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We propose a method to account for model error due to unresolved scales in the context
of the ensemble transform Kalman filter (ETKF). The approach extends to this class of
algorithms the deterministic model error formulation recently explored for variational
schemes and extended Kalman filter. The model error statistic required in the analysis
update is estimated using historical reanalysis increments and a suitable model error
evolution law. Two different versions of the method are described; a time-constant model
error treatment where the same model error statistical description is time-invariant, and a
time-varying treatment where the assumed model error statistics is randomly sampled at
each analysis step. We compare both methods with the standard method of dealing with
model error through inflation and localization, and illustrate our results with numerical
simulations on a low-order nonlinear system exhibiting chaotic dynamics. The results
show that the filter skill is significantly improved through the proposed model error
treatments, and that both methods require far less parameter tuning than the standard
approach. Furthermore, the proposed approach is simple to implement within a pre-existing
ensemble-based scheme. The general implications for the use of the proposed approach in
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the framework of square-root filters such as the ETKF are also discussed.
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1. Introduction

A fundamental concern within all data assimilation schemes is the
treatment of model error, which can arise from, amongst other
sources, the impossibility of characterizing phenomena at all
scales of motion. It is inevitable that there will be some processes
which remain unresolved in any numerical environmental model,
making the problem of model error of fundamental importance.

Representing model error within data assimilation is an
important consideration within modern-day operational data
assimilation algorithms, and there has appeared in recent years
a significant body of work dedicated to this problem. The state
augmentation method (Jazwinski, 1970) was primarily introduced
in the context of Kalman filtering. In this method, the state
estimation problem is formulated in terms of an augmented
state vector which includes, along with the state estimate, a set
of parameters used for the model error representation. This
approach has been applied successfully in both Kalman filter-like
and variational assimilation methods (Zupanski, 1997; Nichols,
2003; Zupanski and Zupanski, 2006). Dee and Da Silva (1998)
proposed an algorithm to estimate and remove the biases in the
background field in a data assimilation system due to additive
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systematic model errors. This method was implemented for
the bias correction of the humidity analysis component of the
Goddard Earth Observing System (GEOS) assimilation system
(Dee and Todling, 2000) and more recently in the context
of the European Centre for Medium-range Weather Forecasts
(ECMWF) ocean data assimilation (Balmaseda et al., 2007).
A key ingredient of the state augmentation technique is the
definition of a ‘model’ for the model error (e.g. Nichols, 2003).
Recently Zupanski and Zupanski (2006) have described the model
error evolution using a first-order Markov process. A similar
assumption was already used in Daley (1992) to investigate the
impact of time-correlated model errors in Kalman filtering. In
Dee (2005), the model bias was modelled based on unknown
bias parameters to be determined and on the use of analysis
increments; these latter are also used here as explained in
Section 4.

In ensemble-based data assimilation procedures, Houtekamer
et al. (2009) examine both isotropic and stochastic model
error representations within an operational numerical weather
prediction (NWP) system, while Charron et al. (2010) study
stochastic methods within the same system. One of the most
direct methods to account for model error in ensemble filtering is
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through tuning the inflation and localization parameters. These
parameters, which were originally introduced to ameliorate the
covariance underestimation (Anderson and Anderson, 1999)
and spurious long-range correlations (Houtekamer and Mitchell,
1998; Hamill, 2001) associated with finite ensemble size effects,
nonetheless allow the user some freedom to compensate for other
sources of error including model error. Covariance inflation
in particular can be useful for achieving this aim, as it has
the effect of decreasing the amount by which the analysis
‘trusts’ the model forecast relative to the observations. Of
course this parameter requires empirical tuning, which may be
computationally expensive. Regardless, inflation has been shown
to be an effective approach for dealing with model error in
operational models (Deng et al., 2011; Raynaud et al., 2012).

We propose a deterministic approach to the model error
problem in ensemble data assimilation, inspired by previous
works on model error treatment for both variational (Carrassi
and Vannitsem, 2010) and sequential (Carrassi and Vannitsem,
2011) schemes. This method assumes that the model error is
a time-correlated process in order to derive expressions for the
model error bias and covariance, along with an approximated
dynamical law suitable for practical applications. The bias and
covariance are then approximated from an assumed database of
historical analysis increments.

Recognizing that there are many ways in which this information
about model error may be incorporated into the data assimilation
process, we investigate two ways in which we might implement
our model error treatment within an ensemble Kalman filter. The
first method treats model error as deterministic and constant in
time similar to Carrassi and Vannitsem (2011), while the second
allows for the model error correction to vary in time in a random
manner, but where the model noise is sampled from the model
error statistics derived using the deterministic hypothesis. The
latter approach leads to a randomly perturbed forecast model
somewhat analogous to stochastic climate models, which have
been shown to be beneficial in ensemble data assimilation schemes
(Harlim and Majda, 2008; Mitchell and Gottwald, 2012). The
proposed approaches are studied and compared in the framework
of the ensemble transform Kalman filter (ETKF; Bishop et al.,
2001), a prototype square-root filter (Tippett et al, 2003). The
implications of this choice for the performance of the model error
treatment are also discussed. The advantages and drawbacks
of the method in relation with standard inflation/localization
procedures for treating model error are highlighted with regards to
their implementation in a more realistic model and observational
scenario.

An outline of the remainder of the article is as follows:
in section 2 we formulate the problem of model error due
to unresolved scales as a time-correlated process, and derive
expressions for the model error bias and covariance in the short-
time regime. In section 3 we describe the ETKF, and discuss
strategies for dealing with model error in section 4. We present
numerical results applying these methods to a low-dimensional
nonlinear model with chaotic dynamics in section 5, and conclude
with a discussion of our results in section 6.

2. Problem formulation

Let the model at our disposal be represented as:

dx(t)
dt

= f(x, 1), (1)

where f is typically a nonlinear function, defined in RN and A is a
P-dimensional vector of parameters.

