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Setup
I Given a (semi-) Riemannian manifold (M,g) and its

Levi-Civita connection ∇, the Killing operator is a map

K : 1-tensors → symmetric 2-tensors .

I One usually considers the 1-tensor as a vector field, and
those annihilated by the Killing operator are exactly the
infinitessimal generators of isometries of (M,g).

I However, it is congenial for us to ‘lower an index’ and speak
of the (entirely equivalent) Killing operator on 1-forms,

∧1 ∧1 ⊗∧1 ⊙2 ∧1

σa ∇aσb ∇(aσb) =
1
2∇aσb + 1

2∇bσa

K
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Abstract indices
I We employ Penrose’s abstract index notation: σb denotes

a 1-form because it has one lowered index. The
connection applied to σ is ∇aσb, denoting a 1-form valued
1-form, aka a two tensor, a section of ∧1 ⊗∧1.

I Given any tensor, say µabc , convenient to notate various
symmetrizations, for example using (•, •) for
symmetrization in some indices and [•, •] for skew
symmetrization, e.g.:

µ(ab)c = 1
2(µabc + µbac) µa[bc] =

1
2(µabc − µacb)

I If you’re not familiar with ‘abstract indices’, you can
mentally replace e.g. µabc with ‘the coefficients of the
3-tensor in a frame’, so that µ = µabceaebec .
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∧1 ∧1 ⊗∧1 ⊙2 ∧1

σa ∇aσb ∇(aσb) =
1
2∇aσb + 1

2∇bσa

K

I The kernel of the Killing operator are infinitessimal
isometries, so are generally well understood. A natural
next question, to better understand the operator K:

Question
What is the image of the Killing operator?

I You might expect that the Killing operator is so well studied
that this is known in general, but it is not so.
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Trivial metric perturbations
I One answer: the Killing operator has codomain {symmetric

2-tensors}, and the image 2-tensors K(X ) correspond to
trivial (gauge) perturbations of the background metric g,

gab 7→ gab + εK(X )ab.

I In fact, a short calculation shows that for any vector field X ,
one has

LX gab = K(X )ab.

(L the usual Lie derivative)
I To perturb the metric by LX gab—equivalently, an element

in the image of K—merely changes the metric up to
infinitessimal diffeomorphism (by the integral flow of X ). In
other words, you’ve only changed coordinates, and not the
metric itself.
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Gravitational waves
IANAP1, but this comes up for example in (linearized)
gravitational waves, which are travelling non-trivial
perturbations of the background metric. It is important to
understand which perturbations are non-trivial, have physically
observable effect.

1I Am Not A Physicist
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Calabi’s operator
I To study the Killing equation on Riemannian manifolds of

constant curvature, Calabi defined a second-order
differential operator,

=
⊙2 ∧1 3 hab 7→ C(h)abcd ∈ Riem = ,

C(h)abcd =∇(a∇c)hbd −∇(b∇c)had −∇(a∇d)hbc +∇(b∇d)hac

− Rab
e
[chd ]e − Rcd

e
[ahb]e

I Don’t worry about the detailed structure here, but of import
is that the 4-tensor C(h)abcd has Riemannian curvature
type symmetries (it is skew in ab and cd , plus the
Bianchi-type symmetry: C(h)[abc]d = 0).
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Heiroglyphs
I These ‘box diagrams’, tableaux, comprise an efficient and

useful language for encoding the symmetries of tensors.
There is an algorithm for reading off symmetries from the
arrangement of boxes.

I But we only need four of these, so let’s just enumerate
them:

= 1-tensors
= symmetric 2-tensors

= skew symmetric 2-tensors = differential 2-forms

= 4-tensors of Riemannian symmetry
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Composition of Killing and Calabi
I It is a few pages of calculation to check that the

composition (on a general semi-Riemannian manifold)

K C

has formula
σ 7→ R · dσ − (∇R) · σ,

where the first term is the action of the two form dσ on the
background curvature, and the second term is contraction
with σ.

I (In indices, more explicitly,

2Rab
e
[cµd ]e + 2Rcd

e
[aµb]e − (∇eRabcd)σe

where µab = dσab = ∇[aσb].)
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Constant curvature manifolds

Theorem, Calabi [1]
On a manifold of constant curvature, the complex is exact,

K C

I Proof: On a manifold of constant curvature, the action of
curvature on 2-forms is identically zero, and ∇R = 0, so
one finds that the composition has formula

σ 7→����R · dσ −�
��(∇R) · σ = 0.
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Constant curvature manifolds

Theorem, Calabi [1]
On a manifold of constant curvature, the complex is exact,

K C

I Calabi gives an entire sequence of differential operators
defining an exact sequence resolving the Killing operator,

0 −−→ kerK −−→ K−→ C−→ C′−−→ −−→ · · ·
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Locally symmetric manifolds
I Constant curvature is too restrictive an assumption! A bit

more generally, a Riemannian manifold is locally
symmetric if and only if ∇R = 0 identically.

