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Note: Much of this is a distillation of the treatment of holonomy in the book Einstein
Manifolds of Arthur L. Besse, for more detail the reader is strongly encouraged to look
at the original source. This talk covers the case of holonomy on Riemannian manifolds,
but there is an analogous theory for manifolds with more general connections.

1. What is Holonomy?

Given a connected Riemannian manifold M with Levi-Civita connection ∇ we may
define the parallel transport along a curve. That is to say, for any curve γ : [0, 1] → M
and a vector X0 ∈ Tγ(0)M there is a unique parallel vector field X extending X0 along
γ so that ∇γ′X ≡ 0. The parallel transport of X0 is then the vector X(1) ∈ Tγ(1)M . By
varying X0 we get a map Pγ : Tγ(0)M → Tγ(1)M . If γ is a closed loop based at xp then we
get an endomorphism of TpM . Varying these loops (but fixing p), we have a functor from
the loop space Ω(M, p) to End(TpM), which is a quick way of saying that for 2 loops γ
and η we have Pγ·η = PγPη. Now we can define

Definition. The holonomy group of M at p, Hol(M, p) is the image of Ω(M, p) under
the functor described above with group law given by composition.

To see that Hol(M, p) is actually a group note that the functoriality PγPη = Pγ·η shows
both that Hol(M, p) is closed under composition and the image of the constant loop is
the identity. To see that every element has an inverse note that the uniqueness of parallel
vector field extending any vector implies that Pγ−1 = P−1γ .

In fact we can say more. Recall that our parallel transport map comes from the solution
of a homogenous ODE on the tangent bundle. In particular, the solution depends linearly
on the initial condition X0, so Hol(M, p) is contained in GL(TpM). Furthermore, since
the metric on M is compatible with ∇, the map Pγ must be an isometry of TpM , so that
Hol(p,M) ⊂ O(TpM). Finally, we note that the holonomy lies in SO(TpM) exactly if M
is orientable.

Now, the definition as stated depends on the chosen base point p, but consider another
point q ∈ M and any path η from p to q. Then the map from Hol(M, p) to Hol(M, q)
given by conjugating with Pη is an isomorphism. Thus we can drop the base point from
our notation and talk of the holonomy of M .

Example. If M = Rn with the flat metric then parallel translation is simply translation
in Rn. In particular, Pγ is the identity for each γ, so Hol(Rn) = 0.

If M is flat it is not necessarily true that Hol(M) = 0. For example, consider the cone of
angle α around the vertex. By unrolling the cone it is not hard to see that the holonomy
of any simple loop around the vertex will be rotation by the angle α. The holonomy group
is generated by this rotation and will be finite or infinite cyclic depending on whether
α/π is rational or irrational.

Note however that the holonomy is discrete. This is the worst that can happen for a
flat manifold. In fact for any flat manifold M the Lie algebra of Hol(M) is zero. The will
follow immediately from the Ambrose-Singer theorem, which states roughly that the Lie
algebra of the holonomy is generated by the curvature at each point.
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Example. The round sphere S2 has holononomy group all of SO(2). Each rotation
Rα ∈ SO(2) is the holonomy of the following triangle based at the north pole: follow
any geodesic to the equator, travel along the equator, return to the north pole along the
geodesic at angle α with the one leaving the north pole. Since a parallel vector field along
a geodesic keeps constant angle with the velocity of the geodesic (metric compatibility of
the connection) we see that the holonomy of this loop is rotation by α.

2. Holonomy and geometry of a manifold

Suppose we have a tensor field on our manifold which has zero covariant derivative.
If the tensor field is geometrically significant then this means we have a structure which
is compatible with our metric. For example, a Kahler manifold is characterized by the
fact that its complex structure has zero covariant derivative. The following theorem
demonstrates the relation between holonomy and the geometry of a Riemannian manifold.

Theorem. On a Riemannian manifold M the following are equivalent:
(1) there exists a tensor field of type (r, s) which is parallel (invariant under parallel

transport).1

(2) there exists a tensor field of type (r, s) with zero covariant derivative.
(3) for some p in M there is an (r, s) tensor on TpM which is invariant under Hol(M,x).

Proof. Suppose we have a tensor T which satisfies (1), so that for any path γ from p to q
we have PγTp = Tq. Then for any closed loop at p we have PγTp = Tp, which implies (3).
Conversely, for a tensor T0 at p satisfying (3 ) we define Tq = PγTp. Since T0 is invariant
under holonomy we see that Tq is independent of the choice of γ.

To see that (1) and (2) are equivalent recall the formula

(∇T )(X1, . . . , Xs, X) = ∇X(T (X1, . . . , Xs))−
s∑
i=1

T (X1, . . . ,∇XXi, . . . , Xs).

