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We study the effect of regime switches on finite size Lyapunov exponents (FSLEs) in determining the error
growth rates and predictability of multiscale systems. We consider a dynamical system involving slow and
fast regimes and switches between them. The surprising result is that due to the presence of regimes the
error growth rate can be a non-monotonic function of initial error amplitude. In particular, troughs in the
large scales of FSLE spectra is shown to be a signature of slow regimes, whereas fast regimes are shown
to cause large peaks in the spectra where error growth rates far exceed those estimated from the maximal
Lyapunov exponent. We present analytical results explaining these signatures and corroborate them with
numerical simulations. We show further that these peaks disappear in stochastic parametrizations of the fast
chaotic processes, and the associated FSLE spectra reveal that large scale predictability properties of the full
deterministic model are well approximated whereas small scale features are not properly resolved.
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The atmosphere and the climate system are in-

herently complex multiscale systems with pro-

cesses spanning spatial scales from millimetres

to thousands of kilometres, and temporal scales

from seconds to millennia. It is a formidable chal-

lenge to find consistent and effective reduced dy-

namical equations for the “slow” and “large” de-

grees of freedom with predictive power. An im-

portant question is how to measure the radius of

predictability in such a multiscale system. One

such measure is the maximal Lyapunov exponent

λmax. A generic situation is that the fast degrees

are strongly chaotic, causing the Lyapunov expo-

nent of the whole system to be large, indicating

poor predictability. However, the large scale slow

behaviour can still be forecast with reasonable ac-

curacy for times much longer than O(1/λmax); for
example, weather can be forecast on time scales

above those expected from small-scale instabili-

ties such as convection25. This is usually due to

the small-scale instabilities growing faster but be-

coming nonlinearly saturated at a much smaller

level than large scale instabilities.

I. INTRODUCTION

In a series of papers Aurell et al. 1 and Boffetta et al. 2,3

introduced the Finite Size Lyapunov Exponent (FSLE) to
extend the idea of measuring the divergence of nearby
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trajectories to resolve predictability measures for pro-
cesses developing on various scales. FSLEs have been
successfully used in recent years to study mixing and
transport problems in lakes21 and ocean currents19, and
to study meso-scale and sub-mesoscale filamentary pro-
cesses in the surface circulation12,13,35.
The study of error growth rates has also led

independently37,38 to the development of breeding vectors
to produce optimal perturbations for ensemble forecast-
ing. The average growth rate of these vectors is closely re-
lated to the FSLE4,32. Besides studying predictability6,9

optimal finite-size perturbations have been used in en-
semble forecasting37,38 and data assimilation20 where
they should represent the directions of growing analy-
sis errors, which are again scale dependent. Hence, the
question of how error growth rates depend on initial error
amplitude is integral to the generation of perturbation
ensembles for ensemble forecasting and data assimilation.
The particular aspect we address here is how to inter-

pret the FSLE spectrum in a multiscale dynamical sys-
tem which involves abrupt switches between regimes. We
study a system which involves both slow and fast regimes.
The meaning of “slow” depends on the context; synop-
tic weather systems such as high and low pressure fields
are slow when compared to gravity waves, the buoyancy
oscillations of stratification surfaces of the atmosphere.
However, weather itself is fast when it comes to climate
modelling in coupled ocean-atmosphere models, where
the ocean evolves on a much slower time scale than the
atmosphere.
Slow weather regimes have long been associated with

climate. In the atmosphere they can be associated with
zonal and blocked flows dominating weather on time
scales up to several weeks8,24. Atmospheric slow regimes
are responsible for low-frequency variability of planetary
scale dynamics5,27, the Arctic Oscillation and North-
Atlantic Oscillation (NAO), the dominant pattern of at-
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mospheric variability over the Atlantic22. In the ocean
slow regimes have been associated with low-frequency
variability of the thermohaline circulation and ENSO10.
On paleoclimatic scales slow regimes distinguish glacial
and interglacial periods11,23.
Fast regimes have recently been considered to be

highly relevant for atmospheric and climatic variabil-
ity, and may determine predictability of dominant slower
processes. For example, synoptic weather events such
as Rossby-wave breaking and high-latitude blocking
episodes with life times of 5-10 days are important for the
NAO and may give rise to its low-frequency variability
on interannual and longer time scales17,41. Similarly, the
ENSO variability on time scales of seasons to years can be
produced or maintained by faster subseasonal long-lived
transient westerly wind bursts and the Madden-Julian
Oscillation with life times of 30-90 days14,34,42. On the
mesoscale, fast mesovortices with life times of a few hours
can dampen the intensification of hurricanes by mixing
heat and momentum30.
We investigate a low-dimensional toy model describ-

