
OKA-1 MANIFOLDS: NEW EXAMPLES AND PROPERTIES
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ABSTRACT. In this paper we investigate Oka-1 manifolds and Oka-1 maps, a class of complex
manifolds and holomorphic maps recently introduced by Alarcón and Forstnerič. Oka-1
manifolds are characterised by the property that holomorphic maps from any open Riemann
surface to the manifold satisfy the Runge approximation and Weierstrass interpolation
conditions, while Oka-1 maps enjoy similar properties for liftings of maps from open Riemann
surfaces in the absence of topological obstructions. We also formulate and study the algebraic
version of the Oka-1 condition, called aOka-1. We show that it is a birational invariant
for compact algebraic manifolds and holds for all rational manifolds. This gives a Runge
approximation theorem for maps from compact Riemann surfaces to uniformly rational
projective manifolds. Finally, we study a class of complex manifolds with an approximation
property for holomorphic sprays of discs. This class lies between the smaller class of Oka
manifolds and the bigger class of Oka-1 manifolds and has interesting functorial properties.

1. INTRODUCTION

The class of Oka-1 manifolds was introduced in the literature by Alarcón and Forstnerič
[2]. These are complex manifolds that admit plenty of holomorphic curves parametrised by
an arbitrary open Riemann surface. Here is the precise definition (see [2, Definition 1.1]).

Definition 1.1. A complex manifold X is an Oka-1 manifold if for any open Riemann surface
R, Runge compact set K in R, closed discrete set A ⊂ R, continuous map f : R→ X which
is holomorphic on a neighbourhood of K ∪ A, number ε > 0, and function k : A → N =

{1, 2, . . .} there is a holomorphic map F : R→ X which is homotopic to f and satisfies

(1) maxp∈K distX(F (p), f(p)) < ε, and
(2) F agrees with f to order k(a) at every point a ∈ A.

Here and in the sequel, distX denotes a distance function on the manifold X inducing the
standard manifold topology. The properties under consideration will be independent of the
particular choice of such a distance function.

Clearly, a complex manifold X is Oka-1 if and only if every connected component of X
is such. By [2, Proposition 2.7], the conditions in Definition 1.1 are equivalent to the Runge
approximation condition for any special pair of domains K ⊂ K ′ = K ∪D ⊂ R, where D is
a closed disc attached toK along a boundary arc, with jet interpolation in finitely many points
of K. Every Oka manifold (see [16, 19]) is also an Oka-1 manifold; the converse is false in
general, at least for noncompact manifolds.
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Here is a brief summary of the main results from [2]. We denote byHp the p-dimensional
Hausdorff measure on X with respect to a fixed Riemannian metric.

(a) If a complex manifold X of dimension n is dominable by Cn at every point in the
complement of a closed subset E ⊂ X with H2n−1(E) = 0 (such X is called densely
dominable by Cn), thenX is an Oka-1 manifold (see [2, Theorem 2.2 and Corollary 2.5]).

(b) All Kummer surfaces, all elliptic K3 surfaces, and many elliptic surfaces of Kodaira
dimension 1 are Oka-1 manifolds (see [2, Sect. 8]).

(c) Several functorial properties of Oka-1 manifolds are described in [2, Sect. 7].

Alarcón and Forstnerič also introduced the following notion of an Oka-1 map, by analogy
with the notion of an Oka map (for the latter, see [33, Sect. 16] and [12, Definition 7.4.7]).

Definition 1.2 (Definition 7.7 in [2]). A holomorphic map h : X → Y of complex manifolds
is an Oka-1 map if

(i) h is a Serre fibration, and
(ii) given an open Riemann surface R, a holomorphic map g : R → Y , and a continuous

lifting f0 : R→ X of g (that is, h◦f0 = g), which is holomorphic on a neighbourhood of
a compact Runge subsetK ⊂ R, we can deform f0 through liftings of g to a holomorphic
lifting f : R→ X which approximates f0 as closely as desired on K and agrees with f0

to any given finite order at finitely many given points of K.
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As noted in [2], a complex manifoldX is an Oka-1 manifold if and only if the constant map
X → point is an Oka-1 map. Every Oka map is also an Oka-1 map, but the converse fails,
at least for maps with noncompact fibres. An Oka-1 map X → Y to a connected complex
manifold Y is a surjective submersion and its fibres are Oka-1 manifolds [2, Proposition
7.8]. Oka-1 maps are useful in finding new examples of Oka-1 manifolds, as shown by
the following results [2, Theorem 7.6 and Corollary 7.9]. (See [16, Theorem 3.15] for the
analogous result for Oka manifolds and Oka maps.)

Theorem 1.3. Let h : X → Y be an Oka-1 map between connected complex manifolds.

(a) If Y is an Oka-1 manifold, then X is an Oka-1 manifold.
(b) If X is an Oka-1 manifold and the homomorphism h∗ : π1(X) → π1(Y ) of fundamental

groups is surjective, then Y is an Oka-1 manifold.
(c) If h : X → Y is a holomorphic fibre bundle with a connected Oka fibre, then X is an

Oka-1 manifold if and only if Y is an Oka-1 manifold.

Our first main result provides a large class of Oka-1 manifolds. The notion of density
property is recalled in Sect. 2, and Theorem 2.2 establishes a stronger property of this class.

Theorem 1.4. Let X be a Stein manifold with the density property and ρ : X → R be a
C 2 Morse exhaustion function whose Levi form has at least two positive eigenvalues at each
point. Then every superlevel set of ρ is an Oka-1 manifold.
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By analogy with the algebraic version of the Oka property (see Lárusson and Truong [35]),
it is natural to formulate and study the following algebraic version of the Oka-1 property.

Definition 1.5. A complex algebraic manifoldX is algebraically Oka-1 (abbreviated aOka-1)
if for any affine algebraic Riemann surface R, Runge compact set K in R, finite set A ⊂ K,
continuous map f : R → X which is holomorphic on a neighbourhood of K, number ε > 0,
and integer k ∈ N there is a morphism F : R→ X which is homotopic to f and satisfies

(1) maxp∈K distX(F (p), f(p)) < ε, and
(2) F agrees with f to order k at every point of A.

