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1. Introduction

In this paper, we initiate the study of the homotopy theory of minimal surfaces

of finite total curvature in Euclidean spaces Rn, n ≥ 3, and of algebraic directed

immersions from affine algebraic curves to complex Euclidean spaces Cn, n ≥ 2.

We begin by recalling the basic facts on minimal surfaces, referring to [31] and

[5] for more information. Let M be an open Riemann surface. An immersion

u = (u1, . . . , un) : M → Rn is conformal if and only if the Cn-valued (1, 0)-form

φ = (φ1, . . . , φn), whose i-th component φi = ∂ui is the (1, 0)-differential of the

function ui, satisfies the nullity condition

(1.1)

n∑
i=1

φ2i = 0.

A conformal immersion u : M → Rn parametrises a minimal surface if and only

if u is harmonic if and only if φ = ∂u is a holomorphic 1-form. Conversely, a

nowhere vanishing holomorphic 1-form φ = (φ1, . . . , φn) on M satisfying the nullity

condition (1.1) and the period vanishing condition <
∫
C φ = 0 for all closed curves

C in M integrates to a conformal minimal immersion u = <
∫
φ : M → Rn. If∫

C φ = 0 for all closed curves C in M , then φ integrates to a holomorphic null curve

h =
∫
φ : M → Cn whose real and imaginary parts parametrise conjugate minimal

surfaces. Define the null quadric

(1.2) A =
{

(z1, . . . , zn) ∈ Cn∗ = Cn \ {0} : z21 + z22 + · · ·+ z2n = 0
}
.
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Given a Riemann surface M , the null quadric defines a holomorphic subbundle A
of the vector bundle (T ∗M)⊕n, with fibre isomorphic to A, whose sections are n-

tuples (φ1, . . . , φn) of (1, 0)-forms on M without common zeros such that the ratio

[φ1 : · · · : φn] : M → Pn−1 takes values in the projective quadric defined by the

same equation z21 + z22 + · · · + z2n = 0. Hence, a smooth map u : M → Rn is a

conformal minimal immersion if and only if φ = ∂u is a holomorphic section of the

bundle A →M . Note that the fibre multiplication by a nonzero complex number is

a well-defined operation on A.

The flux homomorphism Fluxu : H1(M,Z) → Rn of a conformal minimal

immersion u : M → Rn is given by

(1.3) Fluxu(C) =

∫
C
dcu for every [C] ∈ H1(M,Z).

We may view Fluxu as an element of the cohomology group H1(M,Rn). The 1-form

dcu = =(2∂u) = i(∂u− ∂u) is the differential of any local harmonic conjugate of u,

so u is the real part of a holomorphic null curve M → Cn if and only if Fluxu = 0.

Complete minimal surfaces of finite total Gaussian curvature are among the most

intensively studied minimal surfaces, and they play an important role in the classical

global theory of minimal surfaces; see [31] and [5, Chapter 4], among many other

sources. If u : M → Rn is a conformally immersed minimal surface of finite total

curvature, then the Riemann surface M is the complement in a compact Riemann

surface M of a nonempty finite set E = {x1, . . . , xm} whose points are called the

ends of M . Such a surface M admits a biholomorphism onto a closed embedded

algebraic curve in C3 and hence will be called an affine Riemann surface. The

bundle A → M with fibre A (1.2) is algebraic and ∂u is a meromorphic 1-form on

M without zeros or poles on M , that is, an algebraic (regular) section of A over

M . Completeness of u is reflected in ∂u having an effective pole at every point of

E = M \M . The surface u(M) is then properly immersed in Rn and has a fairly

simple and well-understood asymptotic behaviour at every end of M , described

by the Jorge–Meeks theorem [22]. Although this family of minimal surfaces has

been a focus of interest since the seminal work of Osserman in the 1960s [31], the

theories of approximation and interpolation for complete minimal surfaces of finite

total curvature in Rn, including Runge and Mittag–Leffler type theorems, have been

developed only recently [28, 2, 9]. The present paper provides the first contributions

to the homotopy theory of this most important class of minimal surfaces.

We denote by CMI∗(M,Rn) the space of complete nonflat conformal minimal

immersionsM → Rn of finite total curvature, and by NC∗(M,Cn) and <NC∗(M,Cn)

the spaces of complete nonflat holomorphic null immersions M → Cn of finite total

curvature (that is, proper and algebraic) and their real parts, respectively. We

denote by A 1(M,A) the space of Cn-valued meromorphic 1-forms φ = (φ1, . . . , φn)

on M having no zeros or poles in M and satisfying the nullity condition (1.1), that is,

algebraic sections of the bundle A →M , and by A 1
∗ (M,A) the subspace of nonflat
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1-forms. Nonflatness means that the map [φ1 : · · · : φn] : M → Pn−1 is nonconstant.

All these spaces are endowed with the compact-open topology.

Consider the diagram

(1.4) <NC∗(M,Cn) �
� //

∂ ((QQ
QQQ

QQQ
QQQ

Q
CMI∗(M,Rn)

∂
��

A 1(M,A)

where ∂ is the (1, 0)-differential. The following is our main result.

Theorem 1.1. If M is an affine Riemann surface, then the maps in (1.4) are weak

homotopy equivalences.

Recall that a continuous map α : X → Y between topological spaces is said to

be a weak homotopy equivalence if it induces a bijection of path components of the

two spaces and an isomorphism πk(α) : πk(X) → πk(Y ) of their homotopy groups

for k = 1, 2, . . . and arbitrary base points. Thus, Theorem 1.1 says that the three

mapping spaces in diagram (1.4) have the same rough topological shape.

Note that the images of the maps ∂ in (1.4) are contained in the subspace

A 1
∞(M,A) of A 1

∗ (M,A) consisting of nonflat 1-forms that have poles at all ends of

M . It turns out that A 1
∞(M,A) and A 1

∗ (M,A) are open everywhere dense subsets

of A 1(M,A), and the inclusions

(1.5) A 1
∞(M,A) ↪−→ A 1

∗ (M,A) ↪−→ A 1(M,A)

are weak homotopy equivalences (see Propositions 5.2 and 5.3). Hence, Theorem

1.1 also holds if the operator ∂ is considered as a map to any of these two smaller

spaces of 1-forms on M . See the more detailed diagram (6.1) and Corollary 6.5.

Recall that the tangent bundle of an affine Riemann surface M is holomorphically

trivial (this holds for every open Riemann surface by a theorem of Oka [30], see also

[15, Theorem 5.3.1 (c)] and the more precise result of Gunning and Narasimhan

[20]), but is not algebraically trivial in general. If the genus of M is 0 or 1, that

is, M is the Riemann sphere P or a torus, then TM is algebraically trivial. More

generally, TM is algebraically trivial if M is embeddable as a closed algebraic curve

in C2. Note that TM is algebraically trivial if and only if the cotangent bundle T ∗M

is such, and this holds if and only if there is an algebraic 1-form θ on M without

zeros or poles. Such a 1-form is the restriction to M of a meromorphic 1-form on M .

Every φ ∈ A 1(M,A) is then of the form φ = fθ where f : M → A is an algebraic

map. In this case we can replace the space A 1(M,A) in (1.4) by the space A (M,A)

of algebraic maps M → A and the differential u 7→ ∂u by the map u 7→ ∂u/θ.

For the spaces of nonflat holomorphic null curves and nonflat conformal minimal

immersions (not necessarily complete or of finite total curvature) from an arbitrary

open Riemann surface M , and with A 1(M,A) replaced by the bigger space

O1(M,A) of holomorphic 1-forms on M with values in A, the homotopy principle
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for the maps in (1.4) was obtained by Forstnerič and Lárusson [16, Theorems 1.1 and

1.2], following the work of Alarcón and Forstnerič in [3, 4]. In this case, the maps

in (1.4) were shown to be genuine homotopy equivalences when the homology group

H1(M,Z) is finitely generated, which holds if M is an affine Riemann surface. We

do not know whether the same is true in the context of Theorem 1.1. To show that

a weak homotopy equivalence is a genuine homotopy equivalence using Whitehead’s

theorem, one needs to know that the spaces in question have the homotopy type of

CW complexes. In [16], this was established by showing that the spaces are absolute

neighbourhood retracts (such results were first proved in [25]). We do not see any

way to prove this in the present setting and have no reason to believe it is true.

The aforementioned results in [16] are used in an important way in the proof

of Theorem 1.1, given in Section 5. Another major ingredient is the algebraic

homotopy approximation theorem for sections of algebraically elliptic submersions

over an affine manifold, due to Forstnerič [14]. We shall use improved versions given

by Theorems 2.1 and 2.6 and Corollary 2.8.

In order to understand the topological structure of the mapping spaces in (1.4),

one may consider the following extended diagram

(1.6) CMI∗(M,Rn)

∂
��

� � ι // CMInf(M,Rn)

∂
��

A 1(M,A) �
� α // O1(M,A)

β // C (M,A),

where ι is the inclusion of CMI∗(M,Rn) in the space CMInf(M,Rn) of nonflat

conformal minimal immersions M → Rn, α is the inclusion of the space of algebraic

1-forms in the space of holomorphic 1-forms with values in A, and β is the map

φ 7→ φ/θ where θ is a fixed nowhere vanishing holomorphic 1-form on M . The

map β is a weak homotopy equivalence by the Oka–Grauert principle since the

null quadric A is complex homogeneous and hence an Oka manifold. The left-hand

vertical map ∂ is a weak homotopy equivalence by Theorem 1.1, while the right-hand

one is a weak homotopy equivalence by [16, Theorem 5.3]. In order to understand

the inclusion ι, it thus remains to understand the inclusion α. In principle, the

limitations of the algebraic Oka principle, discovered by Lárusson and Truong [26],

suggest that α may fail to be a weak homotopy equivalence. Nevertheless, it has

recently been shown by Alarcón and Lárusson [8, Proposition 2.3 and Corollary 1.8]

that α induces a surjection of the path components of the two spaces, so ι does as

well. We expect that α and hence ι induce bijections of path components, but we

have not been able to prove it. In Section 8, we reduce this question to the problem

of whether the space A 1(M,A) is locally contractible; see Theorem 8.3.

For the inclusion <NC∗(M,Cn) ↪→ CMI∗(M,Rn), Theorem 1.1 says in particular

that every complete nonflat conformal minimal immersion M → Rn of finite total

curvature can be deformed through maps of the same type to the real part of a
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proper algebraic null curve M → Cn. The following result shows that, in addition,

one can control the flux along an isotopy in CMI∗(M,Rn).

Theorem 1.2. Let M be an affine Riemann surface and u0 : M → Rn, n ≥ 3, be a

complete nonflat conformal minimal immersion of finite total curvature. Then there

is a smooth isotopy ut : M → Rn, t ∈ [0, 1], of complete nonflat conformal minimal

immersions of finite total curvature such that u1 is the real part of a proper algebraic

null curve h : M → Cn. More generally, for any homotopy Ft ∈ H1(M,Rn),

t ∈ [0, 1], with F0 = Fluxu0 there is a smooth isotopy ut : M → Rn, t ∈ [0, 1], of

complete nonflat conformal minimal immersions of finite total curvature such that

Fluxut = Ft for all t ∈ [0, 1].