ing one slow metastable degree of freedom coupled to
a fast chaotic system. To study the influence of fast
regimes, the slow variable will be coupled to two types
of fast dynamics, the Lorenz-63 system which involves
regimes and the Rössler system which does not. The
deterministic system under consideration is amenable to
stochastic singular perturbation theory (for both types of
fast dynamics) which allows us to effectively describe the
slow dynamics in a dimension-reduced stochastic model,
which supports the same slow regimes. We will show that
the presence of slow metastable states causes the FSLE
spectrum to have a pronounced trough at large scales.
Fast regimes, on the other hand, may cause the FSLE
spectrum to exhibit large peaks. We develop a quantita-
tive theory which explains both phenomena.
The paper is organized as follows. In Section II we

briefly introduce the FSLE. The toy model under con-
sideration is introduced in Section III. Numerically ob-
tained FSLE spectra of the model are presented in Sec-
tion IV. The signatures of slow metastable states on the
FSLE spectra is explained analytically in Section VA
using the multimodal probability density function of the
slow variables. The signature of fast regimes on the FSLE
spectra is quantitatively explained by means of a heuris-
tic argument in Section VB. We conclude with a discus-
sion in Section VI.

II. FINITE SIZE LYAPUNOV EXPONENTS

The finite size Lyapunov exponent (FSLE) introduced
by Aurell et al. 1 and Boffetta et al. 2,3 measures the
growth rate of a perturbation of finite size δ. The FSLE
λ(δ) is defined as

λ(δ) =

〈

1

Tr(δ)

〉

µ

ln r =
1

〈Tr(δ)〉ens
ln r , (1)

where Tr(δ) is the time taken for a perturbation of size
δ to grow by an amplification factor r, which we take to
be r = 1.1 throughout. The first average < · >µ is taken
over the invariant measure of the dynamics which is ap-
proximated by the ensemble average < · >ens over many
realizations. To compute the FSLE spectrum, i.e. λ as
a function of δ, numerically, two trajectories are created
starting with an initial separation δ0, and the separation
δ is measured as the trajectories diverge over time. The
perturbations δ are assumed to be already aligned with
the most unstable direction, which is guaranteed by ini-
tializing each realization with a sufficiently small initial
perturbation size δ0. Note that the small-scale FSLE
with δ → 0 corresponds to the maximal Lyapunov expo-
nent λmax.

III. THE MODEL

We study multiscale systems of the form

dx

dt
= ax(b2 − x2) +

1

ε
f(y) (2)

dy

dt
=

1

ε2
g(y) , (3)

in which a slow degree of freedom x ∈ R describes an
overdamped degree of freedom in a double-well potential

V (x) = a
x4

4
− ab2

x2

2
, (4)

which is driven by a fast chaotic process y ∈ R
3. The

parameter b controls the location of the slow metastable
states near x∗ = ±b and their separation 2b. The height
of the potential barrier ∆V (x) = ab4/4 is controlled
by both a and b. Unless otherwise specified, we set
a = b = 1, and ε2 = 0.01.

We consider three cases: where the fast subsystem
is given by A.) the chaotic Lorenz-63 system, B.) the
chaotic Rössler system and C.) a reduced stochastic sys-
tem which we derive to describe the statistics of the ef-
fective slow dynamics only. The slow x-dynamics sup-
ports slow metastable states near x∗ = ±b in all three
cases. However, only the Lorenz-63 system supports fast
regimes.

Figure 1 shows a sample trajectory of the slow variable
x for the Lorenz-driven system (see (5)–(8) below) which
clearly shows how the fast chaotic process causes the
slow variable to switch between regimes centred around
x⋆ = ±1. Simulations of the Rössler-driven system and of
the reduced stochastic system exhibit qualitatively simi-
lar behaviour.
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FIG. 1. Sample trajectory of the metastable slow variable x
calculated from the system (5)-(8).

A. Fast Lorenz-63 subsystem with regimes

We consider the multiscale model (2)-(3) when the slow
dynamics is driven by a fast Lorenz-63 subsystem

dx

dt
= x− x3 +

k

ε
y2 (5)

dy1
dt

=
10

ε2
(y2 − y1) (6)

dy2
dt

=
1

ε2
(28y1 − y2 − y1y3) (7)

dy3
dt

=
1

ε2
(y1y2 −

8

3
y3) . (8)

This system was introduced by Givon et al. 16 and has
been further analyzed by Mitchell and Gottwald 29 . We
use here k = 4/90 which produces an autocorrelation
decay time of the slow variable τcorr ≈ 208 time units.
The maximal Lyapunov exponent is estimated as
λmax ≈ 97.4 and scales with ε2, the time scale of the
fast dynamics. This exemplifies the discrepancy between
large scale predictability as measured by τcorr and the
inverse of the maximal Lyapunov exponent.