Recall that every affine algebraic Riemann surface R is the complement of finitely many
points in a compact Riemann surface (and vice versa) and admits a smooth proper morphism
R ↪→ C3 onto a closed affine algebraic curve in C3.

Algebraic Oka properties for morphisms from affine algebraic varieties of arbitrary
dimension to algebraic manifolds were introduced and studied by Lárusson and Truong [35].
They showed in particular that no algebraic manifold which is compact or contains a rational
curve satisfies the algebraic version of the basic Oka property, the approximation property, or
the interpolation property [35, Theorem 2]. The most useful known algebraic Oka property
is the relative Oka principle for morphisms from affine algebraic varieties to algebraically
subelliptic manifolds; see [16, Definition 6.1] for this notion, due to Gromov [22], and [11,
Theorem 3.1] and the more precise version in [16, Theorem 6.4] for the relevant result. It
was recently shown by Kaliman and Zaidenberg [24, Theorem 1.1] that every algebraically
subelliptic manifold is in fact algebraically elliptic, and this property is equivalent to several
other algebraic Oka properties. (See also [16, Theorem 6.2 and Corollary 6.6].)

The negative results of Lárusson and Truong, mentioned above, require sources of
dimension at least two. Restricting to one-dimensional sources allows positive results to be
proved. Our results in Sections 3 and 4 imply the following second main theorem of this paper.
Its proof uses a multi-parameter version of the aforementioned homotopy approximation
theorem [11, Theorem 3.1]; see Theorem 4.2.

Theorem 1.6. A projective manifold that is birationally equivalent to an algebraically elliptic
projective manifold is aOka-1.

Recall that a connected complex manifold X is said to be rationally connected if any
pair of points in X can be joined by a rational curve P1 → X . Among many references
for rationally connected projective manifolds, we refer to the papers by Kollár et al. [26, 28]
and the monographs by Kollár [27] and Debarre [8]. It is shown in [28, Theorem 2.1] that
several possible definitions of this class coincide. In particular, if every sufficiently general
pair of points in X can be connected by an irreducible rational curve, or by a chain of such
curves, then X is rationally connected. Also, if there is a morphism f : P1 → X such that
f ∗TX → P1 is an ample bundle, then X is rationally connected. The class of projective
rationally connected manifolds is birationally invariant. We have the following observation.

Proposition 1.7. Every projective aOka-1 manifold is rationally connected.

Proof. We may assume that the projective manifoldX under consideration is connected. Take
any pair of points p, q ∈ X . Let D = {z ∈ C : |z| < 1}. There is a holomorphic disc
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f0 : D → X with f0(a) = p and f0(b) = q for some a, b ∈ D. Assuming that X is aOka-1,
there is a morphism f : C→ X with f(a) = p and f(b) = q. SinceX is projective, f extends
to a morphism f : P1 → X with p, q ∈ f(P1). This shows that X is rationally connected. �

Conversely, it is conjectured that every projective rationally connected manifold is Oka-1
[2, Conjecture 9.1]. As explained there, this would follow from a theorem of Gournay [21,
Theorem 1.1.1], but the authors of [2] could not understand the details of the proof of this
result. Gournay’s theorem would also imply that every such manifold is an aOka-1 manifold.
An Oka-1 type property of holomorphic maps C→ X to any rationally connected projective
manifold X was established by Campana and Winkelmann [7], who constructed holomorphic
lines C→ X with given jets through any given sequence of points in X . Their proof is based
on the comb smoothing theorem by Kollár et al. [28].

In the present paper, we use different techniques to establish the aOka-1 property
for two subclasses of the class of rationally connected projective manifolds: for rational
manifolds (see Corollary 3.5), and for algebraically elliptic manifolds (see Theorem 4.1).
Since the aOka-1 property is a birational invariant (see Corollary 3.4), these two results are
summarised in Theorem 1.6. The theorem implies the following extension of Royden’s Runge
approximation theorem [36, Theorem 10] for maps from compact Riemann surfaces to the
Riemann sphere P1 to a much wider class of targets; in particular, to any projective space Pn.
The corollary is proved in Section 4.

Corollary 1.8. Let X be a projective manifold birationally equivalent to an algebraically
elliptic projective manifold. Given a compact Riemann surface Σ, a compact subset K of Σ,
a holomorphic map f : U → X from an open neighbourhood of K in Σ, and a finite subset A
of K, there is a morphism Σ → X that approximates f arbitrarily closely on K and agrees
with f to any given finite order in the points of A.

There are many examples of projective Oka-1 manifolds that are not rationally connected,
and hence not aOka-1 in view of Proposition 1.7. The simplest ones are elliptic curves. On
the other hand, the following result is easily established.

Proposition 1.9. Every aOka-1 manifold is Oka-1.

Namely, by a result of Stout [38, Theorem 8.1], every compact smoothly bounded domain
in an open Riemann surface is biholomorphic to a domain in an affine Riemann surface, so
an inductive application of the aOka-1 condition yields the ostensibly weaker but equivalent
formulation of the Oka-1 property in [2, Proposition 2.7] (see the paragraph following
Definition 1.1 above).

Remark 1.10. By [6, Corollary 1.8], a compact algebraic manifold X of dimension n is
unirational if and only if there is a surjective morphism Cn → X . Then X is densely
dominable by Cn, so X is Oka-1 by [2, Theorem 2.2]. (We thank an anonymous referee
for pointing this out to us.) Whether X is in fact Oka or aOka-1 is unknown.

Finally, in Section 5 we continue the investigation of the local spray approximation
property (LSAP) introduced in [2, Definition 7.11]. The Oka property clearly implies LSAP,
which in turn implies the Oka-1 property by [2, Proposition 7.13]. We prove new functorial
properties of the class LSAP (see Proposition 5.5) and deduce the following result.
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Theorem 1.11. Let C be the smallest class of complex manifolds that contains all Oka
manifolds and is closed with respect to strong dominability. Then every manifold in C enjoys
LSAP and hence is Oka-1.