This is an analogue of [4, Theorem 1.1], which gives a similar statement for nonflat

minimal surfaces without the finite total curvature condition; see also [7, Theorem

1.1], which permits prescribing the flux of all the surfaces in the isotopy by using the

same tools. If the immersion u0 : M → Rn in Theorem 1.2 is not complete (which

means that it extends harmonically to an end of M), the theorem still holds with

the weaker conclusion that the nonflat conformal minimal immersions of finite total

curvature ut : M → Rn, t ∈ [0, 1], are complete for c ≤ t ≤ 1 for any given c ∈ (0, 1).

This shows that the inclusion of CMI∗(M,Rn) into the space CMI0(M,Rn) of all

nonflat conformal minimal immersions of finite total curvature M → Rn (including

the incomplete ones) induces a surjection of path components. We show that this

inclusion is in fact a weak homotopy equivalence (see Corollary 6.5). We also prove

a parametric version of Theorem 1.2 (see Theorem 6.2).

Holomorphic null curves are a special type of directed holomorphic immersions of

open Riemann surfaces to complex Euclidean spaces. A connected compact complex

submanifold Y of Pn−1, n ≥ 2, determines the punctured complex cone

(1.7) A = {(z1, . . . , zn) ∈ Cn∗ : [z1 : · · · : zn] ∈ Y }.

Note that A is smooth and connected, and its closure A = A∪{0} ⊂ Cn is algebraic

by Chow’s theorem. The map π : A→ Y given by π(z1, . . . , zn) = [z1 : · · · : zn] is an

algebraic C∗-bundle, and by adding the zero section we obtain the restriction to Y

of the hyperplane bundle on Pn−1. A holomorphic immersion h : M → Cn from an

open Riemann surface is said to be directed by A, or an A-immersion, if its complex

derivative with respect to any local holomorphic coordinate on M takes its values in

A. Equivalently, the differential dh = ∂h is a section of the subbundle A with fibre

A of the vector bundle (T ∗M)⊕n. When A is the null quadric A, an A-immersion

M → Cn is the same thing as a holomorphic null immersion.

Holomorphic directed immersions were studied by Alarcón and Forstnerič [3].

Under the assumption that A is an Oka manifold not contained in any hyperplane

in Cn, they proved an Oka principle with Runge and Mergelyan approximation for

holomorphic A-immersions [3, Theorems 2.6 and 7.2]. (By [15, Theorem 5.6.5],

the cone A in (1.7) is an Oka manifold if and only if Y is.) They also showed that

every holomorphic A-immersion can be approximated by holomorphic A-embeddings
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when n ≥ 3, and by proper holomorphic A-embeddings under some natural extra

assumptions on the cone A [3, Theorem 8.1]. In the subsequent paper [1] by Alarcón

and Castro-Infantes, interpolation was added to the picture. A parametric Oka

principle for holomorphic immersions directed by an Oka cone was proved as [16,

Theorem 5.3].

Recently, algebraic A-immersions from affine Riemann surfaces into Cn were

studied in [8] under the assumption that the cone A is algebraically elliptic in the

sense of Gromov [19] (see also [15, Definition 5.6.13]); we recall this notion in Section

2. Several important cones arising in geometric applications, in particular the null

quadric A, are algebraically elliptic. The optimal known sufficient condition for the

cone A (1.7) on a projective manifold Y ⊂ Pn−1 to be algebraically elliptic is given by

a recent theorem of Arzhantsev, Kaliman, and Zaidenberg [11, Theorem 1.3]. They

showed that A is algebraically elliptic if Y (with dimY ≥ 1) is uniformly rational,

meaning that Y is covered by Zariski-open sets, each isomorphic to a Zariski-open

subset of affine space.

We obtain further results on directed algebraic immersions. The following Runge

approximation and jet interpolation theorem is proved in Section 3. It strengthens

the main implication (iii) ⇒ (ii) of [8, Theorem 1.1], upgrading plain interpolation

to jet interpolation. This requires a new idea.

Theorem 1.3. Let A ⊂ Cn∗ , n ≥ 2, be a connected smooth punctured complex cone

(1.7) which is algebraically elliptic and not contained in a hyperplane in Cn. Let M

be an affine Riemann surface, A be the subbundle of (T ∗M)⊕n defined by A, K be

a compact holomorphically convex subset of M , U be an open neighbourhood of K,

and h : U → Cn be a holomorphic A-immersion such that the homotopy class of

continuous sections of A|U → U that contains dh also contains the restriction to U

of an algebraic section ϑ : M → A. Then h can be approximated uniformly on a

neighbourhood of K by proper algebraic A-immersions h̃ : M → Cn agreeing with h

to a given finite order on any given finite set in K such that dh̃ is homotopic to ϑ

through algebraic sections of A →M .

For the null quadric A (1.2), Theorem 1.3 was first proved by Alarcón and López

[9, Theorem 1.2] using fairly technical results from the function theory of Riemann

surfaces and the special geometry of the cone. In this case, the hypothesis that

dh be homotopic to the restriction of an algebraic section of A is always fulfilled

[8, Proposition 2.3]. Their result also gives interpolation of poles at some ends of

M and includes Mergelyan approximation on admissible sets, as opposed to mere

Runge approximation as in Theorem 1.3. The latter is well understood and we do

not repeat it here.

We recall the following notion from [3, Definition 2.2]. Let A ⊂ Cn∗ , n ≥ 2, be a

smooth punctured complex cone. We consider the tangent space TxA ⊂ TxCn at a

point x ∈ A as a C-linear subspace of Cn. Let M be an open Riemann surface and θ

be a nowhere vanishing holomorphic 1-form on M . A holomorphic map f : M → A
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is nondegenerate if the linear span of the tangent spaces Tf(x)A, x ∈M , equals Cn.

A holomorphic A-immersion h : M → Cn is nondegenerate if the holomorphic map

f = dh/θ : M → A is nondegenerate. A holomorphic 1-form φ on M with values in

A is nondegenerate if the holomorphic map φ/θ : M → A is nondegenerate. Recall

that a holomorphic null immersion is nondegenerate if and only if it is nonflat; see

[5, Lemma 2.5.3] and the references therein.

Given an open Riemann surface M , we denote by Ind(M,A) the space of

nondegenerate holomorphic A-immersions M → Cn, n ≥ 2. Let θ be as above.

Assuming that the cone A is an Oka manifold, it was proved in [16, Theorem 5.6]

(see also [5, Theorem 3.12.7]) that the map Ind(M,A) → O(M,A), h 7→ dh/θ,

is a weak homotopy equivalence, and is a homotopy equivalence if M is of finite

topological type, that is, if H1(M,Z) is finitely generated.

It is natural to ask to what extent this holds in the algebraic category, with

M an affine Riemann surface and A ⊂ Cn∗ , n ≥ 2, a connected smooth algebraic

cone not contained in any hyperplane. If A is algebraically elliptic, Theorem 1.3

shows that the map I∗(M,A) → A 1(M,A), h 7→ ∂h, from the space I∗(M,A) of

proper nondegenerate algebraic A-immersions M → Cn to the space A 1(M,A) of

algebraic 1-forms on M with values in A induces a surjection of path components.

The next question is whether this map is injective on path components. A partial

answer is given by Theorem 7.2. Under the stronger assumptions that the cone A

is flexible, we have the following homotopy principle for nondegenerate algebraic

A-immersions, analogous to Theorem 1.1. Recall (see Arzhantsev et al. [10]) that an

algebraic manifold is said to be flexible if it carries finitely many complete algebraic

vector fields with algebraic flows spanning the tangent bundle at every point.

Theorem 1.4. Let M be an affine Riemann surface, and let A ⊂ Cn∗ , n ≥ 2, be a

flexible smooth connected cone not contained in any hyperplane. Then the map

(1.8) I∗(M,A)→ A 1(M,A), h 7→ dh,

is a weak homotopy equivalence.

The only way in which flexibility is used in this paper is that it implies algebraic

ellipticity with a trivial spray bundle; see Theorem 2.6 and the proof of Corollary

2.8. The null quadric A is flexible (see [5, Proposition 1.15.3], which is a special

case of a result of Kaliman and Zaidenberg [23, Section 5]), so the part of Theorem

1.1 pertaining to the map <NC∗(M,Cn)→ A 1(M,A), u 7→ ∂u, is a special case of

Theorem 1.4. The proof of Theorem 1.4 is obtained by exactly the same argument

as in the case A = A, so we omit the details. The large cone A = Cn∗ , n ≥ 2, is also

flexible, so Theorem 1.4 applies to it. Further examples are the cones A defined by

a flag manifold or a toric manifold Y (see Arzhantsev et al. [12]). Other examples

are given in [32, 29, 33].

The paper is organised as follows. In Section 2 we prove the algebraic homotopy

approximation theorems used in the paper. In Section 3 we prove Theorem 1.3,
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and in Section 4 we prove Theorem 1.2. These results concern the nonparametric

situation, and the main ideas are explained more easily in this case. Theorem 1.1 is

proved in Section 5 as a consequence of the h-principle in Theorem 5.1; essentially

the same proof yields Theorem 1.4. In Section 6, we strengthen the results of Section

5 by including control of flux; see Theorem 6.2. We show in particular that the flux

homomorphism Flux : CMI∗(M,Rn) → H1(M,Rn) is a Serre fibration for every

affine Riemann surface M ; see Corollary 6.4. In Section 7, we prove a special case

of Theorem 1.4 assuming only that the cone A is algebraically elliptic. To this

end, we introduce the notion of an algebraic homotopy. In Section 8, we show that

stronger conclusions regarding the homotopy type of the spaces under consideration

would follow from local contractibility of the spaces A 1(M,A) with respect to the

compact-open topology, where M is an affine Riemann surface and A ⊂ Cn∗ is a

flexible punctured cone. Whether or not the space A 1(M,A) is locally contractible

in general remains an important open problem.

2. Algebraic homotopy approximation theorems

In this section we prove results on approximating families of holomorphic sections of

an algebraically subelliptic or flexible submersion over an affine variety by families

of algebraic sections; see Theorems 2.1, 2.6 and Corollary 2.8. These results are

applications and extensions of a theorem of Forstnerič [14, Theorem 3.3] (see also

[15, Theorem 6.15.3]). They provide some of the main tools used in the paper.

Let h : Z → X be an algebraic submersion from an algebraic variety Z onto

an affine algebraic variety X. We recall the notions of algebraic ellipticity and

subellipticity introduced by Gromov [19, 1.1.B]; see also [15, Definition 6.1.1].

An algebraic fibre spray on Z is a triple (E, π, s) where π : E → Z is an algebraic

vector bundle and s : E → Z is an algebraic map (the spray map) such that

s(0z) = z and s(Ez) ⊂ Zh(z) = h−1(h(z)) for every z ∈ Z.