The fast dynamics contains regimes consisting of
the two respective lobes of the butterfly attractor and
abrupt switches between them. We remark that strictly
the metastable states of the Lorenz-63 system do not
consist of the lobes of the butterfly attractor, but involve
parts of the attractor from both lobes, separated by
the stable manifold of the lowest period symmetric
unstable periodic orbit15. Here however, we use the
common terminology of regimes, meaning the lobes of
the butterfly attractor.

B. Fast Rössler subsystem with no regimes

Further, we consider the multiscale model (2)-(3) when
the slow dynamics is driven by a fast Rössler subsystem

dx

dt
= x− x3 +

k

ε
(y2 − ȳ2) (9)

dy1
dt

=
1

ε2
(−y2 − y3) (10)

dy2
dt

=
1

ε2
(y1 + 0.432y2) (11)

dy3
dt

=
1

ε2
(2 + y3(y1 − 4)) . (12)

Unlike the Lorenz-63 system, the fast Rössler system
has only one unstable fixed point and does not support
regimes. The coupling is chosen so that the forcing has
mean zero; the mean of the driving Rössler variable
was estimated as ȳ2 ≈ −0.939 from a long trajectory.
We chose the coupling parameter k = 0.525, which
corresponds to an autocorrelation decay time of the
slow variable τcorr ≈ 234 time units, comparable to that
calculated for the Lorenz-driven system. The maximal
Lyapunov exponent for the fast subsystem is measured
to be λmax = 10.12, scaling again with ε2.

C. Reduced homogenized stochastic slow dynamics

The multiscale system (2)-(3) can be reduced
using stochastic singular perturbation theory
(homogenization)28,31 in the case that the fast dy-
namics is mixing and the average of the slow vectorfield
f(y) over the ergodic measure induced by the fast
process vanishes. Ergodicity and the mixing property
have been rigorously proven for the chaotic Lorenz-63
system26,39, and numerical simulations suggest that
they exist for the Rössler system as well. The centering
condition of the vanishing average of the fast vectorfield
f(y) is automatically satisfied for the Lorenz-driven
system (5)-(8) since the average of y2 is zero, and by
construction for the Rössler-driven system (9)-(12) for
sufficiently accurate numerical estimates of the average
ȳ2.
In stochastic homogenization the fast chaotic degrees

of freedom are parametrized by a stochastic process, pro-
vided the fast processes decorrelate rapidly enough that
the slow variables experience the sum of uncorrelated fast
dynamics during one slow time unit. According to the
(weak) Central Limit Theorem this corresponds to ap-
proximate Gaussian noise. Applying homogenization the
following reduced stochastic model can be deduced for
the slow x-dynamics

dX

dt
= X(1−X2) + σ

dW

dt
(13)

with one-dimensional Wiener process dW , and where σ
is given by the integral of the autocorrelation function of
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the fast y2 variable with

σ2

2
= k2

∫

∞

0

{ lim
T→∞

1

T

∫ T

0

y2(s)y2(t+ s)ds} dt . (14)

In the case of the Lorenz-driven system (5)-(8) the
diffusion coefficient is estimated as σ2 = 0.113 from a
long-time trajectory, for which the decay time of the
autocorrelation function is τcorr ≈ 222 time units. For
details the reader is referred to Refs. 16 and 29.

Whereas the invariant ergodic probability density func-
tions can only be numerically estimated for the determin-
istic equations (5)-(8) and (9)-(12), it is readily analyt-
ically determined for the stochastic gradient Langevin
equation (13) as the unique stationary solution ρ̂(x) of
its associated Fokker-Planck equation

∂

∂t
ρ(x) =

∂

∂x

(

dV

dx
ρ

)

+
σ2

2

∂2

∂x2
ρ .