Model (1) is used to describe the evolution of a (unknown)
‘true’ dynamics or nature, whose evolution is assumed to be given
by the following coupled equations:

dx(t) -~ .~ dy(t) __~
X()zf(x,y,x), %=g(x,y,l), (2)
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whereXis a vector in RY, andyis defined in R" and may represent
scales that are present in the real world, but are neglected in model
(1); the unknown parameter A has dimension P’ different from
P. The true state is thus a vector of dimension N 4 L. While
the model state vector x and the variable X of the true dynamics
span the same phase space, the difference in the functions f and f
implies that they do not in general have the same attractor.

When using the model (1) to describe the evolution of X,
estimation error can arise from the uncertainty in the initial
conditions in the resolved scale (x(ty) # X(t;)) and from the
approximate description of the nature afforded by Eq. (1); we refer
to this type of error as model error. A number of different sources
of model error are present in environmental modelling. Typical
examples are those arising from the inadequate description of
some physical processes, numerical discretization and/or the
presence of scales in the actual dynamics that are unresolved
by the model. In this study, we focus on the latter and assume
furthermore that the model parameter A is perfectly known so
that A = A.

Following the approach outlined by Nicolis (2004), we derive
the evolution equations for the dominant moments, the mean
and covariance, of the estimation error §x = x — Xin the resolved
scale (i.e. in RY). The formal solutions of Egs (1) and (2) read
respectively:

x(t) = %o + / dr f(x(1), A), 3)
0

1) =% + / dr (1), 5(1), 1), ()
0

where xg = x(ty), and Xy = X(t;). By taking the difference
between Eqs (3) and (4), and averaging over an ensemble of
perturbations around the reference trajectory, we obtain the
evolution equation for the mean error, or bias:

(6x(0) = (5x0) + / dr (56(1), (5)
0

with §xg = x¢g — X and 8f(¢) = f(x(¢),A) — f(’i(t),’y\(t),’):).

With the hypothesis that the initial condition is unbiased,
(6x9) = 0, Eq. (5) gives the evolution equation of the bias due
to the model error, usually referred to as drift in the context
of climate prediction (Doblas-Reyes et al., 2013). The important
factor driving the drift is the difference between the true and
modelled velocity fields, (6f(7)). We treat this difference as being
correlated in time, and expand Eq. (5) in a Taylor time series
around fy = 0 up to the first non-trivial order. By assuming an
unbiased initial condition this expansion reads:

by = (8x(1)) ~ (8f(7)) 1. (6)

Equation (6) gives the evolution of the bias, by, the drift, in
the linear and short-time approximation and the subscript ‘m’
stands for model error-related bias.

Similarly, by taking the expectation of the external product of
the error anomalies §x — (8x) with themselves, we have:

P(1) =({8x(1)} {5x(1)}")

t T
= ((8x0) (5x0)T> + <(8xo) (/ dr 8f(t)> >
0

n <(ftdr 8f(r)) (6xO)T>
0
+</ ar f e’ (66(7) {5f<’/)}T>'
0 0

Equation (7) describes the time evolution of the estimation
error covariance in the resolved scale. The first term on the

(7)
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right-hand side, which does not depend on time, represents the
covariance of the initial error. The two following terms account
for the correlation between the error in the initial condition and
the model error, while the last term combines their effect on the
evolution of the estimation error covariance. Following a standard
hypothesis in most data assimilation procedures (Jazwinski,
1970), we assume that model and initial condition error do
not correlate with each other, so that the second and third terms
on the RHS of Eq. (7) are set to zero. By further assuming that
the resolved-scale initial condition error is zero, Eq. (7) becomes

P(t):</ dr/ de’ {8(1)} {Sf(r’)}T>.
0 0

Equation (8) represents the forecast-error covariance in a
deterministic process starting from perfect initial conditions but
in presence of error due to the unresolved scaley. The amplitude
and structure of this covariance depend on the dynamical
properties of the difference between the nature and model velocity
fields. Note that the hypothesis of perfect resolved-scale initial
conditions is only functional to our discussion in order to isolate
the contribution to forecast error related to the unresolved scale.
In realistic applications, §xy 7% 0 and the use of Eq. (8) requires
some tuning; in sections 4 and 5, we will discuss how to address
this issue by means of correctly weighting the corrections due to
model error. Furthermore, our assumption that initial condition
and model errors do not correlate is only valid for short times.
Over longer times the model error feeds into the state-estimation
error and its evolution begins to be dominated by the Lyapunov
modes so that model and initial-condition error become naturally
correlated. We investigate over what forecast windows the short-
time approximation is numerically reasonable in section 5.

Assuming as above that these differences are correlated in time,
we can expand Eq. (8) in a Taylor series up to the first non-trivial
order around the arbitrary initial time fy = 0, and obtain

(8)

P(t) ~ ({3£(0)) (8£(0))7) . (9)
Equation (9) describes the short-time evolution of the
estimation error covariance when the initial condition error
is uncorrelated with the model error. Note that, if the terms
f — f are delta-correlated, as in the case of uncorrelated model
error, the short-time evolution of P(t) is bound to be linear
instead of quadratic. This distinctive feature is relevant in data
assimilation applications where model error is often assumed
to be uncorrelated in time, a choice that can also reduce
the computational cost, particularly in the case of variational
assimilation (Tremolet, 2006; Carrassi and Vannitsem, 2010).

3. The ensemble transform Kalman filter (ETKF)

Let us assume that a set of M <N noisy observations of the
resolved scale, X, is available at the regularly spaced discrete times
tj =ty + jt, j = 1,2..., with T being the assimilation interval.
The observations are stored as components of an M-dimensional
observation vector y°, so that:

Y =y = HE) + €, (10)
where ’)EJ =§(tj) and €° is the observation error, assumed to
be Gaussian, uncorrelated in time, and with known covariance
matrix R. H is the (possibly nonlinear) observation operator
which maps the model solution to the observation space,
and may involve spatial interpolations (or spectral to physical
space transformation in the case of spectral models) as well as
transformations based on physical laws for indirect measurements
(Kalnay, 2002). To simplify notation, the time dependency is
removed hereafter from all vectors and matrices, which are then
assumed to be evaluated at the same arbitrary time unless specified
differently.

