- The Laplace transform \(L_\omega(s) \) is analytic in the positive half-plane.
- \(-T\) has a finite number of eigenvalues which have positive real part.
- We can find a simple closed path \(\gamma \) that encloses all the eigenvalues and this path is located within the positive half-plane.
Proof:

We take

\[\int_{0}^{\infty} e^{-sx} \omega(x) \, dx = L_\omega(s) = f(s), \]

because we want to calculate

\[L_\omega(-T). \]

We know

- The Laplace transform \(L_\omega(s) \) is analytic in the positive half-plane.
- \(-T\) has a finite number of eigenvalues which have positive real part.
- We can find a simple closed path \(\gamma \) that encloses all the eigenvalues and this path is located within the positive half-plane.

Thus we can apply the definition based on the Cauchy formula to calculate \(L_\omega(-T) \).
Calculate $\mathbb{E}(\cos(\tau))$

We have

$$L_{\cos}(x) = \frac{x}{1 + x^2},$$
Calculate $E(\cos(\tau))$

We have

$$L_{\cos}(x) = \frac{x}{1 + x^2},$$

now using the theorem we obtain :

$$E(\cos(\tau)) = \pi L_{\cos}(-T)t,$$
Calculate $E(\cos(\tau))$

We have

$$L_{\cos}(x) = \frac{x}{1 + x^2},$$

now using the theorem we obtain:

$$E(\cos(\tau)) = \pi L_{\cos}(-T)t,$$

by insertion we get
Calculate $\mathbb{E}(\cos(\tau))$

We have

$$L_{\cos}(x) = \frac{x}{1 + x^2},$$

now using the theorem we obtain:

$$\mathbb{E}(\cos(\tau)) = \pi L_{\cos}(-T)t,$$

by insertion we get

$$\mathbb{E}(\cos(\tau)) = \pi (-T) (I + T^2)^{-1} t.$$
The Mellin transform: $\mathbb{E}(\tau^{\alpha-1})$, $\alpha > 0$.

\[
\mathbb{E}(\tau^{\alpha-1}) = \int_0^\infty x^{\alpha-1} \pi e^{Tx} dt dx = \pi \int_0^\infty x^{\alpha-1} e^{T x} dx dt.
\]
The Mellin transform: $\mathbb{E}(\tau^{\alpha-1}), \alpha > 0$.

$$\mathbb{E}(\tau^{\alpha-1}) = \int_0^\infty x^{\alpha-1} \pi e^{Tx} dx = \pi \int_0^\infty x^{\alpha-1} e^{Tx} dt.$$

In this case we have
The Mellin transform: $\mathbb{E}(\tau^{\alpha-1}), \alpha > 0$.

$$\mathbb{E}(\tau^{\alpha-1}) = \int_0^\infty x^{\alpha-1} \pi e^{Tx} \, dx = \pi \int_0^\infty x^{\alpha-1} e^{Tx} \, dx.$$

In this case we have

$$\int_0^\infty x^{\alpha-1} e^{-sx} \, dx = L_{x^{\alpha-1}}(s) = \frac{\Gamma(\alpha)}{s^\alpha}.$$

exists for all $\alpha > 0$ and all $s > 0$.
The Mellin transform: $E(\tau^{\alpha-1})$, $\alpha > 0$.

$$E(\tau^{\alpha-1}) = \int_0^\infty x^{\alpha-1} \pi e^{T_x} dx = \pi \int_0^\infty x^{\alpha-1} e^{T_x} dx.$$

In this case we have

$$\int_0^\infty x^{\alpha-1} e^{-sx} dx = L_{x^{\alpha-1}}(s) = \frac{\Gamma(\alpha)}{s^\alpha}.$$

exists for all $\alpha > 0$ and all $s > 0$.