Here, Ez = π−1(z) is the fibre of E over z and 0z ∈ Ez denotes the origin. A

fibre spray (E, π, s) is said to be dominating at a point z ∈ Z if the differential

ds0z : T0zE → TzZ maps the subspace Ez ⊂ T0zE surjectively onto the vertical

tangent space ker dhz. The fibre spray is said to be dominating if it is dominating at

every point z ∈ Z. A family of fibre sprays (Ej , πj , sj) (j = 1, . . . ,m) on Z is said

to be dominating at the point z ∈ Z if

(2.1) (ds1)0z(E1,z) + (ds2)0z(E2,z) + · · ·+ (dsm)0z(Em,z) = ker(dhz),

and to be dominating if this holds at every point z ∈ Z. The algebraic submersion

h : Z → X is algebraically elliptic if it admits a dominating algebraic fibre spray,

and is algebraically subelliptic if it admits a dominating family of such sprays. An

algebraic manifold Y is algebraically (sub-)elliptic if the submersion from Y to a

point is. Recently, Kaliman and Zaidenberg [24] showed that algebraic ellipticity

and algebraic subellipticity are equivalent. However, the proofs of the results in
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this section do not depend on this fact, and it is usually easier to find dominating

families of sprays than a dominating spray.

We begin with the following approximation result for sections of algebraically

subelliptic submersions.

Theorem 2.1. Let h : Z → X be an algebraically subelliptic submersion from an

algebraic manifold Z onto an affine algebraic manifold X. Fix a distance function

dist on Z inducing its standard Hausdorff topology. Let K ⊂ X be a compact O(X)-

convex subset, B ⊂ CN be a compact convex set containing the origin, U ⊃ K and

V ⊃ B be open neighbourhoods, and fζ,t : U → Z|U (ζ ∈ V, t ∈ [0, 1]n, n ≥ 1) be a

continuous family of holomorphic sections of h : Z|U → U depending holomorphically

on ζ ∈ V such that f0,0 is homotopic through sections of Z|U → U to the

restriction of an algebraic section X → Z. Given ε > 0, there is an algebraic

map F : X × CN × Cn → Z satisfying the following conditions:

(a) h(F (x, ζ, t)) = x for all x ∈ X, ζ ∈ CN , and t ∈ Cn.

(b) dist(F (x, ζ, t), fζ,t(x)) < ε for every x ∈ K, ζ ∈ B, and t ∈ [0, 1]n.

(c) If f0,0 = f |U for an algebraic section f : X → Z, then F can be chosen such

that F (· , 0, 0) = f .

(d) Assume that (c) holds. If X0 is a closed algebraic subvariety of X and f0,t is

independent of t on X0∩U , then F can be chosen such that in addition F (· , 0, t)
agrees with f on K ∩X0 for all t ∈ Cn.

If we wish to ignore B, that is, holomorphic dependence on a parameter in B is

not required, then we take N = 0 and CN = B = V to be a point.

Proof. The basic case when n = 1, N = 0 (so CN = B = V is a point), f0 extends to

an algebraic section f : X → Z, and without condition (d) is given by [14, Theorem

3.1] (see also [15, Theorem 6.15.3]). An inspection of the proof also gives part (d); cf.

[13, Theorem 6.4]. See also Remark 2.4 below. The multiparameter case t ∈ [0, 1]n

with n > 1 and f0 = f |U for an algebraic section f : X → Z is obtained by induction

on the number n of parameters t = (t1, . . . , tn); see [17, Theorem 4.2].

If f0 is merely homotopic to the restriction f |U of an algebraic section f : X → Z

(the assumption in parts (a) and (b) of the theorem), we proceed as follows, still

assuming that B is a point. By shrinking U around K we may assume that U

is a Stein domain. By the Oka principle, the homotopy from f0 to f |U can be

chosen to consist of holomorphic sections [15, Theorem 5.4.4]. We parametrise

this homotopy by the segment T = {(s, . . . , s) ∈ Rn : −1 ≤ s ≤ 0}, so that

f |U corresponds to the point (−1, . . . ,−1) ∈ T and f0 to the origin 0 = (0, . . . , 0).

Let C ⊂ Rn denote the convex hull of T ∪ [0, 1]n. There is an affine diffeomorphism

ψ : Rn → Rn such that ψ([0, 1]n) = C, ψ(0, . . . , 0) = (−1, . . . ,−1), and ψ fixes

the remaining vertices of [0, 1]n. Note that ψ complexifies to a complex affine

isomorphism ψ : Cn → Cn. Clearly, there is a strong deformation retraction

τ : C → T ∪ [0, 1]n. In particular, τ restricts to the identity map on T ∪ [0, 1]n.
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Let L = ψ−1([0, 1]n) ⊂ [0, 1]n. The composition φ = τ ◦ ψ : [0, 1]n → C is a

surjective map with τ ◦ ψ(0, . . . , 0) = (−1, . . . ,−1), which maps L onto [0, 1]n by

ψ (since τ is the identity on [0, 1]n). We now apply the already proved case of the

theorem to the homotopy f̃t = fφ(t) : U → Z|U with t ∈ [0, 1]n to approximate it

by the restriction of an algebraic map F̃ : M × Cn → Z. Then the algebraic map

F : M × Cn → Z given by F (x, t) = F̃ (x, ψ−1(t)) satisfies conditions (a) and (b) in

the theorem, while conditions (c) and (d) are vacuous.

Assume now that N > 0. We may take V ⊃ B to be an open convex domain

in CN . Note that a family of holomorphic sections fζ,t : U → Z|U (t ∈ [0, 1]n) of

h : Z|U → U , depending holomorphically on ζ ∈ V and continuously on t ∈ [0, 1]n, is

the same thing as a homotopy of holomorphic sections f̃t (t ∈ [0, 1]n) of the algebraic

submersion

(2.2) h̃ : Z̃ = Z × CN → X̃ = X × CN

over the domain U × V ⊂ X̃, where

h̃(z, ζ) = (h(z), ζ) and f̃t(x, ζ) = (fζ,t(x), ζ) for x ∈ U and ζ ∈ V .

Note that the set K×B is holomorphically convex in M×CN . By trivially extending

the algebraic fibre sprays (Ej , πj , sj) in the hypothesis of the theorem (see (2.1)) to

algebraic fibre sprays on Z̃ we see that the extended submersion h̃ : Z̃ → X̃ is also

algebraically subelliptic. We introduce an extra parameter s ∈ [0, 1] and consider

the continuous family of holomorphic sections f ′s,t : U × V → Z̃ of h̃ defined by

f ′s,t(x, ζ) = (fsζ,t(x), ζ) ∈ Z̃ for x ∈ U, ζ ∈ V, s ∈ R, t ∈ [0, 1]n.

Note that f ′1,t = f̃t, f
′
0,t(x, ζ) = (f0,t(x), ζ), and f ′0,0(x, ζ) = (f0,0(x), ζ) extends

to the algebraic section (x, ζ) 7→ (f(x), ζ) of the submersion (2.2). The already

established case of the theorem with approximation on K × B × [0, 1]n+1 yields an

algebraic map F̃ : X × CN × Cn+1 → Z̃ satisfying the conclusion of the theorem

with respect to the homotopy f ′s,t (with (s, t) ∈ [0, 1]n+1) of holomorphic sections of

the submersion (2.2). Setting s = 1 and postcomposing F̃ by the trivial projection

Z̃ = Z × CN → Z yields an algebraic map F : X × CN × Cn → Z satisfying the

theorem with respect to the submersion h : Z → X. �

Proposition 2.2. Every algebraic fibre bundle h : Z → X with algebraically elliptic

fibre is algebraically subelliptic. Hence, Theorem 2.1 applies in this case.

Proof. Note that X is covered by finitely many Zariski open domains Ui such that

the restriction h : Z|Ui → Ui is a trivial fibre bundle with algebraically elliptic fibre

A for every i, so it admits a dominating algebraic fibre spray obtained by a trivial

extension of a dominating algebraic spray on A. A straightforward generalisation of

[15, Proposition 6.4.2] gives the localisation of algebraic subellipticity from sprays

to fibre sprays, and hence we obtain finitely many algebraic fibre sprays on Z which

satisfy the hypotheses of the theorem. The argument is the same as in the proof of
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[15, Proposition 6.4.2]. The only difference is that, in the case of fibre sprays, the

spray maps into the total space of the fibre bundle must respect the fibres. �

Since the null quadric A (1.2) is flexible and hence algebraically elliptic, we have

the following immediate corollary. The last statement is [8, Proposition 3.1]; it can

also be seen as an immediate corollary of the results in [28, 9].

Corollary 2.3. Let M be an affine Riemann surface and A → M be the algebraic

subbundle of (T ∗M)⊕n whose fibre is the null quadric A ⊂ Cn∗ , n ≥ 3. Then the

conclusion of Theorem 2.1 holds for sections M → A. Furthermore, every section

of A over M is homotopic to an algebraic section.

Remark 2.4. As noted already, the basic case of Theorem 2.1 with the parameter

t ∈ [0, 1] and without ζ-parameters coincides with [14, Theorem 3.3] (see also

[15, Theorem 6.15.3]). In the last part of the proof of this result in [14, p. 251]

the author referred to a small extension of the Oka–Weil theorem without being

explicit. The point is to approximate the given homotopy {ηmt }t∈[0,1] (using the

notation in the cited paper) of holomorphic sections of a trivial vector bundle over

X, depending continuously on t ∈ [0, 1], by a homotopy which is holomorphic in t in a

neighbourhood of [0, 1] ⊂ C, and applying the Oka–Weil theorem to approximate by

a polynomial map in all variables. We spell out this argument in greater generality

since we shall need it. In the next result, the relevant parameter is called p.

Proposition 2.5. Let Z and X be complex manifolds, h : Z → X be a holomorphic

submersion onto X, K be a compact subset of X with a basis of Stein neighbourhoods,

and U ⊂ X be an open set containing K. Assume that f : U × [0, 1] → Z is a

continuous map such that h(f(x, p)) = x for all (x, p) ∈ U × [0, 1] and the section

fp = f(· , p) : U → Z|U of h is holomorphic for every p ∈ [0, 1]. Then we can

approximate f uniformly on K×[0, 1] by holomorphic maps F : U ′×V ′ → Z, defined

on open neighbourhoods U ′ × V ′ ⊂ X × C of K × [0, 1], such that h(F (x, p)) = x

for all (x, p) ∈ U ′ × V ′ and F (· , p) = f(· , p) for p = 0, 1. Furthermore, a homotopy

f t : U × [0, 1] → Z of maps as above, depending continuously on t ∈ [0, 1], can be

approximated by a homotopy of holomorphic maps F t : U ′ × V ′ → Z having the

stated properties for every t ∈ [0, 1].

Proof. Let us first consider the special case when h : Z = X × C→ X is the trivial

submersion with fibre C. In this case, a section of h can be identified with a map to C.

Thus, let f : U× [0, 1]→ C be a continuous function such that f(· , p) is holomorphic

on U for every p ∈ [0, 1]. Choose a partition 0 = p0 < p1 < p2 < · · · < pk = 1 of

[0, 1] and set p−1 = −1 and pk+1 = 2. Let 1 =
∑k

i=0 χi be a partition of unity on

[0, 1], where χi : R → [0, 1] is a smooth function supported in (pi−1, pi+1) for each

i = 0, 1, . . . , k. Note that χi(pi) = 1 for i = 0, 1, . . . , k. By a theorem of Weierstrass

we can approximate χi as closely as desired uniformly on [−1, 2] by a holomorphic

polynomial gi on C with gi(pi) = 1. Assuming that the partition {pi} is fine enough
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and the approximation of χi by gi is close enough, the holomorphic function

F (x, p) =

k∑
i=0

f(x, pi)gi(p), x ∈ U, p ∈ C,

approximates f as closely as desired on U × [0, 1].