(© 2014 Royal Meteorological Society

In ensemble Kalman filters (EnKFs), an ensemble with k
members X
X = [x1,X, ..., %] € RV*K
is propagated by the full nonlinear model dynamics (Eq. (1))
according to

dXx

- = £(X)=[f(x), f(x2), . . ., f(x)] € RNV*K

f(X), (11)

to produce a forecast ensemble Xf; all members evolve using the
same A. This ensemble is split into its mean

1

1 1
xf:%fozxfw with w = EeeRk,
i=1

wheree = [1,...,1]" € R, and ensemble deviation matrix

x" =xf —xfe! = XU, (12)

with
U=1I —we' € R™F

being the constant projection matrix and Iy € R¥¥ the identity
matrix. The defining characteristic of the EnKF (Evensen, 2009)
is that the sample covariance of the ensemble deviation matrix
X is used to approximate the forecast-error covariance matrix:

pf — ;Xf/ [Xf’]T e RNXN (13)
k—1

This shows the computational advantage of using the EnKF;
instead of storingthe N x N covariance matrix Pf, one can instead
store the N' x k ensemble perturbation matrix X', resulting in a
significant computational saving for k < N. Note however that
Pf is rank-deficient for k < Nj this is the typical situation in
NWP, where N is of the order of 10° and k is of the order of 102.
This often leads to the problem of covariance underestimation,
as the small number of ensemble members insufficiently capture
the large number of degrees of freedom of the actual error.

The analysis mean x* which minimizes the cost function

J) =%<xf — TP —x)

£ - HEIR Y~ HE) ()
is
x' =x' +K(y° — HX), (15)
where
K =PHT (HP'H' +R) ', (16)

is the Kalman gain matrix or optimal (in the sense of a minimum
variance estimate) weight matrix for the observations. The analysis
error covariance matrix can be found as
P* = (Iy — KH) P, (17)
with H € RM*N' being the linearized observation operator, and
Iy € RN the identity matrix. To determine an ensemble X*

which is consistent with the analysis-error covariance matrix P*
as defined in Eq. (17) and which satisfies

P xv(x),

k—1 (18)
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where the prime denotes the deviations from the analysis mean,
one can use the method of randomly perturbed observations
(Burgers et al., 1998; Houtekamer and Mitchell, 1998; Evensen,
2009) or a deterministic method such as an ensemble square-
root filter (Simon, 2006). We will use the ETKF as proposed in
Bishop et al. (2001), Tippett et al. (2003) and Wang et al. (2004),
which seeks a transformation T € R¥* to be applied to X!
so that
X¥ =X"T. (19)
This method has the advantage of transforming the problem
into ensemble space, greatly reducing the number of operations
required when k < N, as is typically the case in operational data
assimilation for environmental science. Note that the matrix T
is not uniquely determined for k < N, and the specific choice
characterizes the type of square-root filter adopted (Tippett et al.,
2003). According to Wang et al. (2004), the ETKF transformation
matrix T can be obtained by

1
s
ZV,

T=V (i +59) (20)
where USV' is the singular value decomposition of
1
w=— x""H'R"'HX". 1)

k—1

The matrix V € R¥* =1 is obtained by erasing the last zero
column from V € Rk and § € R*=D*=D s the upper left
(k—1)x (k —1) block of the diagonal matrix S € R Xk The
presence of the null eigenvalue is due to the fact that the k
ensemble deviation are not independent in view of Eq. (12). The
transformation (Eq. (20)) is mean preserving, so that Te = 0, a
condition which is not necessarily true for general square-root
filters (Wang et al., 2004).

4. Strategies for dealing with model error

The formulation of the ETKF described in section 3 does not
explicitly include a treatment of the model error in the state
estimation procedure. This is the topic of the present section.
We first review a common approach used to deal with model
error in most ensemble-based schemes including the ETKF, and
then introduce two novel methods based on the deterministic
formulation outlined in section 2.

4.1.  ETKF with inflation and localization

The standard way to account for model error in most ensemble-
based data assimilation schemes is through artificial inflation
and localization of the error covariances. These solutions are
often adopted with the general purpose of mitigating the
misrepresentation of the actual error covariance due to the
use of a finite size ensemble, even in the absence of model
error.

Two main types of inflation procedures are known, referred
to as multiplicative (Anderson and Anderson, 1999) and additive
(Hamill and Whitaker, 2005). In the former case, the matrix
P’ is multiplied by a scalar coefficient, (1 + §8), with & slightly
larger than zero in most relevant applications. By doing so,
the variance explained by P! is increased while its range
and rank are left unchanged. The increase in the explained
variance is taken to account for the portion of forecast error
due to model error. Optimization of § is usually done with
numerical tuning, but some advanced solutions allowing for
an adaptive estimation have recently appeared (Sacher and
Bartello, 2008; Whitaker and Hamill, 2012), as well as a new
ensemble-based scheme without the intrinsic need for inflation
(Bocquet, 2011). That the span of Pf is preserved makes
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multiplicative inflation attractive in applications with highly
chaotic systems, where the ensemble is successful in tracking
instabilities that grow along the data assimilation cycle and
the range of Pf has a significant projection on the unstable
subspace (Palatella et al., 2013). In additive inflation, random
noise is added along the diagonal of Pf or P* at each analysis
step. This procedure refreshes the covariance matrix, preventing
the collapse of the ensemble along few dominant modes, and
maintaining diversity amongst the ensemble members. However,
this gain in ensemble spread is obtained at the price of
breaking the dynamical consistency of the ensemble and may
cause imbalances. Finally, a key issue is the prescription of
the statistical properties of the noise, which are difficult to
determine and whose knowledge reflect assumptions made on
the properties of the model error. Note that the deterministic
approach described in the following implicitly addresses this
issue and proposes a way to describe the model error mean and
covariance.