Saying that C is closed with respect to strong dominability means that if X is a complex
manifold such that for every point x ∈ X there is a manifold Y in C and a holomorphic map
f : Y → X that is a submersion at some point in f−1(x), then X is in C . It is an interesting
open question whether the class of Oka manifolds is closed with respect to strong dominability
(or merely Hausdorff-local). The question is open for the class of Oka-1 manifolds as well.
The theorem shows that closing the class of Oka manifolds with respect to strong dominability
does preserve some Oka-type properties: every manifold in the class thus obtained is Oka-1.

2. OKA-1 DOMAINS IN STEIN MANIFOLDS WITH THE DENSITY PROPERTY

The main result of this section (see Theorem 2.2) describes a large class of Oka-1 domains
in Stein manifolds with the density property. It can be seen as an analogue of Kusakabe’s
theorem [31, Theorem 1.2] that the complement of any compact holomorphically convex set
in a Stein manifold with the density property is an Oka manifold.

Recall that a holomorphic vector field on a complex manifold X is called complete if its
flow exists for all complex values of time, so it forms a complex one-parameter group of
holomorphic automorphisms of X . The following notion was introduced by Varolin [39].
(See also [12, Definition 4.10.1].)

Definition 2.1 (Varolin [39]). A complex manifold X has the density property if every
holomorphic vector field on X can be approximated uniformly on compacts by sums and
commutators of complete holomorphic vector fields on X .

This condition is most interesting and restrictive on Stein manifolds, since they admit
many holomorphic vector fields. The fact that the Euclidean spaces Cn for n > 1 have
the density property was discovered by Andersén and Lempert [3]. An important feature
of Stein manifolds with the density property is that every isotopy of biholomorphic maps
between pseudoconvex Runge domains in such a manifold can be approximated by an isotopy
of holomorphic automorphisms (see Forstnerič and Rosay [20] and [12, Theorems 4.9.2 and
4.10.5]). It is known that most complex Lie groups and complex homogeneous manifolds of
dimension greater than one have the density property, and there are numerous other classes of
examples. Surveys of this subject can be found in [12, Sect. 4.10], [18], and [32].

The following is the main result of this section.

Theorem 2.2. LetX be a Stein manifold with the density property and ρ : X → R+ = [0,∞)

be a C 2 Morse exhaustion function whose Levi form has at least two positive eigenvalues at
every point. Then, for every c ∈ R+, the domain

Xc = {x ∈ X : ρ(x) > c}.

is an Oka-1 manifold. Furthermore, given a compact Runge setK in an open Riemann surface
R, a finite set A ⊂ K, and a continuous map f : R → X which is holomorphic on an open
neighbourhood U ⊂ R of K and satisfies f(R\ K̊) ⊂ Xc, there is a proper holomorphic map
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F : R → X which approximates f as closely as desired uniformly on K, agrees with f to a
given finite order in the points of A, and satisfies F (R \ K̊) ⊂ Xc.

Proof. The first claim in the theorem, that Xc is an Oka-1 domain, follows from the second
part of the theorem and [2, Proposition 2.7], which gives a criterion for a complex manifold to
be Oka-1 by a simpler approximation condition and with interpolation in finitely many points.

We now prove the second part of the theorem. We may assume that R and X are
connected. It clearly suffices to prove the result for a domain Xc0 = {ρ > c0} where c0 ∈ R+

is a regular value of ρ. Let A ⊂ K ⊂ U ⊂ R and f : R → X be as in the theorem with
c = c0. Pick a smoothly bounded Runge domain D in R with K ⊂ D ⊂ D̄ ⊂ U such that

(2.1) f(D \K) ⊂ Xc0 .

Since ρ : X → R+ is an exhaustion function and the manifoldX is Stein, there exist a number
c1 > c0 and a compact O(X)-convex subset L ⊂ X whose complement O = X \ L satisfies

(2.2) Xc1 ⊂ O ⊂ Xc0 .

Since ρ : X → R+ is a Morse exhaustion function whose Levi form has at least two positive
eigenvalues at every point, [9, Theorem 1.1] and its proof (see in particular [9, Lemma 6.3])
furnishes a holomorphic map f̃ : D̄ → X satisfying the following conditions for any given
pair of numbers ε > 0 and k = 1, 2, . . ..

(a) f̃(bD) ⊂ Xc1 .
(b) f̃(D \K) ⊂ Xc0 .
(c) supp∈K distX(f̃(p), f(p)) < ε.
(d) f̃ agrees with f to order k in every point of A.
(e) f̃ is homotopic to f |D̄ by a homotopy of maps ft : D̄ → X with f0 = f |D̄, f1 = f̃

satisfying ft(D \K) ⊂ Xc0 for every t ∈ [0, 1].

The assumption on the Levi form of ρ implies that it has Morse index at most 2 dimCX − 2

at every critical point. Hence, for any pair of regular values c < c′ of ρ the set Xc = {ρ > c}
is topologically obtained from Xc′ by attaching handles of dimension at least 2. It follows
that the inclusion Xc′ ↪→ Xc induces a bijection of the path components and the relative
fundamental group π1(Xc, Xc′) vanishes. Since the pair (R,D) is homotopy equivalent to
a relative 1-dimensional CW complex, we infer that f̃ extends from D̄ to a continuous map
f̃ : R→ X satisfying the following two additional conditions:

(f) f̃(R \D) ⊂ Xc1 .

(g) The homotopy ft : D̄ → X in condition (e) extends to a homotopy ft : R → X

(t ∈ [0, 1]) satisfying f0 = f , f1 = f̃ , and ft(R \D) ⊂ Xc0 for every t ∈ [0, 1].