We now consider the general case. The assumption on the compact set K ⊂ X

implies that it has a basis of open Stein neighbourhoods in X. Hence, we may

assume that the domain U ⊂ X is Stein and K is O(U)-convex. Consider the graph

of f over K × [0, 1]:

Σ =
{

(f(x, p), p) : x ∈ K, p ∈ [0, 1]
}
⊂ Z × C.

By [18, Corollary 2.2] (see also [15, Corollary 3.6.6]), Σ admits an open Stein

neighbourhood Θ in Z × C such that Σ is O(Θ)-convex. By the standard method,

embedding Θ in a Euclidean space and using a holomorphic retraction from a

neighbourhood of Σ ↪→ CN onto Σ, we reduce the proof to the already established

case of approximating functions. (The details of this argument can be found

for example in [15, proof of Theorem 3.8.1, p. 90].) The same proof applies to

homotopies f t (t ∈ [0, 1]) by using a partition of unity in the parameter. �

We now modify Theorem 2.1 under the additional assumption that the algebraic

submersion h : Z → X admits a fibre dominating algebraic spray (E, π, s) defined

on a trivial vector bundle π : E = Z × Cr → Z. Under this assumption, we have

the following approximation result in which the data and the approximants depend

continuously on a parameter in a compact Hausdorff space.

Theorem 2.6. Let h : Z → X be an algebraic submersion from an algebraic variety

Z onto an affine algebraic variety X. Assume that there is a fibre dominating

algebraic spray (E, π, s) on Z defined on a trivial vector bundle π : E = Z×Cr → Z.

Fix a distance function dist on Z inducing its standard Hausdorff topology. Let K ⊂
X be a compact O(X)-convex subset, B ⊂ CN be a compact convex set containing

the origin, U ⊃ K and V ⊃ B be open neighbourhoods, Q be a closed subspace of

a compact Hausdorff space P , and fζ,p,t : U → Z|U (ζ ∈ V, p ∈ P, t ∈ [0, 1]) be a

continuous family of holomorphic sections of h : Z|U → U depending holomorphically

on ζ ∈ V such that f0,p,0 : X → Z is an algebraic section for every p ∈ P and

f0,p,t = f0,p,0 holds for every (p, t) ∈ Q× [0, 1].

Given ε > 0, there is a continuous map F : X × CN × P × C → Z such that

the map F (· , · , p, t) : X × CN → Z is algebraic for every (p, t) ∈ P × [0, 1] and the

following conditions hold:

(a) h(F (x, ζ, p, t)) = x for all x ∈ X, ζ ∈ CN , p ∈ P , and t ∈ C.

(b) dist(F (x, ζ, p, t), fζ,p,t(x)) < ε for every x ∈ K, ζ ∈ B, p ∈ P , and t ∈ [0, 1].

(c) F (· , 0, p, t) = f0,p,t for every (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]).
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Proof. Since the vector bundle π : E → Z is assumed to be trivial, any iterated

spray bundle (E(k), π(k), s(k)) (k ∈ N) obtained from (E, π, s) (see [15, Definition

6.3.5]) is also a trivial bundle over Z. Recall that f0,p,0 : X → Z is an algebraic

section for every p ∈ P , and hence its graph

Vp = {f0,p,0(x) : x ∈ X} ⊂ Z

is an affine algebraic submanifold of Z isomorphic to X. After shrinking the

neighbourhoods U ⊃ K and V ⊃ B if necessary, [15, Proposition 6.5.1] gives an

integer k ∈ N and a homotopy of holomorphic maps ηζ,p,t : U → Ckr depending

continuously on (p, t) ∈ P × [0, 1] and holomorphically on ζ ∈ V , where kr is the

rank of the iterated (trivial) vector bundle E(k) ∼= Z × Ckr → Z, such that η0,p,t is

the zero map on U for every (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]) and

s(k)(f0,p,0(x), ηζ,p,t(x)) = fζ,p,t(x) for all x ∈ U, ζ ∈ V, p ∈ P, and t ∈ [0, 1].

Since X is an affine algebraic manifold, we can apply the parametric Oka–Weil

theorem [15, Theorem 2.8.4] to approximate the homotopy η·,p,t, uniformly on K×B
and uniformly in the parameters (p, t) ∈ P × [0, 1], by a homotopy of algebraic maps

η̃·,p,t : X × CN → Ckr depending continuously on (p, t) ∈ P × [0, 1], with η̃0,p,t the

zero map on X for every (p, t) ∈ (P × {0}) ∪ (Q × [0, 1]). Since the spray map

s(k) : E(k) → Z is algebraic, the map F : X × CN × P × C→ Z defined by

F (x, ζ, p, t) = s(k)(f0,p,t(x), η̃ζ,p,t(x))

satisfies the conclusion of the theorem provided that the approximation of η·,p,t by

η̃·,p,t was close enough. �

Remark 2.7. As in Theorem 2.1, we can ensure that the map F in Theorem 2.6 is

also algebraic in t ∈ C; see Remark 2.4 and Proposition 2.5.

The following corollary to Theorem 2.6 is of particular importance in this paper.

Recall that a complete algebraic vector field with algebraic flow on an algebraic

manifold is called a locally nilpotent derivation, abbreviated LND.

Corollary 2.8. The assumptions, and hence the conclusion of Theorem 2.6, hold if

the algebraic submersion h : Z → X is flexible, in the sense that Z admits finitely

many LNDs tangent to the fibres of h and spanning the tangent space of the fibre at

every point of Z. In particular, Theorem 2.6 holds for sections of any algebraic fibre

bundle Z → X with flexible fibre Y over an affine algebraic manifold X.

Proof. If V1, . . . , Vr are LNDs on Z which satisfy the hypothesis of the corollary

and φjt denotes the (algebraic) flow of Vj for time t ∈ C, then the algebraic map

s : Z×Cr → Z given by s(z, t1, . . . , tr) = φ1t1 ◦φ
2
t2 ◦· · ·◦φ

r
tr(z) (z ∈ Z, t1, . . . , tr ∈ C)

is an algebraic fibre dominating spray.

Assume now that h : Z → X is an algebraic fibre bundle with a flexible fibre

Y over an affine manifold X. If U ⊂ X is a Zariski open subset such that the

restricted bundle h : Z|U → U is algebraically trivial, then clearly this restricted
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bundle is flexible. Let V1, . . . , Vr be LNDs on Z|U ∼= U × Y which are tangent to

the fibres of h and span the fibre at every point of Z|U . If g : X → C is an algebraic

function that vanishes to a sufficiently high order on the subvariety X \ U then the

products gVi for i = 1, . . . , r extend to LNDs on Z that vanish on h−1({g = 0}).
Finitely many such collections of LNDs on Z, for different vector bundle charts U

and functions g, show that h : Z → X is flexible. �

3. Approximation and interpolation of directed algebraic immersions

Proof of Theorem 1.3. Recall that A ⊂ Cn∗ , n ≥ 2, is assumed to be a connected

smooth punctured cone (1.7) which is algebraically elliptic and not contained in

any hyperplane in Cn. Let M be an affine Riemann surface, A be the subbundle

of (T ∗M)⊕n defined by A, K be a holomorphically convex compact subset of M ,

U ⊃ K be an open neighbourhood of K, and h : U → Cn be a holomorphic A-

immersion such that the homotopy class of continuous sections of A|U that contains

dh also contains the restriction of an algebraic section ϑ of A on M . By [3,

Theorem 2.3 (a)] and [1, Theorem 1.3], we may assume that h is nondegenerate.

Let Q = {q1, . . . , ql} ⊂ K be the points at which we wish to interpolate.

By [3, Theorem 2.6] we can approximate h uniformly on K by a holomorphic

A-immersion h̃ : M → Cn whose differential dh̃ is homotopic to ϑ. Furthermore, by

Alarcón and Castro-Infantes [1] we may assume that h̃ agrees with h to the given

finite order k in the points of Q. We replace h by h̃ and drop the tilde.

Choose a compact set L ⊂ M = M \ {x1, . . . , xm} containing K in its interior

such that M \ L =
⋃m
j=1Dj \ {xj}, where D1, . . . , Dm are discs in M with pairwise

disjoint closures such that xj ∈ Dj for j = 1, . . . ,m. Note that the inclusion

L ↪→M is a homotopy equivalence; in particular, L is connected. Choose a collection

C = {C1, C2, . . . , Cs} of smooth embedded arcs and closed curves in L̊ = L \ bL
which contains a basis of the homology group H1(L,Z) = H1(M,Z), and also arcs

connecting q1 to each of the points q2, . . . , ql ∈ Q, such that any two curves in C

only meet in q1 and |C | =
⋃s
i=1Ci ⊂ L̊ is a connected compact Runge set in M . For

the construction of such a family, see [5, Lemma 1.12.10] and [5, proof of Proposition

3.3.2, p. 142].

Choose a nowhere vanishing holomorphic 1-form θ on M and write dh = fθ, so

f : M → A is a nondegenerate holomorphic map. We will construct a holomorphic

deformation family of f on a neighbourhood V ⊂ M of L (that is, a spray of

holomorphic maps V → A) which is both period dominating with respect to the

family C and k-jet dominating on the set Q = {q1, . . . , ql}, where k is the desired

order of interpolation.

We begin by explaining the second issue. Given points q ∈ M and z ∈ A, we

denote by Jkq,z the space of k-jets of holomorphic maps from open neigbourhoods

of q ∈ M to A sending q to z. In local holomorphic coordinates, this is the space

of holomorphic polynomial maps of degree k in one complex variable with dimA
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components and with vanishing constant term, so it is a complex Euclidean space

of some dimension s = s(k, dimA). By varying the point z ∈ A we get the complex

manifold Jkq,A =
⊔
z∈A J

k
q,z of dimension s + dimA. Given a holomorphic map

f : M → A, we denote by jkq (f) ∈ Jkq,A the k-jet of f at q (including its value

f(q) ∈ A). Finally, set

jkQ(f) =
(
jkq1(f), . . . , jkql(f)

)
∈

l∏
i=1

Jkqi,A =: JkQ,A.

Note that JkQ,A is a complex manifold of dimension N1 = l(s+ dimA).

By a theorem of Siu [34] (see also [15, Theorem 3.1.1]), the graph of a holomorphic

map f : M → A over L has an open Stein neighbourhood in M ×A, and the normal

bundle to the graph is trivial by the Oka–Grauert principle [15, Theorem 5.3.1

(iii)]. Hence, the space of holomorphic maps L → A near a given map f : L → A

is isomorphic to a neighbourhood of the origin in the space of holomorphic maps

L → CdimA. By using standard tools we can find a neighbourhood V ⊃ L and an

N1-parameter holomorphic spray of maps fζ : V → A for ζ in a ball 0 ∈ B1 ⊂ CN1

such that f0 = f |V and the differential

∂

∂ζ

∣∣∣∣
ζ=0

jkQ(fζ) : CN1 −→ TjkQ(f)J
k
Q,A
∼= CN1

is an isomorphism. This means in particular that for every collection of values and

k-jets near the values and k-jets of f at the points qi ∈ Q (i = 1, . . . , l) there is

precisely one member fζ of this family which assumes these values and k-jets at the

points of Q. Thus, {fζ}ζ∈B1 is a universal local deformation family of f = f0 with

respect to the values and k-jets at the points of Q.