We find

ρ̂(x) =
1

Z
e−

2

σ2
V (x) with Z =

∫

∞

−∞

e−
2

σ2
V (x)dx ,

(15)

which is depicted in Figure 2.
In Figure 2 we show the empirical probability density

functions of the slow variable x from the Lorenz-driven
and Rössler-driven systems (5)-(8) and (9)-(12) obtained
from long-time numerical simulations, as well as the ex-
act density function (15) for the stochastic system (13)
with σ2 = 0.113. For this value of σ2 the stochastic re-
duced system approximates the statistics of the full dy-
namics of the Lorenz-driven system (5)-(8) very well29.
This is reflected in the close correspondence of the respec-
tive empirical density functions. The probability density
functions clearly show a bimodal structure indicative of
the (slow) metastable nature of the x-dynamics as al-
ready encountered in Figure 1. The Rössler-driven sys-
tem, however, exhibits a slight asymmetry of the empiri-
cal probability density function with one maximum larger
than the other. This is caused by the only approximate
numerical estimate of ȳ2. When numerically simulating
the equation for the slow degree of freedom (9) for the
slow degree of freedom of the Rössler driven system we
approximate the average of y2 and may write

dx

dt
= x− x3 +

k

ε
(ȳ2 − ŷ2) +

k

ε
(y2 − ȳ2) ,

where ŷ2 is the numerically estimated average of y2 and
ȳ2 the true average of y2. Provided α = ȳ2 − ŷ2 = O(ε)
the centering condition (i.e. the vanishing of the average
of the 1/ε-part of the slow vectorfield over the ergodic
measure induced by the fast dynamics) is satisfied. Hence
the corresponding reduced stochastic equation (13) is
modified by an additional small term α/ε. This term
modifies the potential to V (x) = ax4/4 − ab2x2/2 + αx
causing the slight asymmetry in the probability density
function as seen in Figure 2.
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FIG. 2. Empirical density function of the slow variable x
calculated from a long time simulation with T = 106 of the
system (2)-(3). Empirical density functions are shown for
the Lorenz-driven system (5)-(8) (continuous black line), for
the Rössler-driven system (9)-(12) (dashed line, online red)
and for the reduced stochastic system (13) with σ2 = 0.113
(crosses, online green).

IV. NON-MONOTONICITY OF FSLE SPECTRA FOR

SYSTEMS INVOLVING REGIMES: NUMERICAL

SIMULATIONS

We now numerically determine the FSLE spectra λ(δ)
using only data of the slow x-variable for our three cases;
(5)-(8) with slow and fast regimes, (9)-(12) with only
slow regimes and (13) with only slow regimes. In all
simulations we initialize the estimation with an initial
perturbation size of δ0 = 10−9 and average the FSLE
spectra over 5000 realizations.

Figure 3 shows the FSLE as a function of perturbation
size δ for the Lorenz-driven model (5)-(8). For small
values of the perturbation size δ we find the well
known plateau corresponding to the maximal Lyapunov
exponent which was estimated to be λmax ≈ 97.4 (for
ε2 = 0.01)1–3.
Surprisingly, the FSLE spectrum contains several peaks,
notably near δ = 0.0278 and δ = 0.0790, in stark
contrast to the behaviour reported in Refs. 1–3. Note
that the FSLE at the first peak is much larger than
the maximal Lyapunov exponent λmax suggesting a far
greater loss of predictability at those scales. Initial
error amplitudes of those sizes experience much stronger
growth than the eigendirections corresponding to the
maximal Lyapunov exponent.
Interestingly, for larger perturbations δ the large-scale
FSLE develops a minimum centred at approximately
δ = 1.1 with λLS ≈ 0.00428 as shown in the inset,
suggesting a large-scale predictability time scale of
around 234 time units. This is comparable to the decay
time of autocorrelation of the slow variable τcorr ≈ 208,
which is a measure for the transition times between the
slow regimes. Since the large scale FSLE measures the
predictability associated with transitions of the slow
variable from one slow metastable state near x⋆ = ±1
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FIG. 3. FSLE λ as a function of perturbation size δ for the
Lorenz-driven system (5-8) with slow and fast regimes. The
inset shows a zoom for large scale disturbances.

to the other, this suggests that the trough in the FSLE
spectrum is linked to the existence of slow regimes.
For values δ > 1.5 the perturbation size is comparable
to the range of the slow variable which is approximately
equal to 2.8, rendering the FSLE meaningless.

Figure 4 shows the FSLE spectrum for the Rössler-
driven system (9)-(12). As in Figure 3, the spectrum
exhibits a plateau at small scales corresponding to
the maximal Lyapunov exponent λmax ≈ 10.1. Most
notably for the Rössler-driven system which does not
support regimes, the large peaks at small perturbation
amplitudes δ that we observed for the Lorenz-driven
system are absent. Since the small scale FSLEs describe
fluctuations within each of the slow metastable states,
this suggests that peaks in the FSLE spectrum are
suggestive of fast regimes.
As shown in the inset, for larger perturbations δ the
FSLE monotonically decreases to reach a lower plateau
with the large scale FSLE λLS ≈ 0.00227 at the mini-
mum at δ ≈ 1.25, suggesting a large-scale predictability
time scale of around 440 time units. Here 1/λLS is not
close to τcorr ≈ 234. This is again due to the inevitable
inaccurate estimation of the mean ȳ2 which leads to
an asymmetric probability density for x as seen in
Figure 2. Hence the trajectory resides longer in one well,
thereby increasing the large scale predictability time;
the autocorrelation time τcorr, however, is measured
for lag times much smaller than the mean residence time.