Since the Stein manifoldX is assumed to have the density property, the domainO = X\L
in (2.2) is Oka by Kusakabe [31, Theorem 1.2]. From the condition f̃(R\D) ⊂ Xc1 ⊂ O (see
(2.2) and (f)) and [16, Theorem 1.3] it follows that there is a holomorphic map F : R → X

which approximates f̃ as closely as desired on D̄, it agrees with f̃ (and hence with f ) to order
k in the points ofA, it satisfies F (R\D) ⊂ O, and F is homotopic to f through mapsR→ X

sending R \ K̊ to X0. Thus, F satisfies conditions (1) and (2) in Definition 1.1. In particular,
6



if f(K) ⊂ Xc0 then the map F , and the homotopy from f to F , can be chosen to have range
in Xc0 . By [2, Proposition 2.7] this shows that Xc0 is an Oka-1 manifold.

Furthermore, we can choose the map F : R → X as above to be a proper holomorphic
immersion (embedding if dimX ≥ 3) provided the jet interpolation conditions allow it. This
follows from the main result of Andrist and Wold [5]. (See also [4, 13] for an extension of
their result to maps from any Stein manifold R satisfying 2 dimR ≤ dimX .) By using
the recently established fact that X \ L is an Oka domain when X is a Stein manifold
with the density property and L is a compact O(X)-convex subset of X (see Kusakabe
[31, Theorem 1.2]), a simpler proof is possible; cf. [17, Theorem 5.1]. The main idea is
the following. We exhaust R by an increasing sequence of compact O(R)-convex subsets
K = K0 ⊂ K1 ⊂ · · · ⊂

⋃∞
i=0Ki = R. Likewise, we exhaust X by compact O(X)-convex

subsets L = L1 ⊂ L2 ⊂ · · · ⊂
⋃∞
i=1 Li = X , where L is as above. (The sets Li are chosen

as sublevel sets of a strongly plurisubharmonic Morse exhaustion function τ : X → R+.)
We then inductively construct a sequence of continuous maps fi : R → X (i = 0, 1, . . .)

such that f0 is the initial map, and for every i = 1, 2, . . . the map fi is holomorphic on Ki, it
approximates fi−1 as closely as desired on Ki−1 and agrees with it to order k in the points of
A ⊂ K, and it satisfies fi(R \ K̊i) ⊂ Oi = X \ Li. To obtain such a sequence, we alternately
use [9, Theorem 1.1] and [16, Theorem 1.3], just like in the above construction of the map
f̃ = f1 from the given initial map f = f0. If the approximations are close enough then there
is a limit holomorphic map F = limi→∞ fi : R → X , which is proper as a map to X and
satisfies the conditions in the theorem. �

A characteristic feature of domains Xc in Theorem 2.2 is that, taking c ∈ R+ to be a
regular value of ρ, the compact set

Lc = {x ∈ X : ρ(x) ≤ c} = X \Xc

is such that the Levi form of its boundary bLc = {ρ = c} has at least one positive eigenvalue at
every point (since the Levi form of ρ has at least two positive eigenvalues at every point). Let
us call a compact set L ⊂ X with C 2 boundary satisfying this property tangentially 1-convex.
Note that every such set L is strongly pseudoconvex if dimX = 2, but this fails if dimX ≥ 3.
A specific example is L = {ρ ≤ c} ⊂ C3 where ρ(z1, z2, z3) = |z1|2 + |z2|2 − |z3|2 + |z3|4
and c > 0 is a regular value of ρ. Indeed, ρ is an exhaustion function on C3 whose Levi form
has eigenvalues 1, 1,−1 + 4|z3|2 at each point, so L is tangentially 1-convex. However, the
signature of the Levi form of bL along the circle {|z1|2 = c, z2 = z3 = 0} ⊂ bL is (1,−1),
so L is not strongly pseudoconvex.

Problem 2.3. Assume that X is a Stein manifold with the density property and L ⊂ X is a
compact tangentially 1-convex set. Is O = X \ L and Oka-1 manifold?

Another reason for considering this question is the following. Every connected Oka-1
manifold is C-connected and hence Liouville, that is, it does not admit any nonconstant
bounded plurisubharmonic functions. If L ⊂ X is a compact set whose C 2 boundary
contains a strongly pseudoconcave point p ∈ bL, then its complement O = X \ L admits a
local negative strongly plurisubharmonic peak function vanishing at p. The maximum of this
function and a suitably chosen negative constant is a nonconstant negative plurisubharmonic
function on O, so O is not Oka-1. On the other hand, pseudoconcave boundary points of L
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are the only obstruction to O = X \ L being Liouville. For simplicity, we consider the case
X = Cn, noting that the same argument applies in general. Given ε > 0, we set

Lε =
{
z ∈ Cn : dist(z, L) = min

w∈L
|z − w| ≤ ε

}
.

Proposition 2.4. Let L be a compact subset of Cn, n > 1. Assume that there are numbers
0 < δ < ε such that for every point p ∈ Lδ \ L there is a compact complex curve A in Cn \ L
with p ∈ A and bA ⊂ Cn \ Lε. Then Cn \ L is Liouville.

Proof. By the maximum principle, the condition in the proposition fails on any bounded
connected component of O = Cn \L, and hence O is connected. Assume that φ is a bounded
plurisubharmonic function on O. Then φ is constant on the Oka domain Cn \ L̂ ⊂ O, where
L̂ denotes the polynomial hull of L. Let p ∈ A ⊂ O be a complex curve as in the proposition.
By the maximum principle for the subharmonic function φ|A we have that φ(p) ≤ maxbA φ.
Since bA ⊂ Cn \ Lε and this holds for every p ∈ Lδ \ L, and since φ is constant on Cn \ L̂, φ
assumes its maximum value on O on the compact set L̂ \ L̊ε. By the maximum principle for
plurisubharmonic functions it follows that φ is constant on O. �

Corollary 2.5. If L is a compact tangentially 1-convex set in Cn, then Cn \ L is Liouville.