Let C = {C1, C2, . . . , Cs} be the family of curves in L constructed above. On

each curve Ci we choose an orientation. For every continuous map g : |C | → A we

define its periods by

(3.1) P(g) =

(∫
Ci

gθ

)
i=1,...,s

∈ (Cn)s = Cns.

Set N2 = ns. Recall that the given immersion h : M → Cn is nondegenerate. Hence,

after shrinking the ball B1 ⊂ CN1 around the origin and the open set V ⊃ L around

L if necessary, we can apply [5, Lemma 3.2.1] (whose basic version is [3, Lemma

5.1]) to extend the spray fζ to another holomorphic spray of maps fζ,τ : V → A,

where τ belongs to a ball B2 ⊂ CN2 around the origin, such that

fζ,0 = fζ for all ζ ∈ B1,

jkQ(f0,τ ) = jkQ(f0,0) for all τ ∈ B2, and

∂

∂τ

∣∣∣∣
τ=0

P(f0,τ ) : CN2 → CN2 is an isomorphism.

The second property is ensured by choosing the deformation fτ to be fixed to order

k at all points of the finite set Q, which is possible by the proof of [5, Lemma 3.2.1].
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Setting N = N1 +N2, it follows that the differential of the map

B1 ×B2 3 (ζ, τ) 7−→
(
jkQ(fζ,τ ),P(fζ,τ )

)
∈ JkQ,A × CN2

at the point (ζ, τ) = (0, 0) is an isomorphism CN → CN .

Choose a compact subset B of B1×B2 containing the origin in its interior. Since

dh = f0,0θ is homotopic on V to the restriction of an algebraic section ϑ of A on M ,

Theorem 2.1 implies that the spray fζ,τθ : V → A can be approximated uniformly

on L×B by a spray f̃ζ,τθ : M → A of algebraic sections. (Note that the map f̃ζ,τ is

not necessarily algebraic, only the product f̃ζ,τθ is algebraic.) If the approximation

is close enough, the implicit function theorem furnishes a value (ζ0, τ0) ∈ B close to

the origin such that

jkQ(f̃ζ0,τ0) = jkQ(f0,0), P(f̃ζ0,τ0) = P(f0,0) = 0.

It follows that the map h̃ : M → Cn defined by

h̃(x) = h(q1) +

∫ x

q1

f̃ζ0,τ0θ, x ∈M,

is an algebraic A-immersion which approximates h uniformly on K and whose k-jet

agrees with the k-jet of h at every point of Q. However, h̃ need not have a pole at

every point of E = M \M = {x1, . . . , xm}, so it need not be proper. This can be

taken care of as in [8, proof of Theorem 3.1]; we recall the main idea. Recall that

M \ L =
⋃m
j=1Dj \ {xj}. For every j = 1, . . . ,m, choose a point x′j ⊂ Dj \ {xj}

and set E′ = {x′1, . . . , x′m}. Let θ0 be a nowhere vanishing holomorphic 1-form on a

neighbourhood of the compact set D =
⋃m
j=1Dj ⊂M . Choose vj ∈ A such that

(3.2) |vj | > sup
{
|fζ,η(x)θ(x)/θ0(x)| : x ∈ bDj , (ζ, η) ∈ B

}
.

(Note that fζ,ηθ/θ0 is a map with values in A.) Next, pick a small neighbourhood

Wj b Dj \ {xj} of x′j such that V ∩Wj = ∅ and set W =
⋃m
j=1Wj . We extend the

spray fζ,η from V to V ∪W by setting

(3.3) fζ,η = vjθ0/θ on Wj for all (ζ, η) ∈ B1 ×B2 and j = 1, . . . ,m.

Since the compact set L′ = L ∪ E′ is Runge in M , Theorem 2.1 allows us to

approximate the spray fζ,ηθ : V ∪ W → A uniformly on L′ × B by a spray

f̃ζ,ηθ : M → A of algebraic sections. If the approximation is close enough, then

for every (ζ, η) ∈ B the section f̃ζ,ηθ of A has a pole at every point xj ∈ E as follows

from (3.2), (3.3), and the maximum principle. The proof is concluded as before. �

4. Every complete minimal surface of finite total curvature

is isotopic to the real part of a proper algebraic null curve

Proof of Theorem 1.2. It suffices to prove the second assertion in the statement. So

let u0 : M → Rn (n ≥ 3) be a complete nonflat conformal minimal immersion of

finite total curvature, and let Ft ∈ H1(M,Rn), t ∈ [0, 1], be a homotopy such that

F0 = Fluxu0 . We assume without loss of generality that F1 = 0.
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By [7, Theorem 1.1], there is a smooth isotopy ut : M → Rn (t ∈ [0, 1]) of nonflat

conformal minimal immersions such that Fluxut = Ft for all t ∈ [0, 1]; in particular,

Fluxu1 = 0. (This is an improved version of [4, Theorem 1.1] with control of the flux

along the isotopy.) Hence, ft = ∂ut for t ∈ [0, 1] is a smooth homotopy of nonflat

holomorphic sections of the bundle A →M .

Pick a point q ∈ M and a family C = {C1, C2, . . . , Cs} of closed oriented curves

in M based at q which form a basis of H1(M,Z) and such that |C | =
⋃s
i=1Ci is a

connected compact Runge set in M . Let P denote the associated period map (3.1).

As in the proof of Theorem 1.3, we choose a compact set L ⊂M such that |C | ⊂ L
and M \ L =

⋃m
j=1Dj \ {xj}, where D1, . . . , Dm are pairwise disjoint discs in M

and E = {x1, . . . , xm} = M \M is the set of ends of M . By [5, Lemma 3.2.1],

there is a period dominating spray of holomorphic sections fζ,t : V → A|V over a

neighbourhood V ⊂ M of L, depending holomorphically on ζ ∈ B ⊂ CN , where B

is a ball around the origin in some Euclidean space CN , and smoothly on t ∈ [0, 1],

such that f0,t = ft|V holds for all t. Pick a closed ball B′ ⊂ CN with 0 ∈ B′ ⊂ B. By

Theorem 2.1, we can approximate the homotopy fζ,t uniformly on L×B′× [0, 1] by

a homotopy of algebraic sections f̃ζ,t : M → A such that f̃0,0 = f0,0. Furthermore,

by a modification of the device used in the proof of Theorem 1.3, we can ensure that

f̃ζ,t has a pole at each end of M for every (ζ, t). To explain this, pick a nowhere

vanishing holomorphic 1-form θ on a neighbourhood of D =
⋃m
j=1Dj in M and set

D∗ = D \ {x1, . . . , xm}. For each t ∈ [0, 1], write ft = gtθ, so gt : D∗ → A is a

homotopy of holomorphic maps. For each j = 1, . . . ,m, choose a point x′j ∈ Dj\{xj}
sufficiently close to xj such that

|g0(x′j)| > sup{|g0(x)| : x ∈ bDj}.

Such x′j exists since f0 (and hence g0) has a pole at xj for j = 1, . . . ,m. By shrinking

the neighbourhood V ⊃ L we can also assume that x′j /∈ V for j = 1, . . . ,m. Next,

choose a smooth function ξj : [0, 1]→ [1,∞) such that ξj(0) = 1 and

ξj(t)|g0(x′j)| > sup{|gt(x)| : x ∈ bDj} for all t ∈ [0, 1].

By shrinking the ball 0 ∈ B ⊂ CN if necessary, it follows that

(4.1) ξj(t)|g0(x′j)| > sup{|(fζ,t/θ)(x)| : x ∈ bDj} for all ζ ∈ B and t ∈ [0, 1].

For every j = 1, . . . ,m, we extend the spray fζ,t (which is defined on V ) to a small

open neighbourhood Wj b Dj \ {xj} of the point x′j , with V ∩W j = ∅, by

(4.2) fζ,t(x) = ξj(t)f0(x) for all x ∈Wj , ζ ∈ B, and t ∈ [0, 1].

Note that the extended spray is independent of ζ on Wj , and fζ,0 = f0 on Wj for all

ζ ∈ B. Set W =
⋃m
j=1Wj , L

′ = L ∪ {x′1, . . . , x′m}, and let 0 ∈ B′ ⊂ B be a smaller

closed ball. We now approximate the extended spray uniformly on L′ × B′ × [0, 1]

by a spray of algebraic sections f̃ζ,t of the bundle A → M such that f̃0,0 = f0. If

the approximation is close, it follows from (4.1), (4.2) and the maximum principle

that f̃ζ,t has a pole at each end of M for every ζ ∈ B and t ∈ [0, 1].
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Assuming, as we may, that the approximation of fζ,t by f̃ζ,t is close enough, the

implicit function theorem gives a map [0, 1] 3 t 7→ ζ(t) ∈ B′ with ζ(0) = 0 such that

P(f̃ζ(t),t) = P(f0,t) = P(ft) holds for all t ∈ [0, 1]. (Note that the values of f̃ζ,t on

W do not influence the period map since |C | ⊂ L.) It follows that

(4.3) ũt(x) = ut(q) + <
∫ x

q
2f̃ζ(t),t, x ∈M, t ∈ [0, 1],

is a homotopy of complete conformal minimal immersions M → Rn of finite total

curvature such that ũ0 = u0, Fluxũt = Fluxut = Ft for all t ∈ [0, 1], and hence

Fluxũ1 = 0. Thus, ũ1 is the real part of a proper algebraic null curve M → Cn. �

In order to justify the discussion below Theorem 1.2 concerning the case when

the immersion u0 given in the theorem is not complete, we fix 0 < c < 1 and modify

the above proof by choosing the functions ξj : [0, 1] → [1,∞) such that (4.1) holds

for all t ∈ [c, 1]. Following the proof without any further modifications, we conclude

that the conformal minimal immersion ũt in (4.3) is complete for all t ∈ [c, 1].

5. The h-principle for complete nonflat minimal surfaces

of finite total curvature

Assume that M is an affine Riemann surface, A 1
∗ (M,A) is the space of nonflat

algebraic 1-forms on M with values in the null quadric A (1.2), and A 1
∞(M,A) is

the subset of A 1
∗ (M,A) consisting of 1-forms with an effective pole at every end of

M . We denote by A →M the algebraic fibre bundle whose sections are 1-forms on

M with values in A.

The main aim of this section is to prove Theorem 1.1. To this end, we first prove

the following h-principle for the (1, 0)-differential ∂, applied on either of the spaces

<NC∗(M,Cn) ⊂ CMI∗(M,Rn) and taking values in A 1
∗ (M,A) or A 1

∞(M,A).