The localization procedure is designed to remove long-range
spatial correlations which, due to the finite size of the ensemble, are
often poorly estimated and may introduce spurious correlations
into the assimilation cycle (Houtekamer and Mitchell, 1998;
Hamill et al., 2001). The standard method for implementing
localization is through the Schur product of Pf by a localization
matrix whose entries are obtained on the basis of a predefined
length-correlation function €2(r), r being the distance between
model grid points. Recently Bishop and Hodyss (2011) have
proposed a flow-dependent localization method.

In the numerical experiments that follow, the ETKF is
implemented with the simultaneous use of multiplicative
inflation and localization. Before being used in the analysis
update (Eqs (14)—(16)), the forecast-error covariance matrix is
transformed according to:

Pl — (1+ 8P o Q). (22)

The update step is then completed with the transformation of
the ensemble of forecast deviations into the analysis ensemble
using Eq. (19).

4.2.  ETKF with deterministic model error treatment

This approach is inspired by previous studies on deterministic
model error treatment in the context of both variational and
sequential schemes (Carrassi and Vannitsem, 2010, 2011). Model
error is regarded as a time-correlated process and the short-time
evolution laws (Egs (6) and (9)) are used to estimate the bias,
by, and the model error covariance matrix, Py, respectively. The
sequential nature of the ETKF justifies adoption of the short-time
approximation, however an important practical concern is the
ratio between the duration of the short-time regime and the length
of the assimilation interval T over which the approximation is
used (Nicolis, 2004).

Akey issue is the estimation of the first two statistical moments
of the advection mismatch, f — f, required in Eqs (6) and (9)
respectively. This problem is addressed here assuming that a
reanalysis dataset of relevant geophysical fields is available and is
used as a proxy of the true nature evolution. Reanalysis programs
constitute the best-possible estimate of the Earth system over
an extended period of time, using an homogeneous model and
data assimilation procedure, and are of paramount importance
in climate diagnosis (Dee et al., 2011).

Let us suppose to have access to such a reanalysis which
includes the analysis, x%, and the forecast field, xf, so that
xf(tj + 1) = M(x}(t))), and T, is the assimilation interval of
the data assimilation scheme used to produce the reanalysis. The
operator M represents the forward model propagator, relative
to the model (1), over the reanalysis assimilation interval 7,;
the subscript r stands for reanalysis. Under this assumption the
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following approximation is made:

f(x, 1) — (X7, 1)

_ dx dx

Tt de

X)) — X)) (4 1) —x(1)

- Tr B T

x4 n) - X+ 1)

- -

= —ﬁ. (23)
T

The difference between the analysis and the forecast, §xZ, is
usually referred to in the data assimilation literature as an analysis
increment. From Eq. (23) we see that the vector of analysis
increments can be used to estimate the difference between the
model and the true nature. A similar approach was originally
introduced by Leith (1978), and has been used recently to account
for model error in data assimilation (Li et al., 2009). Rodwell and
Palmer (2007) also used a similar approach of averaging analysis
increments to represent the ‘systematic forecast tendencies’ of a
model and diagnosed differences between its climate and the true
climate.

Note that the estimate (Eq. (23)) neglects the analysis error,
so that its accuracy is connected to that of the data assimilation
algorithm used to produce the reanalysis. This in turn is related to
characteristics of the observational network such as the number,
distribution and frequency of the observations. However, this
analysis error is present and acts as an initial condition error,
a contribution which is already partially accounted for in the
ETKF update by the ensemble-based forecast-error covariance,
Pf. As a consequence, when Eq. (9) is used to estimate only
the model error component, an overestimation is expected. This
effect, which was also found by Carrassi and Vannitsem (2011) in
the context of the extended Kalman filter, can be overcome by an
optimal tuning of the amplitude of by, and Py,.

Substituting Eq. (23) into Eq. (6), we obtain an approximation
of the bias at the analysis time (i.e. the drift between tand t + 7) as

(24)

Inserting Eq. (23) into Eq. (9), the model error contribution to
the forecast-error covariance can be estimated taking the external
product of Eq. (23) after removing the mean and reads

2

P = (0 - fox) (5 = (5 ) 5 @9

4.2.1. ETKF with time-constant model error treatment: ETKF-TC
In this approach, b, and Py, are estimated once using Eqs (24)
and (25) and then kept constant along the entire assimilation
cycle.

In the ETKF-TC the ensemble forecast mean and covariance
are transformed according to

xf = xf — aBm,
Pf — (1 +8)Pf 0 Q(r) + &*P,, .

(26)
(27)

The inflation and localization apply to the ensemble-based
forecast-error covariance matrix P! alone. The scalar term o > 0
is a tunable coefficient aimed at optimizing the bias size to account
for the expected overestimation connected with the use of Eq. (23).
The new first guess and forecast-error covariance, Eqs (26) and
(27), are used in the ETKF analysis formulae (Eqs (14)—(16))
to obtain the analysis. The update of the ensemble members is
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done as in the standard ETKF transforming the analysis deviation
ensemble into the forecast ones according to Eq. (19). In the
ETKF-TC, model error is repeatedly corrected in the subspace
spanned by the range of P, where model error is supposed to
be confined. This choice reflects the assumption that the impact
of the unresolved scales on the forecast error does not fluctuate
greatly along the analysis cycle.