I The composition still simplifies,

σ R · dσ +����∇R · σ

K C

Not quite a complex, but...
I We have the operator ‘two forms acting on the curvature’,

and the quotient

= /R
( )

R· q
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Locally symmetric manifolds
I So, if we modify the Calabi operator, we get a complex

again! (On any locally symmetric manifold.)

σ ����R · dσ = 0

K C

I Where we have defined

C : C q

by quotienting out the image of 2-forms.
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Is it locally exact?

Theorem, Costanza, Eastwood, Leistner, McMillan
Suppose M is a Riemannian locally symmetric space. If we
write M as a product of irreducibles

M = M1 ×M2 × · · · ×Mk ,

then the complex

K C

is locally exact, except if M has at least one flat factor and at
least one Hermitian factor, in which case it fails to be locally
exact.
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Whence the Calabi operator?
I Let’s look more closely at the Killing operator for clues.

Suppose that K(σ) = 0, or equivalently,
∇bσc = ∇[bσc] +����K(σ)bc = dσbc =: µab. This equation has
a differential consequence:

∇aµbc = ∇[aµb]c −∇[aµc]b −∇[bµc]a

= ∇[a∇b]σc −∇[a∇c]σb −∇[b∇c]σa

= 1
2R d

ab cσd − 1
2R d

ac bσd − 1
2R d

bc aσd = R d
ab cσd

I First equality is an identity on any 3 tensor skew in the last
indices. (Like the one used to compute Christoffel
symbols.) Second equality is the definition of µab. The last
equality is the Bianchi symmetry of curvature.
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Prolongation of the Killing equation
I What we’ve found is that a 1-form σb is Killing if and only if

there exists a 2-form µbc so that ∇aσb − µab = 0 and
∇aµbc − Rab

d
cσd = 0.

I Let E = ∧1 ⊕∧2, and define a connection

E 3
[
σc
µcd

]
Db7−→
[

∇bσc − µbc
∇bµcd − Rcd

e
bσe

]
∈ ∧1 ⊗ E

I Observe, σb is Killing if and only if Db(σc , dσcd) = 0. This
is a prolongation of the Killing equation (which is an
overdetermined equation), and it has closed up—a good
situation to be in. We are able to replace the Killing
operator with a connection on a larger bundle; solutions
are in bijection with flat sections
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Image of the prolonged equation
I For E = ∧1 ⊕∧2 and the prolongation connection

E 3
[
σc
µcd

]
Db7−→
[

∇bσc − µbc
∇bµcd − Rcd

e
bσe

]
∈ ∧1 ⊗ E

it is not a difficult calculation to see that the curvature is
given by

(DaDb−Db Da)

[
σc
µcd

]
=

[
0

(R · µ)abcd − (∇eRabcd)σe

]
I This is exactly the composition C K that we saw before. (In

particular, miraculously, the curvature of D has component
only in the Riemannian symmetries component of
∧2 ⊗∧2.) The (∇eRabcd)σe term vanishes on a locally
symmetric manifold.
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Image of the prolonged equation
I The prolongation connection is also related to the image of
K. If σc is any 1-form, then its image is
hbc = K(σ) = ∇(bσc) = ∇bσc −∇[bσc], and so

Db

[
σc
∇[cσd ]

]
=

[
∇bσc −∇[cσd ]

∇b∇[cσd ] − Rcd
e

bσe

]
= · · · =

[
hbc

2∇[chd ]b

]
I So, a symmetric hbc is in the image of K if and only if the

previous display holds for some σc .
I On the other hand, it’s a direct computation that for any

symmetric hbc ,

Da

[
hbc

2∇[chd ]b

]
−Db

[
hac

2∇[chd ]a

]
=

[
0

C(h)abcd

]
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Image of the prolonged equation
I Putting it all together, we have that if a symmetric hbc is in

the image of the Killing operator, then for some σa and
µab = ∇[aσb],[

0
C(h)abcd

]
= (DaDb−Db Da)

[
σc
µcd

]
=

[
0

(R · µ)abcd

]
I In other words, recalling that “C = C modulo R · ”, we find

that C(h) = 0 is a necessary condition for hbc to be in the
image of K.

I Recall that I claimed it is a long calculation to compute the
composition C K, but this re-does that in a few lines.
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I The last couple slides got a little formula heavy, but the
upshot is this: you can replace the Killing equation with a
nice, geometrically adapted connection.

I It is then just a game of playing around with the connection
to determine compatibility conditions to be in the image of
the connection, equivalently the image of K.

I This game can be played more generally, for other
overdetermined linear operators!
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Thanks for listening!

E. Calabi, On compact Riemannian manifolds with constant
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