We vary γ and choose X1, . . . , Xs parallel along γ and let X = γ̇. Since ∇XXi = 0 we
see that ∇T = 0 if and only if T (X1, . . . , Xs) is constant along all paths. �

Example. A Kahler manifold is a complex manifold (M2n, g, J) which satisfies ∇J = 0.
By the theorem this means that Hol(M) preserves the complex structure, or in other
words Hol(M) ⊂ GL(TpM) ∼= GL(Cm) with the complex structure on TpM given by J .
Thus Hol(M) ⊂ U(m) = SO(2m) ∩GL(Cm).

Conversely, if Hol(M) ⊂ U(n) then we fix J0 a complex structure on TpM preserved
by Hol(M). By the theorem this gives us an almost complex structure J on M which is
furthermore parallel. It can be shown that this gives an honest complex structure on M ,
with which M is a Kahler manifold.

3. Holonomy and Curvature

To see how curvature generates holonomy, fix vectors X0, Y0 ∈ TpM . We extend these
to commuting vector fields X, Y near p. Then the curvature R(X, Y ) has the nice form
[∇X ,∇Y ]. Recall that the geometric interpretation of [X, Y ] for arbitrary vector fields is
the derivative of the endpoint of the ‘parallelograms’ γt created by following the flow of
X for time

√
t, of Y for

√
t, the inverse flow of X and then the inverse flow of Y . In our

case, [X, Y ] = 0 implies that γt is a closed loop for each t (at least up to first order, and

1A parallel transport map is a linear isomorphism, so may be extended to tensors. For example, given
a 1 form η on M and γ from x to y we have (Pγηx)(v) = ηx(P−1

γ v). In particular, a tensor field is parallel

exactly if it is constant on all parallel vector fields.
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we could modify our extensions to make it literally true.). The same proof with [∇X ,∇Y ]
shows that

R(X0, Y0) = [∇X ,∇Y ] =
d

dt

∣∣∣∣
t=0

Pγt .

In particular, we see that the sub algebra generated by R(X, Y ) as we vary X, Y ∈ TpM
as well as TpM lies in the Lie algebra of Hol(M). What is possibly more surprising is
that this is all of the holonomy

Theorem (Ambrose-Singer). The Lie algebra of Hol(M, p) is generated by all elements
of the form P−1γ R(x, y)Pγ where γ is a path from p to q and x, y ∈ TqM .

An immediate consequence is

Corollary. A generic oriented Riemannian manifold has holonomy group all of SO(n).

4. Symmetric Spaces

The majority of spaces with nontrivial holonomy are locally symmetric spaces. To
define these, note that at a point p in a Riemannian manifold M we may define a diffeo-
morphism on a neighborhood of p by flipping all of the geodesics through p. A space is
locally symmetric if this geodesic inversion around any point is an isometry.

Example. Consider a Lie group G with an involution σ of G. If a compact subgroup
H is an open subset of the fixed point set of σ then the manifold M = G/H is locally
symmetric.

The Lie group homomorphism σ induces a linear map σ′e : g → g which is also an
involution. Thus g decomposes into the direct sum of its +1 eigenspace h and the −1
eigenspace m. Since H is an open subset of Fix(σ) we see that h is the Lie algebra of H and
so m may be identified with the tangent space of M at eH. We fix a Euclidean structure
on m (considered as the tangent space of M) which is invariant under the adjoint action
of H and push it around by the action of G. The involution σ is an isometry, and the
fact that σ′e is the negative of the identity shows that σ is a geodesic inversion. Similarly,
gσg−1 will be an isometric geodesic inversion at any other point gH.

Symmetric spaces have particularly easy to compute holonomy, as given by the follow-
ing theorem

Theorem. An irreducible simply connected symmetric space G/H has holonomy group
isomorphic to H.

The irreducible simply connected symmetric spaces were classified by Cartan, although
it is a difficult task.

5. Classification of nontrivial, non-symmetric holonomy

To complete the classification of possible holonomy groups we need to classify the
possibilities if M is not locally symmetric. This involves a lot of representation theory,
but the conclusion is that

Theorem. Suppose M is a simply connected Riemannian manifold of dimension n whose
representation of Hol(M) on any tangent plane is irreducible. If M is not locally sym-
metric then the Lie group of Hol(M) is one of

(1) SO(n)
(2) U(m), with n = 2m
(3) SU(m), with n = 2m
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(4) Sp(1) · Sp(m), with n = 4m
(5) Sp(m), with n = 4m
(6) Spin(7)
(7) Spin(9)
(8) G2

As remarked before, case 2 corresponds to a Kahler manifold. The other cases corre-
spond to other kinds of geometries compatible with the metric.
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