Theorem 5.1. Assume that M is an affine Riemann surface. Let Q be a closed

subspace of a compact Hausdorff space P , u : M ×Q→ Rn, n ≥ 3, be a continuous

map such that up = u(· , p) ∈ CMI∗(M,Rn) for all p ∈ Q, and φ : M × P → A be a

continuous map such that

(a) φp = φ(· , p) ∈ A 1
∗ (M,A) for every p ∈ P , and

(b) ∂up = φp for every p ∈ Q.

Then there is a homotopy φt : M × P → A, t ∈ [0, 1], such that φ0 = φ and the

following conditions hold.

(i) φtp = φt(· , p) ∈ A 1
∗ (M,A) for every p ∈ P and t ∈ [0, 1].

(ii) φtp = φp for every p ∈ Q and t ∈ [0, 1].

(iii) φ1p ∈ A 1
∞(M,A) for every p ∈ P .

(iv) <
∫
C φ

1
p = 0 for every p ∈ P and [C] ∈ H1(M,Z).

If (a) is replaced by the stronger assumption
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(a’) φp = φ(· , p) ∈ A 1
∞(M,A) for every p ∈ P ,

then conditions (i) and (iii) can be replaced by

(i’) φtp ∈ A 1
∞(M,A) for every p ∈ P and t ∈ [0, 1].

If up ∈ <NC∗(M,Cn) for all p ∈ Q, then (iv) can be replaced by

(iv’)
∫
C φ

1
p = 0 for every p ∈ P and [C] ∈ H1(M,Z).

It follows from (iii) and (iv) that the maps u1p : M → Rn, p ∈ P , defined by

u1p(x) = cp + <
∫ x

x0

2φ1p for x ∈M,

for a fixed x0 ∈ M and with suitably chosen constants cp ∈ Rn, p ∈ P , form

a continuous family P → CMI∗(M,Rn), p 7→ u1p, of complete nonflat conformal

minimal immersions of finite total curvature such that u1p = up for all p ∈ Q. (The

map c : P → Rn can be taken to be any continuous extension of the map Q→ Rn,

p 7→ up(x0).) In case (iv’), the maps h1p : M → Rn defined by

h1p(x) = cp +

∫ x

x0

φ1p for x ∈M,

with suitable constants cp ∈ Cn, p ∈ P , are proper nonflat algebraic null curves.

Proof. We shall use the notation established in the previous two sections. Pick a

point q ∈M and a family C = {C1, C2, . . . , Cs} of closed oriented curves in M based

at q which form a basis of H1(M,Z) and such that |C | =
⋃s
i=1Ci is a connected

compact Runge set in M . Let P denote the associated period map (3.1). Denote

by E = {x1, . . . , xm} = M \M the set of ends of M . Let L ⊂ M be a compact set

such that |C | ⊂ L and M \ L =
⋃m
j=1Dj \ {xj}, where D1, . . . , Dm are discs in M

with pairwise disjoint closures and xj ∈ Dj for j = 1, . . . ,m.

Choose a nowhere vanishing holomorphic 1-form θ on M and write φp = fpθ,

where fp : M → A is a holomorphic map depending continuously on p ∈ P . By

[16, Theorem 5.3], there is a homotopy f t : M × P → A (t ∈ [0, 1]) such that

f tp := f t(· , p) : M → A is a nonflat holomorphic map for every (p, t) ∈ P × [0, 1]

satisfying the following two conditions:

(1) f tp = fp for every (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]), and

(2) <P(f1p ) = 0 for every p ∈ P .

If up ∈ <NC∗(M,Cn) for all p ∈ P then condition (2) can be replaced by

(2’) P(f1p ) = 0 for every p ∈ P .

Although [16, Theorem 5.3] is stated for the case when Q ⊂ P are Euclidean

compacts, the proof holds for any pair of compacts, just as [16, Theorem 4.1].

Pick an open Runge neighbourhood V b M of L. By [5, Lemma 3.2.1], there

is a P-period dominating spray of holomorphic maps f tζ,p : V → A, depending
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continuously on (p, t) ∈ P × [0, 1] and holomorphically on ζ ∈ B ⊂ CN , where B is

a ball around the origin in some CN , such that f t0,p = f tp|V for all (p, t) ∈ P × [0, 1].

We now adapt to this situation the device, used in the proof of Theorem 1.3, to

ensure effective poles of the approximating algebraic 1-forms at all ends of M . Pick

a nowhere vanishing holomorphic 1-form θ0 on a neighbourhood of the compact set

D =
⋃m
j=1Dj in M . Also, choose a closed ball B′ ⊂ B containing the origin in its

interior. For every j = 1, . . . ,m, we choose a point x′j ∈ Dj \ {xj} sufficiently close

to xj such that x′j /∈ V and for every p ∈ Q we have

(5.1) |fp(x′j)| · |(θ/θ0)(x′j)| > sup{|f1ζ,p(x)| · |(θ/θ0)(x)| : x ∈ bDj , ζ ∈ B′}.

(Note that θ/θ0 is a holomorphic function on D \ E ⊂ M .) Since the algebraic

1-form φp = fpθ on M has a pole at xj for every p ∈ Q and θ0 has no zeros on D,

(5.1) holds for every x′j sufficiently close to xj . We can find for every j = 1, . . . ,m

a continuous function rj : P → [0,+∞) which equals 0 on Q such that

(5.2) (1+rj(p))|fp(x′j)| · |(θ/θ0)(x′j)| > sup{|f1ζ,p(x)|· |(θ/θ0)(x)| : x ∈ bDj , ζ ∈ B′}

holds for every p ∈ P . Indeed, by (5.1) this holds for p ∈ Q, and it then holds for

all p ∈ P if rj is chosen sufficiently large on P \Q. We extend the homotopy f tζ,p to

a small disc neighbourhood Wj b Dj \ {xj} of x′j , with Wj ∩ V = ∅, by setting

(5.3) f tζ,p(x) = (1 + trj(p))fp(x) for all x ∈Wj , ζ ∈ B, p ∈ P , and t ∈ [0, 1].

Set W =
⋃m
j=1Wj . Thus, the homotopy f tζ,p(x) is now defined on the Runge domain

V ∪W ⊂ M and is independent of ζ for x ∈ W . Since the homology basis C of M

is contained in V , the extended homotopy is still period dominating.

Recall that A →M is an algebraic fibre bundle with flexible fibre A. By Corollary

2.8, we can approximate the homotopy of holomorphic sections φtζ,p = f tζ,pθ : M →
A, uniformly on the compact set L′ = L ∪ {x′1, . . . , x′m} ⊂ V ∪W and uniformly in

the parameters (ζ, p, t) ∈ B′ × P × [0, 1], by a homotopy of algebraic sections

(5.4) φ̃tζ,p = f̃ tζ,pθ : M → A

such that φ̃t0,p = φt0,p holds for all (p, t) ∈ (P×{0})∪(Q×[0, 1]). If the approximation

is close enough, it follows from (5.2) and (5.3) that

(5.5) |(φ̃1ζ,p/θ0)(x′j)| > sup
{
|(φ̃1ζ,p/θ0)(x)| : x ∈ bDj , ζ ∈ B′

}
holds for every p ∈ P and j = 1, . . . ,m. By the maximum principle it follows that

the algebraic 1-form φ̃1ζ,p has a pole at each end of M for every ζ ∈ B′ and p ∈ P ,

that is, φ̃1ζ,p ∈ A 1
∞(M,A).

If we assume that φp = φ(· , p) ∈ A 1
∞(M,A) for every p ∈ P (see condition (a’)

in the theorem), then the points x′j ∈ Dj \ {xj} for j = 1, . . . ,m can be chosen such

that the inequality (5.1) can be replaced for any p ∈ P by

|fp(x′j)| · |(θ/θ0)(x′j)| > sup{|f tζ,p(x)| · |(θ/θ0)(x)| : x ∈ bDj , ζ ∈ B′, t ∈ [0, 1]}.
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Hence, (5.2) holds with the functions rj = 1 and with f1ζ,p(x) on the right hand side

replaced by f tζ,p(x) for any t ∈ [0, 1]. Defining the extension of f tζ,p(x) to W as in

(5.3) with rj = 1 for j = 1, . . . ,m, the same argument as above gives a homotopy

φ̃tζ,p as in (5.4) such that φ̃tζ,p ∈ A 1
∞(M,A) for all values of the parameters.

Assuming that the approximation of f tζ,p by f̃ tζ,p is close enough, the period

domination property of the spray f1ζ,p and the implicit function theorem give a

continuous map ζ : P → B′ with ζ(p) = 0 for all p ∈ Q such that

<P(f̃1ζ(p),p) = 0 for all p ∈ P .

If (2’) holds, we can obtain P(f̃1ζ(p),p) = 0 for all p ∈ P . Then the homotopy

φtp := f̃ ttζ(p),pθ ∈ A 1
∗ (M,A) for p ∈ P and t ∈ [0, 1]

satisfies the conclusion of the theorem. �

The proof of Theorem 5.1 also establishes the following result. We state it for more

general cones A ⊂ Cn∗ , n ≥ 2. We denote by A 1
∗ (M,A) the space of nondegenerate

algebraic 1-forms with values in A, and by A 1
∞(M,A) the space of those 1-forms in

A 1
∗ (M,A) that have a pole at every end of M .

Proposition 5.2. Let M be an affine Riemann surface and A ⊂ Cn∗ be a smooth

connected flexible cone (1.7) not contained in any hyperplane. Then A 1
∞(M,A) is

an open dense subset of A 1
∗ (M,A) and the inclusion A 1

∞(M,A) ↪→ A 1
∗ (M,A) is a

weak homotopy equivalence.

Proof. By Corollary 2.8, the proof of Theorem 5.1 applies to any cone A as in the

proposition. Given a compact Hausdorff space P , a closed subspace Q ⊂ P , and a

continuous map φ : P → A 1
∗ (M,A) such that φ(p) ∈ A 1

∞(M,A) for p ∈ Q, we have

seen that φ can be approximated by continuous maps φ̃ : P → A 1
∞(M,A) such that

φ̃(p) = φ(p) for all p ∈ Q. This easily implies the proposition. �

We also need the following result, which holds in particular for the null quadric.

Proposition 5.3. Let M be an affine Riemann surface and A ⊂ Cn \{0}, n ≥ 2, be

a smooth connected flexible cone not contained in any hyperplane. Then A 1
∗ (M,A)

is a dense open subset of A 1(M,A) and the inclusion A 1
∗ (M,A) ↪→ A 1(M,A) is a

weak homotopy equivalence.