4.2.2.  ETKF with time-varying model error treatment: ETKF-TV

This is a modification of the ETKF-TC in which the model
error correction is made time-varying by incorporating a random
sampling from the assumed model error statistics into the forecast
step. A model error vector is added to each ensemble forecast
member, before being used in the analysis update. In the ETKF-
TV the forward propagation of the ensemble members, which
is done in the ETKF using the model according to Eq. (11), is
substituted by:

T

x. = M) — oanii—>
Tr

i i (28)

withy;; € N(bm, Pr),  i=1,...k
where j refers to the arbitrary analysis time . The model error

vectors, 1);; € RY, are sampled from a distribution of the model

error statistics, with mean and covariance equal to by, and Py,
calculated using Eqs (24) and (25). The ETKF-TV preserves
the assumed model error statistics while exploring a different
realization of the model error at each analysis time. We remark
that adding a random perturbation ameliorates problems due to
rank deficiency of the finite-size ensemble, but can upset balance
and introduce spurious variability. This formulation bears a
formal resemblance to stochastic climate models (Majda et al.,
2001), which have recently been found to be beneficial in the
context of data assimilation (Harlim and Majda, 2008; Mitchell
and Gottwald, 2012). Whereas these stochastic climate models
rely on the mathematical technique of homogenization which
may be difficult or impossible to apply to large models, the
ETKEF-TV only requires access to an historical reanalysis dataset
to generate P,. While therefore less mathematically rigorous than
stochastic climate model methods, the ETKF-TV may nonetheless
provide a tractable computational approach for dealing with
model error in data assimilation systems with large geophysical
models.

The forecast ensemble members (Eq. (28)) are then used
to build the forecast error covariance matrix P’ according to
Eq. (13) as in the standard ETKF and, if desired, inflation and
localization are applied using Eq. (22). The analysis update
(Eqs (14)—(16)), including the forecast—analysis deviations
transformation, Eq. (19), is done as in the ETKF.

4.3.  Comments on the forecast—analysis ensemble transformation
The ETKF forecast—analysis transformation, T, in Eq. (19), is
obtained under the requirements (Wang et al., 2004) that the
ensemble analysis-error covariance P? given by Eq. (18) is equal
to the one predicted by the least-square update (Eq. (17)),
and that the analysis ensemble is centred around the mean
analysis field, x?, obtained via Eqs (14)—(16). As mentioned in
section 3, when k < N this transformation, which accounts for
the search of a square root of the matrix P?, is not unique and its
choice characterizes the specific formulation of the square-root
implementation (Tippett et al., 2003). A distinguishing feature of
the ETKEF is that the analysis ensemble members are orthonormal
in the observation space (Wang and Bishop, 2003). The search
for a square root of P* is solved for the transformation matrix,
which is then applied to the forecast ensemble. The ensemble
transformation implies only the rescaling and rotation of the
forecast members, without introducing additional noise. The
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Figure 1. Lyapunov spectra for a range of values of h. The inset shows the
maximal Lyapunov exponent Ymay., as a function of h.

latter feature of the deterministic filters with respect to their
stochastic counterpart causes major differences in their respective
performance when applied to chaotic systems, particularly with
relation to the ensemble size (Lawson and Hansen, 2004; Sakov
and Oke, 2008; Carrassi ef al., 2009).

Let us consider now the standard ETKF as given in
section 3, with inflation and localization as described in
section 4.1, so that the ensemble-based forecast-error covariance,
Pf, entering the analysis update, Eqs (14)—(17), is now
given by Eq. (22): the analysis field and the predicted error
covariance are obtained assuming the inflated/localized forecast-
error covariance. Nevertheless the transformation to obtain
analysis deviations consistent with this predicted P* is applied
to the forecast perturbations, X!’ evolved over the previous
analysis interval. The fact that the inflated/localized matrix,
(1+ 8)Pf 0 Q(r), is used in the analysis update of the mean
state, while the unaltered forecast deviations are used in the
analysis-error covariance update, causes an inconsistency: the
matrix X is not a square root of (1 —{-(S)PfoQ(r). Note
that we have restricted our discussion to the standard ETKF
with inflation/localization only for the sake of clarity; the same
arguments holds for the ETKF-TC, to an extent related to the
properties of Py,. This issue arises in all circumstances when
the ensemble-based forecast-error covariance of a square-root
filter is adjusted to account for errors misrepresented by the
ensemble alone: the new matrix Pf, used to update the mean,
is no longer the square of X, and X* = X"T is not the square
root of the predicted P. This problem is not present in the
ETKF-TV, unless localization and/or inflation is applied. In
fact the model error treatment in this case acts directly on the
ensemble members used to build the forecast-error covariance
matrix whose deviations give the corresponding square-root
matrix, and represents a potential advantage of the ETKF-TV.
The problem of obtaining a consistent mean and ensemble
deviations update was originally recognized by Whitaker and
Hamill (2002), while Tippett et al. (2003) outlined a general
method for incorporating model error statistics into an ensemble
square-root filter.

5. Results

To compare how well the ETKF-TC and ETKF-TV perform
when compared with a standard ETKF, we perform twin data
assimilation experiments where a model trajectory taken to be the
truth has noise added to create synthetic observations. As a testbed
for our experiments we take as our truth the slow-fast Lorenz-
96 model (Lorenz, 1996), a prototype model for atmospheric
dynamics consisting of a ring of N large-scale, slow oscillators x;
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coupled to a ring of L = N x ] small-scale, fast oscillators}})i:

& e
E =Xit+1 — xl;z) Xi—1— XI‘+F— Z;y],z > (29)
;i o~ A = hes
djtl = b(J1,i= Tjr2i) Tiv1ri— P +o % (30)