Proof. The existence of a positive Levi eigenvalue at every point p ∈ bL gives an embedded
holomorphic disc ∆p ⊂ Cn such that ∆p ∩ L = {p} and ∆p is tangent to bL precisely to
the second order. By compactness of bL we can find a family of such discs with boundaries
contained in Cn \ Lε for some ε > 0. Translating these discs aways from L for a small
amount gives a family of holomorphic discs satisfying the conditions of Proposition 2.4, so
the conclusion follows. �

3. OKA-1 IS A BIMEROMORPHIC INVARIANT

It was a long-standing open problem whether the Oka property is a bimeromorphic
invariant, until Kusakabe proved that there are non-tame discrete subsets A of Cn, n ≥ 2,
for which Cn blown up at each point of A is Brody volume-hyperbolic and hence not Oka
[30, Example A.3]. Previously, it was shown that if A is tame, then the blow-up is weakly
subelliptic and hence Oka [12, Proposition 6.4.12]. It remains an open question whether an
Oka manifold blown up at a single point is Oka.

On the algebraic side more is known. Kusakabe proved, by a reduction to [34, Theorem
1], that if an algebraic manifold X satisfies the algebraic convex approximation property,
aCAP, then so does the blow-up B of X along any algebraic submanifold (not necessarily
connected); see [29, Corollary 4.3]. It follows that if X is algebraically elliptic (see Section
4 for the definition and more information on this class), then B is Oka. The optimal known
geometric sufficient condition for a compact algebraic manifold to be algebraically elliptic is
uniform rationality (see Arzhantsev et al. [6, Theorem 1.3]). A compact algebraic manifold
X is called uniformly rational if every point of X admits a Zariski open neighbourhood
isomorphic to a Zariski open set in Cn with n = dimX . If X is uniformly rational, so is
the blow-up B of X along any algebraic submanifold (see Gromov [22, 3.5E]). Hence, if X
is compact and uniformly rational, then B is algebraically elliptic. If X is of classA (see [12,
Definition 6.4.4]), not necessarily compact, then B is algebraically elliptic [34, Corollary 2].

8



Further, algebraic ellipticity implies strong dominability by affine spaces [34, Proposition 6],
and if X is dominable or strongly dominable, then so is B [34, Theorem 9]. In view of all
these results, it is reasonable to expect that an algebraically elliptic manifold blown up along
an algebraic submanifold is algebraically elliptic, but this is yet to be proved.

For 1-dimensional sources, the picture is much clearer.

Theorem 3.1. Let B be the blow-up of a complex manifold X along a submanifold, not
necessarily connected. Then B is Oka-1 if and only if X is Oka-1.

By the solution of the weak factorisation conjecture due to Abramovich et al. [1, Theorem
0.3.1], a bimeromorphic map between compact complex manifolds can be factored into a finite
sequence of blow-ups and blow-downs with smooth centres. Thus the following corollary to
Theorem 3.1 is immediate.

Corollary 3.2. For compact complex manifolds, the Oka-1 property is bimeromorphically
invariant.

Proof of Theorem 3.1. Let π : B → X be the projection, the submanifold Z of X be the
centre of the blow-up, and E = π−1(Z) be the exceptional divisor in B. We may assume that
codimZ ≥ 2. Let R be an open Riemann surface, K ⊂ R be a Runge compact, and A ⊂ R

be discrete with a map k : A → N. Assuming that X is Oka-1, we take a continuous map
f : R → B which is holomorphic on a neighbourhood of K ∪ A. We wish to deform f to a
holomorphic map R → B which approximates f on K and agrees with f to order k(a) for
each a ∈ A.

In preparation, we first add a point b ∈ R to A away from K, set k(b) = 1, and deform f

near b so that f is holomorphic near b and f(b) /∈ E. Denote the newA and new f by the same
letters. This is only to make sure that when we deform π ◦ f below, we do not end up with
a map into Z. Also, by the transversality theorem (see [23] or [12, Theorem 8.8.13]), after
applying an arbitrarily small deformation to f , we may assume that no connected component
of the neighbourhood of K on which f is holomorphic maps into E. Then there are only
finitely many points x ∈ K \ A with f(x) ∈ E. We add every such x to A and set k(x) = 1.
Finally, for every a ∈ A ∩ f−1(E), we add 1 to k(a).

We now apply the Oka-1 property of X to the map g = g0 = π ◦ f and obtain a homotopy
t 7→ gt : R → X , such that g1 is holomorphic, approximates g on K, and agrees with g to
order k(a) at each a ∈ A. The preparations above ensure that g1 has a unique holomorphic
lifting f1 : R → B by π : B → X with the required approximation and interpolation
properties. It remains to verify that f1 is homotopic to f . Since R has the homotopy type
of a bouquet of circles and deformation-retracts onto an embedded bouquet, the homotopy
classes of continuous maps from R to any space Y are in bijective correspondence with
homomorphisms π1(R) → π1(Y ) of their fundamental groups. As π : B → X induces
an isomorphism π1(B) → π1(X) (this is easily shown using the van Kampen theorem), we
conclude that f and f1 are homotopic.

Next, assuming that B is Oka-1, we take a continuous map g : R → X which is
holomorphic on a neighbourhood of K ∪ A. We wish to deform g to a holomorphic map
R→ X which approximates g onK and agrees with g to order k(a) for each a ∈ A. Once we
are able to lift g to a continuous map f : R → B, which is holomorphic on a neighbourhood
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of K ∪A, we simply apply the Oka-1 property of B to obtain a suitable deformation of f and
then compose with π. Since the submanifold Z of X has codimension at least 2 > dimR, by
applying an arbitrarily small deformation to g fixing every point a ∈ A to order k(a), we may
assume that g−1(Z) ⊂ A, and then the existence of a lifting f is clear. �

In the algebraic setting, the analogous results are proved in exactly the same way, using the
algebraic version of the universal property of the blow-up and the algebraic weak factorisation
theorem of Abramovich et al. [1, Theorem 0.1.1]. This gives the following conclusions.