Proof. Let A →M be the algebraic subbundle of (T ∗M)⊕n determined by the cone

A. If TM is algebraically trivial, the conclusion follows from the algebraic analogue

of the general position theorem [16, Theorem 5.4]. The flexibility of A allows us to

replace the complete holomorphic vector fields, used in [16, proof of Theorem 5.4],

by complete algebraic vector fields on A with algebraic flows (that is, LNDs). If TM

is not algebraically trivial, choose a Zariski chart U ⊂M (the complement of finitely

many points in M) such that TU is algebraically trivial. The previous argument

holds over U by using LNDs tangent to the fibre A of the trivial bundle A|U → U .
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Each of them can be extended to A by multiplication with an algebraic function on

M that vanishes to a sufficiently high order on the finite set M \U . This gives LNDs

on A tangent to the fibres of the projection A →M and vanishing over M \ U . By

using their flows, the proof can be completed as in [16, proof of Theorem 5.4]. �

Proof of Theorem 1.1. By a standard argument, Theorem 5.1 implies that the (1, 0)-

differential ∂ is a weak homotopy equivalence as a map from CMI∗(M,Rn) or

<NC∗(M,Cn) to A 1
∗ (M,A) or its subspace A 1

∞(M,A). Namely, to obtain an

epimorphism at the level of π0, we take P to be a point and Q to be empty, and to

obtain a monomorphism at the level of πk−1 and, at the same time, an epimorphism

at the level of πk for each k ≥ 1, we take P to be the closed unit ball in Rk and Q to

be its boundary, the unit (k−1)-sphere. Since the inclusion A 1
∗ (M,A) ↪→ A 1(M,A)

is a weak homotopy equivalence by Proposition 5.3, the same conclusion holds for

the maps ∂ : CMI∗(M,Rn)→ A 1(M,A) and ∂ : <NC∗(M,Cn)→ A 1(M,A).

If two of the maps in a commutative diagram of three maps are weak homotopy

equivalences, then so is the third map. It follows that the inclusion <NC∗(M,Cn) ↪→
CMI∗(M,Rn) is a weak homotopy equivalence as well. �

The inclusion <NC∗(M,Cn) ↪→ CMI∗(M,Rn) also satisfies an h-principle,

analogous to the corresponding h-principle in the holomorphic category [16, Theorem

4.1]. The basic h-principle for this inclusion is given by Theorem 1.2. For the

parametric case and more general flexible cones, see Theorem 6.2.

We remark that Theorem 5.1 can be upgraded with approximation, (jet)

interpolation, and flux conditions. We will not deal with the first two generalisations,

which are well understood from earlier works (see Chapters 3 and 4 in [5]), but will

discuss the third in the following section.

6. Further results on the flux map

Let CMInf(M,Rn) denote the space of nonflat conformal minimal immersions from

an open Riemann surface M to Rn, n ≥ 3. The flux map

Flux : CMInf(M,Rn)→ H1(M,Rn),

given by (1.3), is a Serre fibration by [7, Theorem 1.4]. This implies that the weak

homotopy type of the space of nonflat conformal minimal immersions M → Rn with

a given flux F ∈ H1(M,Rn) does not depend on F .

Assume now that M is an affine Riemann surface. Given F ∈ H1(M,Rn),

we denote by CMIF∗ (M,Rn) the space of complete nonflat conformal minimal

immersions u : M → Rn of finite total curvature with Fluxu = F . In particular,

CMI0∗(M,Rn) = <NC∗(M,Cn). A straightforward modification of the proof of
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Theorem 1.1 shows that the maps in the diagram

CMIF∗ (M,Rn) �
� ι //

∂ ((QQ
QQQ

QQQ
QQQ

Q
CMI∗(M,Rn)

∂
��

A 1(M,A)

are weak homotopy equivalences (cf. diagram (1.4)). Note that Theorem 1.1

corresponds to the choice F = 0, but this choice is not important in our arguments.

The only difference in the proof is that, instead of using [16, Theorem 5.3] to change

the fluxes to 0, we use the more general results in [6, 7] which enable us to change

the fluxes to any given flux. This implies that the weak homotopy type of the space

CMIF∗ (M,Rn) is the same for all F ∈ H1(M,Rn).

We remark that [16, Theorem 5.3] can be extended as follows.

Theorem 6.1. Let M be an open Riemann surface, θ be a nowhere vanishing

holomorphic 1-form on M , A ⊂ Cn \ {0} be a smooth connected Oka cone as in

(1.7) not contained in any hyperplane, P be a compact Hausdorff space, and Q ⊂ P
be a closed subspace. Also let f : M × P → A and F : P × [0, 1] → H1(M,Cn) be

continuous maps such that fp = f(·, p) : M → A is a nondegenerate holomorphic

map for every p ∈ P and F(p, t) equals the cohomology class of fpθ for every

(p, t) ∈ (P × {0}) ∪ (Q × [0, 1]). Then there is a homotopy f t : M × P → A

(t ∈ [0, 1]) such that f tp = f t(·, p) : M → A is a nondegenerate holomorphic map for

every (p, t) ∈ P × [0, 1], f tp = fp for every (p, t) ∈ (P × {0}) ∪ (Q × [0, 1]), and the

cohomology class of f tpθ equals F(p, t) for every (p, t) ∈ P × [0, 1].

The advantage of Theorem 6.1 with respect to [16, Theorem 5.3] is that it

enables one to prescribe the cohomology class of all 1-forms in the family f tpθ for

(p, t) ∈ P × [0, 1], and not just of those with t = 1, and there are no restriction on

the cohomology classes of the 1-forms fpθ for p ∈ Q. The proof is similar to that of

[16, Theorem 5.3] but uses the full strength of [16, Lemma 3.1], following the ideas

in [7, proofs of Lemma 3.1 and Theorem 1.1]. Theorem 6.1 can also be improved by

adding an approximation condition as in [16, Theorem 5.3(2)], but we do not need

it for the applications in what follows. We leave the details to the reader.

Replacing [16, Theorem 5.3] by Theorem 6.1 in the proof of Theorem 5.1 gives

the following h-principle for cohomology classes of nonflat algebraic 1-forms on an

affine Riemann surface with values in a flexible cone A ⊂ Cn∗ . It is an extension

of Theorem 5.1, as well as an algebraic analogue of Theorem 6.1 itself. Recall that

A 1
∞(M,A) denotes the space of nondegenerate algebraic 1-forms with values in A

and with an effective pole at every end of M .

Theorem 6.2. Assume that M is an affine Riemann surface and A ⊂ Cn∗ , n ≥ 2,

is a smooth connected flexible cone, not contained in any hyperplane. Let P be a

compact Hausdorff space and Q ⊂ P be a closed subspace, and let φ : P → A 1
∗ (M,A)

and F : P × [0, 1] → H1(M,Cn) be continuous maps such that F(p, t) equals the
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cohomology class of φ(p) for all (p, t) ∈ (P × {0}) ∪ (Q × [0, 1]). Then there is

a continuous map Φ : P × [0, 1] → A 1
∗ (M,A) such that Φ(p, t) = φ(p) for all

(p, t) ∈ (P ×{0})∪ (Q× [0, 1]) and the cohomology class of Φ(p, t) equals F(p, t) for

all (p, t) ∈ P × [0, 1]. Furthermore, if φ(p) ∈ A 1
∞(M,A) for all p ∈ Q, then Φ can

be chosen such that, in addition to the above, Φ(p, 1) ∈ A 1
∞(M,A) for all p ∈ P . If

φ(p) ∈ A 1
∞(M,A) for all p ∈ P , then Φ can be chosen such that Φ(p, t) ∈ A 1

∞(M,A)

for all p ∈ P and t ∈ [0, 1].

The following is an immediate corollary.

Corollary 6.3. If M and A are as in Theorem 6.2, then the map F : A 1
∗ (M,A)→

H1(M,Cn) taking φ ∈ A 1
∗ (M,A) to its cohomology class is a Serre fibration. The

same holds for the map F : A 1
∞(M,A)→ H1(M,Cn).

Note that the flux homomorphism Fluxu ∈ H1(M,Rn) of a conformal minimal

immersion u : M → Rn is the imaginary component of the period homomorphism

Fu ∈ H1(M,Cn) of the 1-form ∂u with vanishing real part, <Fu = 0. Hence, the

following is a corollary to Theorem 6.2 by following [7, proof of Theorem 1.4].

Corollary 6.4. If M is an affine Riemann surface, then the flux map

Flux : CMI∗(M,Rn)→ H1(M,Rn)

is a Serre fibration.

In the last part of this section, we give some further remarks on completeness

of nonflat conformal minimal immersions of finite total curvature and of directed

algebraic immersions.

Let M be an open Riemann surface and n ≥ 3. Denote by CMInf(M,Rn) the

space of nonflat conformal minimal immersions M → Rn and by CMIcnf(M,Rn)

its subspace of complete immersions. By [7, Corollary 1.2(a)] (see also [6]), the

inclusion CMIcnf(M,Rn) ↪→ CMInf(M,Rn) is a weak homotopy equivalence, and is

a homotopy equivalence if M has finite topological type.

Assume now that M is an affine Riemann surface and denote by CMI0(M,Rn)

the space of nonflat conformal minimal immersions of finite total curvature M → Rn
(including the incomplete ones). Consider the following diagram extending (1.4):

(6.1) <NC∗(M,Cn) �
� ι //

∂ ((QQ
QQQ

QQQ
QQQ

Q
CMI∗(M,Rn) �

� ι0 //

∂
��

CMI0(M,Rn)

∂
��

A 1
∞(M,A) �

� // A 1
∗ (M,A) �

� // A 1(M,A)

Corollary 6.5. If M is an affine Riemann surface, then all the maps in the diagram

(6.1) are weak homotopy equivalences.
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Proof. The inclusion ι is a weak homotopy equivalence by Theorem 1.1. Propositions

5.2 and 5.3 show that the inclusions in the bottom row are weak homotopy

equivalences. By Theorem 1.1, the map ∂ from either <NC∗(M,Cn) or CMI∗(M,Rn)

to A 1(M,A) is a weak homotopy equivalence. It follows that the two left-hand side

vertical maps ∂ are weak homotopy equivalences. (This was already pointed out

below equation (1.5).) The proof of Theorem 5.1 (ignoring completeness of the

given immersions up for p ∈ Q and ignoring conditions (iii) and (iv) in the theorem)

shows that the map ∂ in the third column is a weak homotopy equivalence as well.

Finally, ι0 is a weak homotopy equivalence by Theorem 6.2, although this already

follows from the diagram. �

Assume now that A ⊂ Cn \ {0} is a smooth connected flexible cone (1.7) not

contained in any hyperplane. Denote by I∗(M,A) the space of nondegenerate proper

algebraicA-immersionsM → Cn and by I0(M,A) the bigger space of nondegenerate

algebraic A-immersions M → Cn, including the nonproper ones. Arguing as above,

we obtain the following corollary.

Corollary 6.6. Under the above assumptions, the maps in the diagram

I∗(M,A) �
� //

∂
��

I0(M,A)

∂
��

A 1
∞(M,A) �

� // A 1
∗ (M,A)

are weak homotopy equivalences.

7. Algebraic homotopies and algebraically elliptic cones

As mentioned in the introduction, the recent [11, Theorem 1.3] provides a good

sufficient condition for the punctured cone A ⊂ Cn∗ , n ≥ 2, on a connected

submanifold Y of Pn−1 with dimY ≥ 1 to be algebraically elliptic, namely that

Y is uniformly rational. By contrast, the collection of known flexible cones is very

small and consists of a few classes of examples (luckily, the null quadric A is among

them). This is no surprise: it is more difficult to construct algebraic flows than

dominating families of algebraic sprays. The main classes of examples consist of

the cones A that are defined by a flag manifold or a toric manifold Y [12]. Other

examples are given in [32, 29, 33].