With Xien = Xi, Vit = Piks1 and Yjien = Vi
Our model consists of the first four terms of Eq. (29) for the
slow variables only:

dx;
— = (Xip1 —Xi2) X1 —x + F,

dr (31)

with x;1n = x;, which define the resolved scale and the model
has no knowledge of the fast subsystem dynamics. The variables
Xj» yj,i and x; refer to grid point values with specified spacing on a
periodic domain, enabling the use of localization in the following
numerical experiments. In all experiments we fix N = 36,] = 10,
F =10, and ¢ = b = 10 so that the fast modes oscillate ten times
faster than the slow modes. We integrate the model using a
fourth-order Runge—Kutta scheme with time step dt = 0.005.
For these parameters and with h = 1, the climatological standard
deviation is o, = 3.54 and maximal Lyapunov exponent is
Ymax = 1.3775. In Figure 1 we show the Lyapunov spectra of
Eq. (29) for a few different values of h. These spectra were
calculated using a QR decomposition (Parker and Chua, 1989)
over 10° time steps. The inset shows the maximal Lyapunov
exponent, Ymax, as a function of h. The maximal Lyapunov
exponent decreases with increasing h up to h = 1.4, whereafter
it increases again. As h increases past 2, the system eventually
becomes non-chaotic, with all Lyapunov exponents y < 0. A
more in-depth exploration of the dynamical properties of the
Lorenz-96 system can be found in Frank et al. (2014).

In all experiments we take 12 equally spaced observations with
observational error covariance R = 0.5I or approximately 4% of
the climatological variance. It is assumed that the observation-
error covariance matrix R is perfectly known and is used to sample
the simulated observational noise. The use of a diagonal matrix
R reflects the assumption of mutually uncorrelated observations.
Except where otherwise stated, we use k = 2N = 72 ensemble
members for the ETKF analysis.

Our experiments consist of two stages: a reanalysis stage
where the model error biases (Eq. (24)) and covariance matrices
(Eq. (25)) are estimated from the analysis increments 6x? of a
suitably optimized ETKF; and an experiment stage where this Py,
is used in an Observing System Simulation Experiment (OSSE),
to compare analyses made by the ETKF-TC and ETKF-TV with
the standard ETKF.

We show estimates of the model error distribution in Figure 2
for different values of the forecast interval 7, and with h = 1.
Note that we have taken 7, = 7 in all experiments, meaning that
the reanalysis interval is always the same as the forecast horizon of
our verification. The blue curve in Figure 2 shows histograms of
the ‘true’ model error distribution obtained by making forecasts
using the model (31) initialized with x-values from one 10-year
long nature trajectory of Egs (29) and (30) and considering the
differences. The green and red curves show approximations to
this model error distribution arising from the analysis increments
(Eq. (23)) obtained from a standard ETKF without inflation or
localization for an arbitrary selected observed and unobserved
variable, respectively. The inset J-values indicate the intersection
or joint probability between the true model error distribution
and unobserved analysis increments.

Reflecting the progressive degradation of the information
for increasing time intervals, both the true and approximate
distributions become wider as forecasts are made longer, and
the distributions move further apart from one another. This
gives rise to the appearance of a bias in the distributions, a
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Figure 2. Distribution of analysis increments for arbitrary selected observed (dashed line, green in online) and unobserved (dashed dotted line, red in online)
components of the Lorenz-96 system with i1 = 1, as well as the ‘true’ model error distribution (solid line, blue in onilne), for six different forecast lengths 7 (a) 0.005,
(b), 0.01, (c) 0.015, (d) 0.02, (e) 0.025, and (f) 0.05. The inset J-values indicate the intersection or joint probability between the true model error distribution and
unobserved analysis increments. Statistics were collated over 10 years of analyses, and we have taken 7, = 7 in all experiments.
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Figure 3. (a) True (left) and estimated (right) model error covariance matrices Py, for T = 0.025. Both matrices are normalized such that all values lie between —1
and 1. (b) Proportion of the variance explained as a function of eigenvalue number for the true and estimated covariances.

direct consequence of neglecting a scale of motion in our model.
Note that this drift would not have appeared if model error
acted as a white noise. Figure 2 shows also that the bias is
not captured by our approximation based on the reanalysis
increment. This is because the ETKF, similarly to most Kalman
filter-like methods, assumes the forecast and the observations are
unbiased. Such schemes are unable to correct this error unless
a bias correction procedure is explicitly incorporated (Dee and
Da Silva, 1998).

In Figure 3(a), we show the true model error covariances and
analysis error-estimated model error covariances Py, for the same
10-year experiments as in Figure 2. Each heat map is normalized
such that values range between —1 and 1, with large-magnitude
values indicating strong positive or negative correlation between
sites. The estimated model error covariances Py, capture some of
the negative correlations that exist between neighboring sites, but
represent little of the long-range correlation structures present
in the true covariance matrix. Correlations between pairs of
observed variables are also better preserved than those between
pairs involving unobserved variables.

Based on the above, we set the analysis interval T = 0.025,
approximately equivalent to 3 h, for all subsequent experiments.
This is as a compromise to make our short-time approximation
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work adequately and for the observation interval to be similar to
that of a realistic observational network.

We first calibrate the inflation factor § and localization radius
r in order to produce the best possible reanalysis dataset. Figure 4
shows a contour plot of RMS analysis errors for a standard ETKF,
averaged over 200 realizations of 1 month in length. The RMS
errors are normalized by the climatological standard deviation
Odim- The best results are obtained with a strong inflation,
8 = 0.9, and a moderate localization radius, r = 3. This suggests
that the ETKF tends to underestimate the actual error variance
and misrepresent the error spatial correlations at a length-scale
larger than three grid points. Based on the results in Figure 4 we
set r = 3, 8 = 0.9 in all subsequent experiments to ensure both
accuracy and stability in the ETKF.