Theorem 3.3. Let B be the blow-up of an algebraic manifold X along an algebraic
submanifold, not necessarily connected. Then B is aOka-1 if and only if X is aOka-1.

Corollary 3.4. For compact algebraic manifolds, the algebraic Oka-1 property is birationally
invariant.

The corollary, combined with Royden’s Runge approximation theorem for maps from
Riemann surfaces to P1 [36, Theorem 10], shows the following.

Corollary 3.5. Every compact rational manifold is aOka-1. In particular, the projective space
Pn is aOka-1.

Proof. By Royden’s theorem [36, Theorem 10], the Riemann sphere P1 is aOka-1. The
required approximation and jet interpolation is precisely the content of his theorem. The
required homotopy is then immediate, because an open Riemann surface has the homotopy
type of a bouquet of circles and P1 is simply connected. Applying this result componentwise,
it follows that every product (P1)n of Riemann spheres is aOka-1. Since (P1)n is a rational
manifold, Corollary 3.4 concludes the proof. �

Corollary 3.5 complements Theorem 4.1 in the following section, which shows that every
algebraically elliptic projective manifold is aOka-1. It is unknown whether every rational
manifold is Oka, let alone algebraically elliptic.

4. SIMPLY CONNECTED ALGEBRAICALLY ELLIPTIC MANIFOLDS ARE AOKA-1

In this section, we prove the following main result.

Theorem 4.1. Every simply connected algebraically elliptic manifold is aOka-1. In
particular, every algebraically elliptic projective manifold is aOka-1.

Algebraically elliptic manifolds have already been mentioned in the introduction and in
Section 3. An algebraic manifold X , not necessarily compact or quasi-projective, is said to
be algebraically elliptic if it admits a dominating algebraic spray E → X defined on the
total space of an algebraic vector bundle E → X; see [16, Definition 6.1 (a)]. This notion
was introduced and studied by Gromov [22]. The ostensibly bigger class of algebraically
subelliptic manifolds (see [16, Definition 6.1 (b)]) was implicitly present in Gromov’s work
but was formally introduced in [10]. Recently it was shown by Kaliman and Zaidenberg [24,
Theorem 1.1] that these two classes coincide. However, it is not known whether the same
is true in the holomorphic category. It was recently shown by Arzhantsev et al. that every
compact uniformly rational manifold is algebraically elliptic [6, Theorem 1.3]. Note that an
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algebraically elliptic projective manifold is unirational, and hence simply connected by Serre
[37]. This justifies the second statement in Theorem 4.1 provided that the first statement holds,
and it complements Corollary 3.5, which says that a compact rational manifold is aOka-1.

Rational manifolds and algebraically elliptic manifolds form two subclasses of the class of
unirational manifolds. It has recently been shown by Kaliman and Zaidenberg [25] that every
smooth cubic hypersurface in Pn, n > 2, is algebraically elliptic. This seems to give the first
examples of non-rational projective manifolds which are algebraically elliptic. On the other
hand, it is unknown whether every rational manifold is algebraically elliptic.

Algebraic ellipticity is a Zariski local property, and is equivalent to several other algebraic
Oka properties; see the summary in [16, Theorem 6.2 and Corollary 6.6]. One is the algebraic
homotopy approximation property [16, Theorem 6.4] whose basic version was proved by
Forstnerič [11, Theorem 3.1]. We shall need the following multi-parameter version of this
result. We consider the cube [0, 1]n ⊂ Rn ⊂ Cn as a subset of Cn in a natural way.

Theorem 4.2. Let Σ be an affine algebraic variety and X be an algebraically elliptic
manifold. Given a morphism f : Σ → X , a compact holomorphically convex set K in Σ,
an open neighbourhood U ⊂ Σ of K, and a homotopy of holomorphic maps

(4.1) ft : U → X, t = (t1, t2, . . . , tn) ∈ [0, 1]n

with f0 = f |U , there are morphisms F : Σ × Cn → X with F (· , 0) = f such that F (· , t)
approximates ft as closely as desired uniformly on K × [0, 1]n.

If in addition the homotopy ft is fixed on a closed algebraic subvariety Σ′ ⊂ Σ then F can
be chosen such that F (x, t) = f(x) for all x ∈ Σ′ and t ∈ Cn.

Proof. The case n = 1 coincides with [16, Theorem 6.4]. We proceed by induction on n.
Assume that n > 1 and write the parameter in the form t = (t1, t

′), with t1 ∈ [0, 1] and
t′ ∈ [0, 1]n−1. Choose a compact O(Σ)-convex set K1 ⊂ U containing K in its interior.
Applying the result for n = 1 to K1 and the parameter t1 (with t′ = 0) gives a morphism
F1 : Σ × C → X such that F1(· , 0) = f and F1(· , t1) approximates f(t1,0′) uniformly on
K1× [0, 1]. We now adjust the homotopy ft in (4.1) (without changing the notation) such that
f(t1,0′) = F1(· , t1) for all t1 ∈ [0, 1] and the new homotopy is uniformly close to the original
one on K1 × [0, 1]n. This can be done by using the partition of unity in the parameter and the
existence of open Stein neighbourhoods of graphs of the maps ft over K1; see e.g. [12, proof
of Proposition 6.7.2], specifically the last paragraph on p. 289.

We now replace Σ by the affine variety Σ1 = Σ × C, the morphism f by F1, and the
homotopy ft by the (n − 1)-parameter homotopy f(·,t2,...,tn) with (t2, . . . , tn) ∈ [0, 1]n−1.
Applying the same argument as above with the parameter t2 ∈ [0, 1] and (if n > 2) with
t3 = · · · = tn = 0 yields a morphism F2 : Σ2 = Σ × C2 → X satisfying the required
properties with respect to the homotopy f(t1,t2,0′). Clearly this process can be continued
inductively, and in n steps we obtain the desired morphism F = Fn : Σ×Cn → X satisfying
the conclusion of the theorem.