In view of this, it is of interest to explore to what extent the flexibility assumption

on the cone A in Theorem 1.4 can be relaxed to A being algebraically elliptic. We

are unable to prove Theorem 1.4 under this weaker assumption, but partial results

can be obtained. First, Theorem 1.3 (or [8, Theorem 1.1]) shows that for every

algebraically elliptic connected smooth cone A ⊂ Cn∗ , n ≥ 2, which is not contained

in any hyperplane, the map I∗(M,A) → A 1(M,A), h 7→ dh, in (1.8) induces a

surjection of path components of the two spaces. The next important question is
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whether this map is also injective on path components. We provide a partial answer

by introducing the following notion of algebraic homotopy.

Definition 7.1. Let π : A →M be an algebraic map onto an affine algebraic variety

M . Algebraic sections φ0, φ1 : M → A of π are algebraically homotopic, abbreviated

a-homotopic, if there is an algebraic map φ : M ×C→ A such that φ(· , t) : M → A
is a section of π for every t ∈ C and φ(·, t) = φt for t = 0, 1.

Using this new notion, we have the following result, asserting that a pair of

proper nondegenerate A-immersions with a-homotopic differentials lie in the same

connected component of the space I∗(M,A).

Theorem 7.2. Let M be an affine Riemann surface, A ⊂ Cn∗ , n ≥ 2, be a smooth

connected algebraically elliptic punctured cone not contained in any hyperplane, A ⊂
(T ∗M)⊕n be the algebraic fibre bundle over M with fibre A, and h0, h1 : M → Cn
be proper nondegenerate algebraic A-immersions. If the differentials dh0 and dh1
are a-homotopic sections of A, then there is a homotopy of proper nondegenerate

algebraic A-immersions ht : M → Cn, t ∈ [0, 1], joining h0 and h1.

Proof. The assumptions imply that there is an algebraic map φ : M × C→ A such

that φp = φ(· , p) : M → A is a section for every p ∈ C and φp = dhp for p = 0, 1.

Since h0 and h1 are nondegenerate, φp is nondegenerate for all but finitely many

values of p ∈ C. Hence, there is an embedded real analytic arc P ⊂ C connecting 0

and 1 such that φp is nondegenerate for every p ∈ P . Let Q = {0, 1} ⊂ P and let θ

be a nowhere vanishing holomorphic 1-form on M . By [16, Theorem 5.3], there is a

homotopy φtp = f tpθ (p ∈ P, t ∈ [0, 1]) of nondegenerate holomorphic sections of the

bundle A → M (that is, f tp : M → A is a nondegenerate holomorphic map for each

(p, t)) such that

(i) φtp = φp for every (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]), and

(ii) φ1p has vanishing periods on all closed curves in M for every p ∈ P .

Choose a basis C = {C1, . . . , Cs} of H1(M,Z) and a compact set L ⊂M containing

|C | =
⋃s
i=1Ci as in the proof of Theorem 1.2, so that M \ L is a union of pairwise

disjoint punctured discs around the ends of M . By [5, Lemma 3.2.1], we can find a

C -period dominating spray of nondegenerate holomorphic sections φtζ,p : V → A|V
over a neighbourhood V ⊂ M of L, depending holomorphically on ζ ∈ B ⊂ CN ,

where B is a ball around the origin in CN , and continuously on the parameters

(p, t) ∈ P × [0, 1], such that φt0,p = φtp for all (p, t) ∈ P × [0, 1].

Choose a smaller ball B′ b B around the origin. By Proposition 2.5, applied to the

extended bundle Z = A×CN → X = M ×CN , we can approximate φtζ,p uniformly

on L × B′ × P × [0, 1] by a homotopy φ̃tζ,p of nondegenerate holomorphic sections

of the bundle A → M which depends holomorphically on (x, ζ, p) ∈ V × B′ × U ,

where U ⊂ C is a neighbourhood of the arc P and V ⊃ L is a possibly smaller

neighbourhood of L, such that φ̃t0,p = φtp holds for p = 0, 1 and for all t ∈ [0, 1].
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Thus, we may view φ̃t0,· as a homotopy of holomorphic sections of the fibre bundle

A×C→M ×C over the domain V ×U ⊂M ×C, which is independent of t ∈ [0, 1]

over the algebraic submanifold M × {0, 1} ⊂M × C intersected with V × U . After

slightly shrinking the ball B′ ⊂ CN , Theorem 2.1 (see in particular part (d)) allows

us to approximate the family φ̃1ζ,p uniformly on L × B′ × P by an algebraic map

ψ : M × CN × C→ A such that the period dominating spray of algebraic sections

ψζ,p = ψ(· , ζ, p) : M → A for p ∈ P and ζ ∈ CN

agrees with φp for p = 0, 1 and ζ = 0. If the approximation is close enough, the

implicit function theorem gives a smooth map P 3 p 7→ ζ(p) ∈ B′ with values close

to 0 such that ζ(p) = 0 for p = 0, 1 and the algebraic 1-form ψζ(p),p has vanishing

periods for every p ∈ P . By integrating these forms with suitable initial values

at a point q ∈ |C | we get a homotopy of nondegenerate algebraic A-immersions

hp : M → Cn (p ∈ P ) connecting h0 and h1.

If in addition h0 and h1 are proper, then the same device that was used in the

proof of Theorem 5.1 can also be used in this proof to ensure that all A-immersions

hp (p ∈ P ) in the above family are proper as well. �

Remark 7.3. The proof applies in the more general case when the given pair of

immersions in the theorem need not be proper, but then the intermediate immersions

in the homotopy furnished by the theorem need not be proper either. Nevertheless,

arguing as at the end of Section 4, we can ensure that the intermediate immersions

are proper for all parameter values t ∈ [c, 1− c] for any given c ∈ (0, 12).

8. Local contractibility of algebraic mapping spaces

A topological space X is said to be locally contractible if for every point x ∈ X

and every neighbourhood U of x, there is a neighbourhood V ⊂ U of x such

that the inclusion V ↪→ U is homotopic to a constant map. CW complexes and

absolute neighbourhood retracts are locally contractible, as are, obviously, locally

convex topological vector spaces. Corollary 2.8 would allow us to determine the

weak homotopy type of many algebraic mapping spaces if we knew that they were

locally contractible in the compact-open topology.

Theorem 8.1. Let X be an affine algebraic variety and Y be a flexible algebraic

manifold. Suppose that the space A (X,Y ) of algebraic maps X → Y is

locally contractible with respect to the compact-open topology. Then the inclusion

A (X,Y ) ↪→ O(X,Y ) induces an injection of path components and an isomorphism

of homotopy groups in every degree.

Remark 8.2. (a) If Y is the prototypical flexible algebraic manifold Cn, n ≥ 1,

then, as a topological vector space, A (X,Y ) is locally convex and hence locally

contractible. We do not at present know how to prove or disprove local contractibility

for more general manifolds.
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(b) If X is an affine algebraic manifold and Y is a flexible algebraic manifold,

the inclusion A (X,Y ) ↪→ O(X,Y ) may or may not induce a surjection of path

components. For example, let Σn denote the complex n-sphere {(z0, . . . , zn) ∈
Cn+1 : z20 + · · · + z2n = 1}. As a smooth affine algebraic variety, Σn is flexible

for all n ≥ 2 (see [5, Proposition 1.15.3]). Loday [27] showed that for p and q odd,

every algebraic map Σp×Σq → Σp+q is null-homotopic, whereas there are non-null-

homotopic continuous maps Σp×Σq → Σp+q (see also [15, Example 6.15.7]). On the

other hand, it follows from the results in [8] that A (X,Y ) ↪→ O(X,Y ) does induce

a surjection of path components if X is an affine Riemann surface and Y belongs

to a class of punctured cones that includes the large cone Cn∗ , n ≥ 2, and the null

quadric A ⊂ Cn∗ , n ≥ 3.

(c) Under the assumptions of the theorem, O(X,Y ) and C (X,Y ) are absolute

neighbourhood retracts and hence locally contractible [25, Proposition 7 and

Theorem 9]. Also, X is Stein and Y is algebraically elliptic and hence Oka, so

the inclusion O(X,Y ) ↪→ C (X,Y ) is a weak homotopy equivalence.

Proof of Theorem 8.1. We shall prove, at the same time, that the inclusion

A (X,Y ) ↪→ O(X,Y ) induces a monomorphism at the level of πk−1 and an

epimorphism at the level of πk for all k ≥ 2.

Let B be the closed unit ball in Rk with boundary sphere S. Choose a base point

b ∈ S. Let f : B → O(X,Y ) be continuous with f(S) ⊂ A (X,Y ). What is required

is to deform f , keeping f(b) fixed and keeping f(S) in A (X,Y ), until all of f(B)

lies in A (X,Y ). We will in fact prove a bit more.

View B as S × [0, 1] with S × {1} identified to the origin o and view f as a

continuous map g : S×[0, 1]→ O(X,Y ), constant on S×{1} and taking S×{0} into

A (X,Y ). By the algebraic homotopy approximation theorem (the original version

[14, Theorem 3.3] suffices), A (X,Y ) is dense in any path component of O(X,Y )

that it intersects. Also, O(X,Y ), being an absolute neighbourhood retract, is locally

path connected. Hence, f(o) ∈ O(X,Y ) can be deformed to an algebraic map (in

fact by an arbitrarily small deformation), so we may assume that f(o) ∈ A (X,Y ).

By Corollary 2.8, applied with the parameter spaces P = S and Q = ∅, g can be

approximated on S× [0, 1] by continuous maps G : S×C→ A (X,Y ) with G = g on

S × {0}. Since A (X,Y ) is locally contractible by assumption, if the approximation

is close enough, G|S×{1} is homotopic to the constant map with value f(o) through

maps with values in an arbitrarily small neighbourhood of f(o) in A (X,Y ).

This shows that f may be approximated arbitrarily closely by maps F : B →
A (X,Y ) that equal f on S. Since, again, O(X,Y ) is an absolute neighbourhood

retract, if the approximation is close enough, then f and F are homotopic as maps

B → O(X,Y ) by a homotopy that is constant on S [21, Theorem IV.1.2]. �

Now let M be an affine Riemann surface and A ⊂ Cn∗ , n ≥ 2, be a connected

flexible punctured cone, not contained in a hyperplane, for example the large cone
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Cn∗ itself or the null quadric A ⊂ Cn∗ , n ≥ 3. Let A be the algebraic fibre bundle

with fibre A over M whose sections are A-valued 1-forms. As before, we write

A 1(M,A) for the space of algebraic sections of A over M and O1(M,A) for the

space of holomorphic sections, both endowed with the compact-open topology.

Theorem 8.3. With assumptions as above, suppose that the space A 1(M,A) is

locally contractible. Then the inclusion A 1(M,A) ↪→ O1(M,A) induces an injection

of path components and an isomorphism of homotopy groups in every degree. If

A = Cn∗ or A = A, then the inclusion is a weak homotopy equivalence.

Proof. The proof of the first statement is identical to that of Theorem 8.1 once we

note that since TM is holomorphically trivial, the space O1(M,A) is homeomorphic

to the space O(M,A) and is therefore an absolute neighbourhood retract. When

A = Cn∗ , the inclusion induces a surjection of path components by [8, Corollary 2.2].

For A = A, this holds by [8, Proposition 2.3]. �
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