Figure 5 shows the FSLE spectrum for the stochastic
model (13) with σ2 = 0.113, which best approximates29

the full dynamics of the Lorenz-driven system (5)-(8).
For small δ, the FSLEs of the stochastic system do not
reproduce the values for their parent systems, and we
observe no small-scale plateau in the spectrum. This
is expected as the maximal Lyapunov exponent λmax

is not defined for the stochastic system. However, at
large scales δ (depicted in the inset) we find a minimum
of the FSLE spectrum at δ ≈ 1.1 with λLS = 0.00485
for σ2 = 0.113. This gives a large scale predictability
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FIG. 4. FSLE λ as a function of perturbation size δ for the
model driven by the Rössler system (9)-(12) with slow regimes
but without fast metastable regimes. The inset shows a zoom
for large scale disturbances.
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FIG. 5. FSLE λ as a function of perturbation size δ for the
climate model (13) with σ2 = 0.113. The inset shows a zoom
for large scale disturbances.

time of 206 time units, close to that obtained for the full
parent model (5)-(8). As for the Rössler system there
are no large peaks in the FSLE spectrum.

From these numerical simulations we now formulate
our main hypothesis which we corroborate in the forth-
coming Section by quantitative analytical theory and fur-
ther simulations. We propose that the non-monotonicity
observed in the FSLE spectra is due to the presence of
regimes. In particular, large-scale troughs in the FSLE
spectrum are an indication of slow regimes whereas small-
scale peaks are caused by fast regimes.

V. NON-MONOTONICITY OF FSLE SPECTRA FOR

SYSTEMS INVOLVING REGIMES: THEORY

We now explain the numerical observations of the pre-
vious Section and relate them to the existence of slow and
fast regimes, respectively. The minima at large scales will
be explained by calculating most likely trajectory sepa-
rations supported by a bimodal probability density func-
tion. The large peaks at small scales will be explained
by a simple heuristic argument involving rapid switches
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of the fast dynamics between lobes of the Lorenz attrac-
tor. We denote the perturbation size corresponding to
the minimum of the FSLE spectrum associated with slow
regimes by δS. Similarly, we denote by δF the perturba-
tion size corresponding to the peaks associated with fast
regimes.

A. FSLE spectra for slow regimes

The observed minimum of the FSLE spectrum λ(δ)
at large scales can be understood by considering the bi-
modal probability density function of the slow variables.
Before deriving an analytic expression for the large scale
perturbation size δS, we give a heuristic argument why a
minimum in the FSLE spectrum occurs for multimodal
probability density functions. As seen in Figure 2, each
of the two maxima in the probability density function
has a characteristic width of roughly 1.25. Perturbations
larger than this size therefore likely correspond to a
pair of trajectories with members residing in opposite
wells of the potential V (x). Perturbations smaller than
this size likely correspond to a pair of trajectories with
members residing in the same potential well. Hence
there should exist a separation δS with associated error
growth rate λLS such that perturbations smaller than δS
will separate slower, being pulled towards their mutual
potential minimum, and perturbations slightly larger
will separate quicker as they are pulled towards their
respective closest potential minima.

We quantify this phenomenological argument by esti-
mating the most likely configurations of pairs of trajec-
tories which are separated by δ. We denote the values of
the slow variable x of a pair of trajectories by ξ and η. Let
p(ξ, η) be the joint probability function for two trajecto-
ries which were initially separated by δ0 to assume state
values ξ and η respectively. The state values of the pair
of trajectories ξ and η are then random variables drawn
from this joint probability p(ξ, η). For sufficiently large
separations the two trajectories will have decorrelated
and we can treat ξ and η as statistically independent,
and approximate p(ξ, η) = p(ξ)p(η). We have numeri-
cally verified this assumption for sufficiently large δ. We
perform the expectation value analytically utilizing the
reduced stochastic model (13) and its invariant density
(15) and set p(x) = ρ̂(x). This is justified by the the-
orems which underpin stochastic homogenization28,31 as
well as our numerical observations (cf. Figure 2) which
state that the statistics of the full deterministic system
converges to the statistics of the reduced stochastic sys-
tem for ε → 0.