Using a 10-year reanalysis with this choice of r and §, we
then perform twin data assimilation experiments with the ETKF,
ETKE-TC and ETKF-TV. One realization of this experiment is
shown in Figure 5, where we show 300 analysis cycles of analyses
made by the ETKF, ETKF-TC and ETKF-TV for (a) an observed
variable and (b) an unobserved variable, with the black curves
showing the true time series. (c) shows the RMS analysis error
for each method, as averaged over all variables. For the observed
variables, the ETKF-TC and ETKF-TV both outperform the
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Figure 4. Contour plot of RMS errors for the ETKF as a function of inflation
factor § and localization radius r. The cross (red in online) shows the location
of the minimum. RMS errors are normalized by the climatological standard
deviation o jim, and are averaged over 200 realizations of 1 month in duration.
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Figure 5. Time series of analyses made by the ETKF (dashed dotted line, red in
online), ETKF-TC (dashed line, green in online) and ETKF-TV (solid line, blue
in online) for (a) an observed variable, (b) an unobserved variable, with the black
curves showing the true time series, and (c) RMS errors.

standard ETKF, which diverges after approximately 100 analysis
cycles. The ETKF-TC and ETKF-TV provide an efficient track
of the truth throughout the entire duration of the experiment.
However, while the ETKF-TV tracks the unobserved variable
similarly well to the observed variable, the ETKE-TC diverges
from the unobserved reference trajectory between analyses 175
and 225. The relative performance of the three algorithms is
summarized in the time series of the RMSE; errors are normalized
using the system’s natural variability oy, as above. The RMSE
for the ETKF reaches values as large as 100% of the climatological
standard deviation, meaning the assimilation process is unable
to carry the information coming from the observations into the
state estimate. However, the ETKE-TV is very successful at this
task, with the RMSE converging to 25% of the climatological
standard deviation oiy,. The performance of the ETKF-TC is
between those of the ETKF and ETKE-TV, with the RMSE
converging to about 60% of oiy. Note that the RMSE here
is averaged over all variables; in the observed subdomain the
RMSE of both ETKE-TV and ETKF-TC goes well below the
observational accuracylevel, a sign that both filters are functioning
well. The ETKF RMSE in the observed subdomain does not
attain a similarly low level. Such a marked difference in the
skill between observed and unobserved areas for the ETKF-TC
is possibly due to the use of a constant Py,. In the unobserved
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variables upon the number of ensemble members for different methods for ETKF
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EnSRF (black dashed); and ETKF with additive inflation (black dash-dotted).
Results are averaged over 200 realizations, and all errors are normalized by the
climatological standard deviation i

areas the analysis correction projects mostly on the span of
the forecast error covariance Pf, making its correct specification
crucial in those regions. Note from Figure 2 that the estimated

model error bias by, is approximately equal to zero; this means
that skill improvements made by the ETKF-TC and ETKF-TV
come largely from second-moment corrections in the analysis
update.

In Figure 6 we show how the methods perform as a function
of the magnitude of (a) the observational error R and (b) the
number of ensemble members. We again set § = 0.9, r = 3 in
all experiments and average our results over 200 realizations,
each of 1 month in length. The RMS errors as a function of
ensemble size (b) are shown as averaged over all variables, while
for the magnitude of the observational error (a) we focus on the
RMSE averaged over the observed variables only. The general
trends observed in Figure 5 are preserved in both cases, with
the ETKF-TV showing a large improvement in analysis quality
over the ETKF, with the ETKF-TC showing a slightly more
modest improvement. The skill of each method decreases roughly
monotonically as the observational error is increased, and as the
ensemble size is decreased. Interestingly, small ensemble sizes
impact the ETKF-TV more adversely than they do the ETKF-TC,
with the latter method almost becoming preferable for k = 12.
The semi-independence of the ETKF-TC upon k is due to the
fact that the model error treatment is independent of k, and the
range of the matrix P, provides an additional subspace for error
correction that is not subject to ensemble collapse. This is an
attractive property in the common situation where the ensemble
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size cannot be increased due to computational limitations for
both the model and the ensemble-based scheme. However, the
overall error level for the ETKF-TC remains high. This is an
indication that the model-error covariance matrix is dominating
the ensemble-based forecast-error covariance, and may require
further tuning through the model-error inflation parameter o
(Figure 8 below).

As a further comparison of the proposed model error
treatments to standard techniques, we also include in Figure 6
curves corresponding to the serial ensemble square-root filter
(EnSRF) of Whitaker and Hamill (2002), as well as an ETKF
with additive inflation to account for model error as described by
Hamill and Whitaker (2005). We took the EnSRF as an example
of an ensemble Kalman filter which avoids the inconsistency
between analysis mean and perturbations described in section 4.3,
and additive inflation as an example of a standard model error
treatment with some similarity to the ETKF-TV. While we refer
the reader to the above articles for details of those methods,
we remark that we set § = 0.9, r = 3 for the EnSRF as we had
for the ETKF and used our reanalysis as a proxy for a high-
resolution model run in the additive inflation experiment. The
EnSRF performs comparably to the ETKF in both experiments,
while additive inflation performs as well as the ETKF-TV for
the observed variables but less well for the unobserved variables,
leading to a higher overall RMS error in Figure 6(b). It is not
surprising that additive inflation as implemented here should
perform comparably to the ETKF-TV, as the only difference
between the two methods is in the sampling of the dataset
of reanalysis increments to produce 7;; in Eq. (28). Following
Hamill and Whitaker (2005), in the additive inflation experiment
the sampling is done directly from the record of reanalysis
increments, while in the ETKF-TV this is done from the
multivariate covariance matrix P,,. While this is expected to
lead to significant differences when the model error distribution
is far from Gaussian, from Figure 3 we know that this is not the
case here and the skill of additive inflation and ETKF-TV are
comparable.