So applying the theorem with $\omega(x) = x^{\alpha-1}$ we get
The Mellin transform: $E(\tau^{\alpha-1})$, $\alpha > 0$.

$$E(\tau^{\alpha-1}) = \int_0^\infty x^{\alpha-1} \pi e^{Tx} dx = \pi \int_0^\infty x^{\alpha-1} e^{Tx} dx t.$$

In this case we have

$$\int_0^\infty x^{\alpha-1} e^{-sx} dx = L_{x^{\alpha-1}}(s) = \frac{\Gamma(\alpha)}{s^{\alpha}}.$$

exists for all $\alpha > 0$ and all $s > 0$.

So applying the theorem with $\omega(x) = x^{\alpha-1}$ we get

$$E(\tau^{\alpha-1}) = \pi L_{x^{\alpha-1}}(-T)t = \Gamma(\alpha)\pi(-T)^{-\alpha}t.$$
Objective:

Moment distribution of a phase-type distribution
Objective:

Use the functional calculus method to obtain a representation of the Moment distribution of a phase-type distributed random variable.
Objective:

Use the functional calculus method to obtain a representation of the Moment distribution of a phase–type distributed random variable.

What’s the Moment distribution of a random variable?
Objective:
Use the functional calculus method to obtain a representation of the Moment distribution of a phase–type distributed random variable.

What’s the Moment distribution of a random variable?

Let X be a non-negative random variable with density f_X, then the density given by

$$g_n(x) = \frac{x^n f_X(x)}{\mathbb{E}(X^n)}$$

is called the density of the n’th order Moment distribution of X.
In particular, for $\tau \sim \text{PH}(\pi, T)$, we have

$$g_n(x) = \frac{x^n \pi e^{Tx} t}{\mathbb{E}(\tau^n)}.$$
Definition (Matrix–exponential distribution)

A distribution of a non–negative random variable is called matrix–exponential if it has a density function \(f \) on the form

\[
f(x) = \alpha \exp(Sx) \, s,
\]

where \(\alpha \) and \(s \) are row and column vectors respectively and \(S \) is a matrix.
Definition (Matrix–exponential distribution)

A distribution of a non–negative random variable is called matrix–exponential if it has a density function \(f \) on the form

\[
f(x) = \alpha \exp(Sx) s,
\]

where \(\alpha \) and \(s \) are row and column vectors respectively and \(S \) is a matrix.

\((\alpha, S, s)\)

is a representation of the matrix–exponential distribution.
Matrix–exponential distributions

Theorem

Consider a phase–type distribution with representation (π, T). Then its n'th order moment distribution has a matrix–exponential representation given by (α_n, S_n, s_n), where

\[
\alpha_n = \frac{\pi T^{-n}}{\pi T^{-n} e}, 0, \ldots, 0, \quad S_n = \begin{pmatrix}
T & -T & 0 & \cdots & 0 \\
0 & T & -T & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & T \\
\end{pmatrix},
\quad s_n = \begin{pmatrix}
0 \\
0 \\
\vdots \\
t \\
\end{pmatrix}.
\]
Proof:

The density of the Erlang distribution with parameters \((n, \lambda)\) is given by

\[E_r^n(x; \lambda) = \lambda^n (n-1)! x^{n-1} e^{-\lambda x}, \]

and this corresponds to the \(n-1\) order Moment distribution of an exponential distribution with parameter \(\lambda\).

We can also write this density as follows

\[E_r^n(x; \lambda) = (1, 0, \ldots, 0) \exp \left(\begin{pmatrix} -\lambda & \lambda \\ \vdots & \ddots & \ddots \\ 0 & \cdots & -\lambda \end{pmatrix} x \right). \]
Proof:

- The density of the **Erlang distribution with parameters** (n, λ) is given by

 $$
 f_{\text{Erlang}}(x; n, \lambda) = \frac{\lambda^n x^{n-1} e^{-\lambda x}}{(n-1)!},
 $$

 and this corresponds to the $(n-1)$-order moment distribution of an exponential distribution with parameter λ.
Proof:

The density of the **Erlang distribution with parameters** \((n, \lambda)\) is given by

\[
\text{Er}_n(x; \lambda) = \frac{\lambda^n}{(n-1)!} x^{n-1} e^{-\lambda x},
\]
Proof:

- The density of the **Erlang distribution with parameters** \((n, \lambda)\) is given by

\[
Er_n(x; \lambda) = \frac{\lambda^n}{(n-1)!} x^{n-1} e^{-\lambda x},
\]

and this corresponds to the \(n - 1\) order Moment distribution of an exponential distribution with parameter \(\lambda\).
Proof:

- The density of the **Erlang distribution with parameters** (n, λ) is given by

$$\text{Er}_n(x; \lambda) = \frac{\lambda^n}{(n-1)!} x^{n-1} e^{-\lambda x},$$

and this corresponds to the $n-1$ order Moment distribution of an exponential distribution with parameter λ.

We can also write this density as follows
Proof:

The density of the **Erlang distribution with parameters** \((n, \lambda)\) is given by

\[
\text{Er}_n(x; \lambda) = \frac{\lambda^n}{(n-1)!} x^{n-1} e^{-\lambda x},
\]

and this corresponds to the \(n-1\) order Moment distribution of an exponential distribution with parameter \(\lambda\).

We can also write this density as follows

\[
\text{Er}_n(x; \lambda) = (1, 0, \cdots, 0) \exp \begin{pmatrix}
\begin{pmatrix}
-\lambda & \lambda & 0 & \cdots & 0 \\\n0 & -\lambda & \lambda & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & -\lambda
\end{pmatrix} x \\
0
\end{pmatrix} \begin{pmatrix}
0 \\
0 \\
\vdots \\
\lambda
\end{pmatrix},
\]
The representation of a Moment distribution

The function

\[z \rightarrow Er_n(x; z) \]

is an analytic function in the positive half–plane,
The representation of a Moment distribution

The function

\[z \mapsto E_{r_n}(x; z) \]

is an analytic function in the positive half-plane, so the evaluation given by

\[E_{r_n}(x; -T) \]

is well defined by the Cauchy integral formula.
The representation of a Moment distribution

The function

\[z \rightarrow \text{Er}_n(x; z) \]

is an analytic function in the positive half–plane, so the evaluation given by

\[\text{Er}_n(x; -T) \]

is well defined by the Cauchy integral formula. Then

\[g_n(x) = \frac{x^n \pi e^{Tx} t}{E(\tau^n)} = \frac{\pi}{E(\tau^n)} (-T)^{-n-1}(n)! \text{Er}_{n+1}(x; -T)t \]
The representation of a Moment distribution

Denoting

\[
\exp(S_n x) = \exp \left(\begin{pmatrix}
T & -T & 0 & \cdots & 0 \\
0 & T & -T & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & T
\end{pmatrix}
\right) x,
\]

we get
The representation of a Moment distribution

Denoting

\[
\exp(S_n x) = \exp \left(\begin{pmatrix} T & -T & 0 & \cdots & 0 \\ 0 & T & -T & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & T \end{pmatrix} x \right),
\]

we get

\[
g_n(x) = \frac{\pi}{\mathbb{E}(\tau^n)} (-T)^{-n-1} (n)! (1, 0, \ldots, 0) \exp(S_{n+1} x) \begin{pmatrix} 0 \\ 0 \\ \vdots \\ -T \end{pmatrix} t \\
= \left(\frac{\pi T^{-n}}{\pi T^{-n} e}, 0, \ldots, 0 \right) \exp(S_{n+1} x) \begin{pmatrix} 0 \\ 0 \\ \vdots \\ t \end{pmatrix}.
\]
The functional calculus method:
The functional calculus method:

- give us a straightforward way to obtain expressions like $\mathbb{E}(\omega(\tau))$.
The functional calculus method:

- give us a straightforward way to obtain expressions like $\mathbb{E}(\omega(\tau))$.

- provides us a constructive way to obtain the representation of the moment distribution of a phase–type distributed random variable.