The expectation value Ξ of a location ξ conditioned on

all possible pairs which are separated by δ is given by

Ξ(δ) =
1

Z

∫

∞

0

∫

∞

0

dξdη ξ p(ξ, η)δ(|ξ − η| − δ)

≈ 1

Z

∫

∞

0

dξ ξ ρ̂(ξ) (ρ̂(ξ + δ) + ρ̂(ξ − δ)) , (16)

where Z is the normalization constant, and the bold-face
δ denotes the Dirac δ-function. We only consider positive
values of ξ, justified by the symmetry of our problem. As
approximations we assumed statistical independence of ξ
and η, and ignored the conditioning of the expectation
value on the initial separation δ0.
In the case of a bimodal probability density function,

Ξ(δ) will decrease initially with increasing separation δ
allowing the pair of trajectories (ξ, η) to arrange them-
selves within one of the two potential wells. For suffi-
ciently large separations δ, however, Ξ will increase lin-
early with δ and the two trajectories will be in opposite
wells. The curve of Ξ(δ) obtains its minimum when δ ≈ b.
The functional form of the asymptotic linear behaviour

of the expectation value Ξ(δ) for large b can be deter-
mined by expanding the probability density function ρ̂(x)
around the maxima at x⋆ = ±1 with

ρ̂(x) ∼ exp

(

−2ab2(x− b)2

σ2

)

+ exp

(

−2ab2(x+ b)2

σ2

)

.

Upon inserting this approximation into (16) a lengthy
but straightforward calculation yields the asymptotic be-
haviour Ξ(δ) → δ/2 in the limit of large perturbation
sizes δ → ∞.
Following our heuristic argument from above we may

define the large-scale error perturbation δS corresponding
to maximal predictability as the value for which Ξ(δ)
assumes its (unique) minimum. However, we find better
numerical agreement if we estimate δS as the value of
δ for which Ξ(δ) is sufficiently close to its asymptotic
behaviour, i.e. δS solves

Ξ(δS)− δS/2

Ξ(δS)
= θ , (17)

where we chose θ = 0.01. The two definitions become
indistinguishable for large values of b.
To test our analytical prediction we now vary the

parameters a and b of the potential V (x) in (4), which
measure the height of the potential well and separation
of the potential minima. In Figure 6 we show a compar-
ison between δS as calculated from estimating the FSLE
spectra using numerical simulations of the dynamics
of the Lorenz-driven system (5)-(8) and our analytical
prediction (17), showing good agreement. Note that the
behaviour is almost linear (however, b not only affects
the distance between the minima at x⋆ ± 1 but also
the potential well height). Linear scaling with b can be
achieved if we scale the coupling k with b according to
k → b2

√
ak, such that the probability density function

ρ̂ is invariant upon scaling x → bx (cf. (15) with the
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ration b of the potential minima of V (x) for fixed values of
a = 1 and k = 4/90. The crosses denote values obtained
by averaging 20000 simulations of the Lorenz-driven system
(5)-(8); the dashed line is our analytical prediction (17).
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FIG. 7. As in Figure 6, but with k = (4/90)b2.

definition of σ2 in (14)), as illustrated in Figure 7. We
have tested that δS is insensitive to i) varying a for
fixed b and also to ii) varying the coupling k for fixed b,
consistent with our formula (17) (not shown).

Hence, slow regimes and fast transitions between them
cause the FSLE spectrum to exhibit a distinct minimum
at large error perturbation sizes, with error growth rate
related to the average residence time in each potential
well (or decay rate of the autocorrelation time).

B. FSLE spectra for fast regimes

We now present a simple heuristic argument explain-
ing the observed peaks in the FSLE spectrum λ(δ) for
the Lorenz-driven system (5)-(8). We link these to the
presence of regimes in the fast process and the switch-
ing of the fast dynamics between the two lobes of the
butterfly attractor. Figure 8 depicts the slow x and fast
y2 variables of two typical trajectories which are used
to calculate the FSLE. The slow variable x evolves in
a step-like fashion with step size ∆x. Separations be-
tween nearby trajectories therefore occur in “units” of
∆x. Separations of δ = m∆x can only occur when the
y2 components of each trajectory are on opposite lobes
of the Lorenz attractor. We measured the period of one

(fast) revolution around a lobe of the Lorenz attractor to
be Tf ≈ 0.00691. Integrating the slow dynamics (5) over
one fast period Tf within a lobe and assuming that no
transitions between slow metastable states at x∗ = ±1
occur so that

∫ Tf

0 x(t)(1 − x2(t))dt = 0, we can approxi-
mate the step size ∆x by

∆x =
k

ε
Tf 〈|y2|〉t ,

where 〈|y2|〉t = 1
Tf

∫ Tf

0 |y2|dt. Hence we estimate

δF = |∆x| ∼ k

ε
. (18)