As pointed out in [16, Theorem 6.4], a minor modification of this argument also gives the
addition with interpolation on an algebraic subvariety Σ′ ⊂ Σ on which the original homotopy
ft is fixed. (We shall not need this addition in the present paper.) �
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Remark 4.3. The hypothesis in Theorem 4.2 that the member f0 of the family {ft}t∈[0,1]n

is the restriction of a morphism Σ → X can be replaced by the hypothesis that some (and
hence any) member of the family {ft}t∈[0,1]n is homotopic to the restriction g|U of a morphism
g : Σ→ X . SinceX is an Oka manifold (see [12, Corollary 5.6.14]) and assuming as we may
that U is Stein, the Oka principle gives a homotopy of holomorphic maps U → X connecting
g to the map f0, and hence to any map ft in the family. The result then follows by rearranging
the set of parameters of the extended homotopy into the cube [0, 1]n+1 so that g|U corresponds
to the point (0, . . . , 0) and ft corresponds to the point (1, t) ∈ {1} × [0, 1]n.

Proof of Theorem 4.1. Let R be an affine algebraic Riemann surface, K be a Runge compact
set in R, A = {a1, . . . , am} ⊂ K be a finite set, and f : R → X be a continuous map which
is holomorphic on a neighbourhood U ⊂ R of K (see Definition 1.5). Our goal is to show
that we can approximate f on K by morphisms f̃ : R → X which agree with f to a given
finite order k at every point of A. By enlarging K slightly, we may assume that A ⊂ K̊.

Let s denote the real dimension of the space of holomorphic k-jets at the origin of
maps from open neigbourhood of 0 ∈ C to X sending 0 to a chosen point x0 ∈ X . Set
n = m(dimRX + s). Note that the graph of f over K has an open Stein neighbourhood in
R × X (indeed, it has an open Euclidean neighbourhood, see [14]). Hence, after shrinking
U around K if necessary, we can find a smooth n-parameter family of holomorphic maps
ft : U → X for t ∈ Q = [−1, 1]n ⊂ Rn such that f0 = f |U and for every collection of
values and k-jets near the values and k-jets of f0 at the points aj ∈ A (j = 1, . . . ,m) there
is precisely one member ft of this family which assumes these values and k-jets at the points
of A. Thus, {ft} is a universal local deformation family of f0 with respect to the values and
k-jets at the points of A.

Since X is simply connected and U has the homotopy type of a bouquet of circles, f0 is
homotopic to the restriction g|U of a constant morphism g : R → x0 ∈ X . By Theorem
4.2 and Remark 4.3, we can approximate the homotopy {ft} for t ∈ Q = [−1, 1]n ⊂ Cn as
closely as desired on K × Q by a morphism Θ : R × Cn → X . Consider the morphisms
Θt = Θ(· , t) : R → X for t ∈ Q. By approximation, the values and k-jets of Θt in the
points of A are arbitrarily close to those of ft for all t ∈ Q. Fix a number 0 < r < 1.
Assuming as we may that the approximation is close enough, we obtain a continuous map
Qr := [−r, r]n 3 t 7→ τ(t) ∈ Q close to the identity map such that the values and k-jets of
Θt at the points of A match those of fτ(t), the set τ(bQr) ⊂ Q contains the center point 0 in
the bounded component of its complement, and the map τ/|τ | : bQr → Sn−1 to the (n− 1)-
sphere has topological degree 1. It follows that there is t ∈ (−r, r)n = Q̊r such that τ(t) = 0

(see [15, Proposition 3.2] and the references therein). For this t, the values and k-jets of the
morphism f̃ = Θt : R → X in the points of A match those of f0. Since r > 0 was arbitrary,
f̃ may be chosen as close to f as desired on K. This completes the proof. �

Proof of Corollary 1.8. We may assume that K is a proper subset of Σ, for otherwise there is
nothing to prove. By enlarging K within U we may assume it is a smoothly bounded. Hence,
Σ\K has finitely many connected components. Choose a finite set P ⊂ Σ\K having a point
in each component of Σ \K. Then, R = Σ \ P is an affine Riemann surface and K is O(R)-
convex. Since X is simply connected, the map f extends to continuous map f : R → X . By
Theorem 4.1 and Corollary 3.4, X enjoys the aOka-1 property, which implies the existence
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of a morphism f̃ : R → X satisfying the approximation and interpolation conditions in the
corollary. Since X is compact, f̃ extends to a morphism Σ→ X . �

5. CONDITION LSAP AND ITS FUNCTORIAL PROPERTIES

In this section, we study a property of a complex manifold, called the local spray
approximation property (abbreviated LSAP), which was introduced by Alarcón and Forstnerič
[2, Definition 7.11]. This property implies that the manifold is Oka-1. We prove some new
functorial properties of the class of LSAP manifolds (see Proposition 5.5 and Corollary 5.6),
thereby extending the class of Oka-1 manifolds.

Definition 5.1. A pair of compact topological discs D ⊂ D′ ⊂ C is a special pair if both
discs have piecewise smooth boundaries andD′\D̊ is a disc attached toD along an arc in bD.

A holomorphic map F : D × BN → X to a complex manifold X is called a holomorphic
spray of maps D → X with the core f = F (· , 0). Such a spray is said to be dominating if the

partial derivative
∂

∂t

∣∣∣∣
t=0

F (z, t) : CN → Tf(z)X is surjective for all z ∈ D.

Definition 5.2 (Definition 7.11 in [2]). A complex manifold X has the local spray
approximation property, LSAP, at a point x ∈ X if there is a neighbourhood V ⊂ X of
x satisfying the following condition. Given a special pair of compact discs D ⊂ D′ ⊂ C and
a holomorphic spray F : D × BN → V , there is a number r = r(F ) ∈ (0, 1) such that F
can be approximated uniformly on D × rBN by holomorphic sprays D′ × rBN → X . The
manifold X has LSAP, or is an LSAP manifold, if this holds for every x ∈ X .