We numerically obtain 〈|y2|〉t ≈ 10 as the average value
of |y2| in each of the fast regimes, i.e. the lobes of the
butterfly attractor. For our parameters with ε2 = 0.01
and k = 4/90, this yields a step size of ∆x ≈ 0.0307
which corresponds reasonably well with the observed lo-
cation of the first peak in the FSLE spectrum in Fig-
ure 3 at δF = 0.0278. The location of the second peak at
δF = 0.0790 is roughly approximated by 2∆x = 0.0614
according to the above argument. The corresponding
FSLEs λ(δ) can be estimated as follows. We assume
that the separation of slow x trajectories over short times
t = O(Tf ) is approximately linear, and the initial sepa-
ration δ of trajectories prior to taking a “step” in oppo-
site directions is small. We define the times tm and trm
it takes for trajectories to separate by m∆x and rm∆x
respectively. Assuming trajectories initially are infinites-
imally separated and subsequently move apart at a con-
stant rate of 2∆x/Tf = m∆x/tm = rm∆x/trm (where
2∆x is the separation of trajectories after one step taken
in opposite directions, see Figure 8), the time Tr(m∆x)
taken for a perturbation of size m∆x to grow to size
rm∆x is

Tr(m∆x) = trm − tm =
m(r − 1)Tf

2
,

and so we can approximate the FSLE for the mth sepa-
ration m∆x using (1) as

λ(m∆x) =
2 ln(r)

m(r − 1)Tf

.

For r = 1.1 we find λ(∆x) = 276 and λ(2∆x) = 138,
which, given the crude approximations, provide a
reasonable estimate of the numerically observed peaks
λ(0.0278) = 394 and λ(0.0790) = 104 in Figure 3.

According to our analytical expression for the location
of the peaks (18), δF scales linearly with the coupling
parameter k. This is confirmed in Figure 9 where we show
δF as a function of k obtained from numerical simulations
of the Lorenz-driven system (5)-(8). We have checked
(not shown) that δF is insensitive to changes in a and b
for fixed k which would only affect the slow regimes.
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FIG. 8. Two trajectories obtained from integrating the
Lorenz-driven system (5)-(8) from nearby initial conditions
with separation 10−3, showing short time dynamics of the
slow x variable, and how increments correlate with switches
between regimes of the y2-component of the Lorenz-63 sub-
system, corresponding to the lobes of the butterfly attractor.
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FIG. 9. Perturbation size δF associated with peaks in the
FSLE spectrum as a function of the coupling k obtained from
simulations of the Lorenz-driven system (5)-(8). The crosses
denote the locations of the first peak, the circles denote the
location of the second peak (cf. Figure 3); the dashed lines
are our analytical predictions (18).

VI. DISCUSSION

We have studied the dependency of error growth rates
on the amplitude of the initial error for a multiscale
toy model with slow metastable states and fast regimes
by calculating the finite size Lyapunov exponents. We
found that the error growth rates can be a highly
non-monotonic function of the initial error size in the
presence of regimes. In particular we found that slow
regimes produce minima in the FSLE spectrum at large
scales, indicating enhanced predictability. On the other
hand, fast regimes in the dynamics produce regions of
rapid divergence of trajectories of the slow degrees of
freedom, indicating poor predictability at those scales.
This loss in predictability is found to be far greater than
expected from the maximal Lyapunov exponent. In
the context of ensemble generation, either for ensemble
forecasts or for data assimilation, this means that there
are initial perturbation sizes which may experience
stronger amplification than infinitesimal perturbations
along the most unstable eigendirections corresponding
to the maximal Lyapunov exponent. Simple analytical
arguments were employed to calculate the respective

predictability times and critical perturbation sizes.
Stochastic parametrizations of the fast processes do not
exhibit peaks in the FSLE spectrum but as effective
models of the slow dynamics share the large-scale
minima of the FSLE spectrum. The sensitivity of error
growth rate in the presence of regimes suggests caution
is required when generating ensembles for forecasts
or when assimilating data on systems with regimes.
It is pertinent to mention that the signatures in the
FSLE spectrum of slow and fast regimes occur only if
perturbations are taken of the slow variables only; if one
were to measure perturbations over all variables or of
only the fast variables, the FSLE spectrum would be
dominated by the strongly chaotic behaviour of the fast
variables without any large-scale troughs or large peaks.

Non-monotonous behaviour of the FSLE has been
previously reported7,36. Discrete maps involving singular
derivatives such as the circle map are simple examples
where finite size perturbations can grow faster than
infinitesimal perturbations. Here we discussed the
occurrence of narrow well-defined peaks, caused by the
fast dynamics switching regimes. We note that such
behaviour was not seen by Boffetta et al. 2 , where a
system of nonlinearly coupled fast and slow Lorenz-63
systems was studied. This is entirely due to the nature
of the coupling used for which the fast dynamics does
not induce rapid variations in the slow dynamics; we
have checked that for linear skew coupling large peaks
in the FSLE spectrum are again observed. Linearly
coupled Lorenz-63 systems were for example used to
model ENSO events32. However, the example of Boffetta
et al. 2 shows that the existence of fast regimes is not suf-
ficient for the occurrence of peaks in the FSLE spectrum.

Multimodal probability density functions are not nec-
essary for the existence of metastable regimes27,40. Bof-
fetta et al. 2 found a minimum in the FSLE spectrum
for a coupled map system which has a unimodal prob-
ability density function but dynamics which consists of
laminar phases interrupted by intermittent large ampli-
tude bursts. This is in accordance with our reasoning
of a critical perturbation size above which the dynamics
dramatically increases sensitivity. Further work is re-
quired to determine how well our arguments transfer to
unimodal probability density functions.

We remark that our numerical results were performed
by estimating the FSLE spectra using the algorithm pro-
posed by Aurell et al. 1 and Boffetta et al. 2 . Our an-
alytical results, however, do not employ the particular
method used to calculate the FSLEs, and we expect the
observed non-monotonous behaviour of the FSLE due to
slow and fast regimes to hold when other algorithms4

are used to estimate the FSLEs. We further remark
that for higher dimensional slow subspaces the choice of
norm used to measure separations and to normalize bred
vectors was shown to significantly alter their statistical
properties18,33. Again, the generality of the arguments
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used here suggests that the choice of norm will not al-
ter the occurrence of the non-monotonicity of the growth
rates. This is planned for further research.
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cussions on the North Atlantic Oscillation, and Jeffrey
Kepert for pointing us to the work of Nguyen et al. 30 .
GAG acknowledges support from the Australian Re-
search Council. LM acknowledges support from an Aus-
tralian Postgraduate Award, and the University of Ver-
mont Advanced Computing Centre.

1Aurell, E., Boffetta, G., Crisanti, A., Paladin, G., and Vulpiani,
A. (1997). Predictability in the large: An extension of the concept
of Lyapunov exponent. Journal of Physics A: Mathematical and

General , 30(1), 1–26.
2Boffetta, G., Giuliani, P., Paladin, G., and Vulpiani, A. (1998a).
An extension of the Lyapunov analysis for the predictability
problem. Journal of the Atmospheric Sciences, 55(23), 3409
– 3416.

3Boffetta, G., Crisanti, A., Paparella, F., Provenzale, A., and
Vulpiani, A. (1998b). Slow and fast dynamics in coupled systems:
A time series analysis view. Physica D , 116(3-4), 301–312.

4Boffetta, G., Cencini, M., Falcioni, M., and Vulpiani, A. (2002).
Predictability: a way to characterize complexity. Physics Re-

ports, 356(6), 367 – 474.
5Branstator, G. and Berner, J. (2005). Linear and nonlinear sig-
natures in the planetary wave dynamics of an AGCM: Phase
space tendencies. Journal of the Atmospheric Sciences, 62(1),
1792–1811.

6Cai, M., Kalnay, E., and Toth, Z. (2003). Bred vectors of the
Zebiak-Cane model and their potential application to enso pre-
diction. Journal of Climate, 16, 40–56.

7Cencini, M. and Torcini, A. (2002). Linear and nonlinear infor-
mation flow in spatially extended systems. Physical Review E ,
63(5), 056201.

8Charney, J. G. and De Vore, J. G. (1979). Multiple Flow Equilib-
ria in the Atmosphere and Blocking. Journal of the Atmospheric

Sciences, 36(7), 1205–1216.
9Deremble, B., D’Andrea, F., and Ghil, M. (2009). Fixed
points, stable manifolds, weather regimes, and their predictabil-
ity. Chaos, 19, 043109.

10Dijkstra, H. (2005). Nonlinear Physical Oceanography: A Dy-

namical Systems Approach to the Large Scale Ocean Circulation

and El Niño. Springer, 2nd edition.
11Ditlevsen, P. D. (1999). Observation of α-stable noise induced
millennial climate changes from an ice-core record. Geophysical

Research Letters, 26(10), 1441–1444.
12D‘Ovidio, F., Fernández, V., Hernández-Garćıa, E., and López,
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