Remark 5.3. The sprays in Definition 5.2 can either be defined over unspecified open
neighbourhoods of the compact disc D, or else they could be continuous over D and
holomorphic over its interior D̊. The application of this condition in the proofs of Propositions
5.4 and 5.5 works in both cases, since the technique of gluing sprays on Cartan pairs works
in both cases (see [12, Sect. 5.9]). As noted in [2, Remark 7.12], LSAP is equivalent to the
ostensibly weaker condition that every dominating holomorphic spray F : D × BN → V can
be approximated by sprays on a given bigger disc D′ ⊃ D as in Definition 5.2.

It is obvious that Cn is an LSAP manifold. We recall the following results concerning the
relationship between LSAP and Oka-1; see [2, Proposition 7.13].

Proposition 5.4. (a) If a complex manifold X satisfies LSAP at every point x ∈ X \ E in
the complement of a closed subset E ⊂ X with H2 dimX−1(E) = 0, then X is an Oka-1
manifold. In particular, every LSAP manifold is an Oka-1 manifold.

(b) A complex manifold X which is densely dominable by LSAP manifolds is Oka-1.
(c) In particular, if f : X → Y is a surjective holomorphic submersion and X is an LSAP

manifold, then Y is an Oka-1 manifold.
(d) A holomorphic fibre bundle X → Y with an LSAP fibre is an Oka-1 map.

The condition in part (b) means that there is a closed subsetE ⊂ X satisfying the condition
H2 dimX−1(E) = 0 in part (a) such that for every point x ∈ X \ E, there exist an LSAP
manifold Y (possibly depending on x), a holomorphic map h : Y → X , and a point y ∈ Y
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such that h(y) = x and dhy : TyY → TxX is surjective. (In the proof of (b), it suffices to
assume that Y satisfies LSAP at y.) We say that X is strongly dominable by LSAP manifolds
if the above condition holds at every point x ∈ X .

We now show the following functorial properties of LSAP. Recall also that every LSAP
manifold is an Oka-1 manifold; see Proposition 5.4 (a).

Proposition 5.5. Let X and Y be complex manifolds.

(i) If X is strongly dominable by LSAP manifolds, then X is an LSAP manifold. In
particular, if Z is an LSAP manifold and Z → X is a surjective holomorphic
submersion, then X is an LSAP manifold.

(ii) If h : X → Y is a surjective Oka map and Y is an LSAP manifold, then X is an LSAP
manifold.

(iii) LSAP is a Hausdorff-local property, that is, if a complex manifold X is covered by sets
that are open in the Hausdorff topology and satisfy LSAP, then X satisfies LSAP.

Proof. The proof of (i) is similar to the proof of part (b) in Proposition 5.4; we include the
details since they were not given in [2].

Pick a point x ∈ X . By the hypothesis there are a holomorphic map h : Y → X and a
point y ∈ Y such that h(y) = x, h is submersive at y, and Y satisfies LSAP at y. Let U0 ⊂ Y

be a neighbourhood of y such that the condition in Definition 5.2 holds for sprays of discs
in Y with values in U0. Since h is a submersion at y, the implicit function theorem gives a
smaller neighbourhood U ⊂ U0 of y such that the restriction h : U → V := h(U) ⊂ X is
isomorphic to the projection U ∼= V × W → V by a fibre-preserving map, where W is a
neighbourhood of y in the fibre Z = h−1(x). In this local trivialization we write y = (x, z)

with z ∈ Z. Let D ⊂ D′ be a special pair of discs (see Definition 5.1) and F : D × BN → V

be a holomorphic spray. Let G = (F, z) : D × BN → U ∼= V ×W be the lifting of F with
the constant second component z. By the assumption, there is a number 0 < r < 1 such
that G can be approximated on D × rBN by holomorphic maps G̃ : D′ × rBN → Y . The
holomorphic map F̃ = h ◦ G̃ : D′ × rBN → X then approximates F on D × rBN . This
shows that X has LSAP at the point x. Since x was arbitrary, X has LSAP.

To prove (ii), fix a point x ∈ X and set y = h(x) ∈ Y . Choose a neighbourhood V ⊂ Y

of y such that the condition in Definition 5.2 holds for sprays of discs with values in V . Pick
a neighbourhood U ⊂ X of x such that h(U) ⊂ V . Let D ⊂ D′ ⊂ C be a special pair of
discs and F : D × BN → U be a holomorphic spray. By the assumption, there is a number
0 < r < 1 such that the spray G = h ◦ F : D × BN → V can be approximated on D × rBN

by holomorphic maps G̃ : D′× rBN → Y . Assuming that the approximation is close enough,
we see as in [16, proof of Theorem 3.15] that there is a holomorphic map F̃ : D× rBN → X

which is uniformly close to F on D× rBN and satisfies h ◦ F̃ = G̃, that is, F̃ is a lifting of G̃
on D× rBN with respect to the map h : X → Y . (The construction of F̃ uses a holomorphic
family of holomorphic retractions on the fibres of h, provided by [16, Lemma 3.16].) Since h
is a topological fibration, F̃ extends to a continuous lifting of G̃ on D′ × rBN . Finally, since
h : X → Y is an Oka map, we can approximate F̃ on D × rBN by holomorphic liftings
F ′ : D′ × rBN → X of G̃ : D′ × rBN → Y . This shows that X has LSAP at the point x.
Since x was arbitrary, we conclude that X is an LSAP manifold.
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Assertion (iii) is evident from the definition of LSAP and is also a consequence of (i). �

Since a holomorphic fibre bundle with Oka fibre is an Oka map, we have the following
corollary to Proposition 5.5.

Corollary 5.6. If X → Y is a holomorphic fibre bundle with Oka fibre, then X has LSAP if
and only if Y has LSAP. This holds in particular if X → Y is a holomorphic covering map.

Problem 5.7. Does the conclusion of Corollary 5.6 hold under the weaker assumption that
the fibre of X → Y is an LSAP manifold?
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[10] F. Forstnerič. The Oka principle for sections of subelliptic submersions. Math. Z., 241(3):527–551, 2002.
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