We now investigate whether our model error treatments can
make further improvements over the standard ETKF by re-
tuning the inflation and localization parameters § and r in the
experiment stage. To do this we use the same reanalysis dataset
with § = 0.9 and r = 3 to build the model error biases (Eq. (24))
and covariance matrices (Eq. (25)), but vary the § and r used
in the ETKF-TC and ETKF-TV experiments. The contour plots
in Figure 7 show the results of these experiments for (a) the
ETKF-TC and (b) the ETKF-TV, displaying the RMS errors over
all variables and as averaged over 20 realizations each. Firstly,
the ETKF-TV produces the best analyses for all values of § and
r, showing RMS errors approximately half those of the ETKF-
TC for r > 1. Secondly, the two methods are optimized by
slightly different values of § and r. The ETKF-TC obtains its
best performance when § = 0.05 and r = 8, while the ETKF-
TV is optimized when § = 0 and r = 5 (approximately). This
implies that the ETKF-TC underestimates the actual forecast error
variance by only approximately 5%, and it is essentially correctly
estimated by the ETKF-TV (compared with approximately 90%
underestimation for the ETKF). Moreover, the large values found
for the optimal localization radius r indicate that both model
error treatments have essentially mitigated the misrepresentation
of thelong-range spatial correlations by spurious ensemble effects,
compared to the standard ETKF. Both methods outperform the
optimized standard ETKF, with RMSE equal to 0.256 for the
ETKEF-TV with optimal tuning and 0.690 for the ETKF-TC with
optimal tuning compared with 0.709 for the standard ETKF with
optimal tuning. Interestingly, the skill dependence of ETKE-TC
and ETKE-TV on § and r is very similar and clearly different
from that of the standard ETKF. From Figure 7 we observe that
for r < 3 the performance of the two methods depends only on
the localization factor. For larger r the skill of either method
almost converges, with only minor dependence on § and r. Both
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function of inflation factor § and localization radius r. The crosses (red in online)
show the location of the minima. RMS errors are normalized by the climatology
standard deviation ogim, and are averaged over 200 realizations of 1 month in
duration.

the ETKF-TC and ETKF-TV therefore appear very stable with
respect to the tunable parameters § and r, an attractive property
when considering their implementation with large numerical
systems.

Following Carrassi and Vannitsem (2011), we investigate
the effect of varying the model error inflation factor « in
Eqs (26)—(28). As was discovered in Carrassi and Vannitsem
(2011), we again find here that some deflation of the model error
covariance matrix P,, used in both the ETKF-TC and ETKE-
TV can actually be beneficial to those methods. In Figure 8 we
show how the RMS analysis errors in ETKF-TC depend upon the
model error inflation/deflation factor . Each point is averaged
over 200 realizations, and shows that a deflation of the model
error term through setting o = 0.2 improves the performance
of the ETKF-TC by approximately 40%, while setting o = 0.5
improves the ETKE-TV very slightly (however this improvement
is not statistically significant). That the best results are obtained
for @ < 1 and that the RMS errors worsen for & > 1 implies that
the approximations Eqs (24) and (25) are actually overestimations
of the actual bias and covariance. This is because Eqs (24) and (25)
incorporate some initial condition error into the estimation of
Py, so optimal results are obtained when « is tuned accordingly.
However the response to « for the two algorithms is very different,
with the ETKF-TC showing the largest dependence. This is not
surprising given the time-constant model error treatment of
the ETKF-TC, and is also consistent with the discussion on
Figure 6(b). The ETKF-TV depends less on o because different
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Figure 9. Dependence of the skill of ETKF-TC (green) and ETKF-TV (blue) upon
the magnitude of the size of the model error h, shown as the ratio of the ETKF
errors divided by each method, so values > 1 represent a skill improvement. All
values are averaged over 200 realizations.

optimal model error sizes may be required at each analysis
step.

It is worth studying the relative performance of the algorithms
for different levels of model error. This is controlled in the
Lorenz-96 model by modifying the parameter h. However this
factor has also a strong interplay with other dynamical aspects
of the model, such the spectrum of the Lyapunov exponents
and the amplitude of the dominant Lyapunov exponent Yax. As
such, it is difficult to draw a clear relationship between h and
the performance of our two model error treatments and so we
cannot expect the relative performance of ETKF-TC/TV over the
ETKF to improve monotonically with h. In Figure 9 we show
the ratio of the ETKF error to that of the ETKF-TC and ETKF-
TV, so that values greater than 1 represent an improvement in
analysis skill. Figure 9 shows that a monotonic trend is almost
found for h < 1, as the model error decreases. For larger h the
curves resemble the dependence of Y, over h (the inset of
Figure 1), suggesting that in a stabler model configuration the
gain in skill of the ETKE-TC/TV is smaller than in more unstable
cases.

6. Discussion

Following the formulation of Nicolis (2004), we have derived a
method for the treatment of time-correlated model error in the
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short-time limit for an ensemble Kalman filter. In the absence
of complete knowledge of the true atmospheric state, we used
a database of historical reanalysis increments to approximate
the model error biases and covariance matrices required in
the least-square-based analysis update. One clear drawback of
this choice is that its accuracy depends on the properties of
the observational network, so that in unobserved or poorly
observed areas, the analysis increments will be almost zero even
in the presence of model error. This dependency is however
less dramatic than in the closely related approach of using the
innovations (differences between observation and forecast) to
estimate or tune background or observational-error covariance
matrix (e.g. Desroziers et al., 2005). In this latter case in fact
only the projection of the error covariance matrix on the
observational space can be estimated. The statistics of the analysis
increments have been also used by Cullen (2010b) to estimate
the so-called ‘regularization matrix’ (also Cullen, 2010a), a newly
introduced term used to improve the fit to the observations. In
this view, the regularization term is intended to account for all the
system error (also connected to the assimilation procedure itself)
and not just the error originating from the underlying model
dynamics.

We studied two potential implementations of this method for
an ETKF, namely the ETKF-TC which assumed the model error
correction term to be constant in time and the ETKF-TV where the
model error correction was allowed to vary randomly after each
forecast. In the latter case, the noise is sampled from the assumed
model error statistics and its contribution to the forecast error
is propagated forward using a short-time approximation. These
methods were compared with the standard approach for dealing
with model error in the ETKF of tuning the inflation factor and
localization radius empirically to minimize RMS errors through
numerical experiments on the Lorenz-96 model.

Both the ETKF-TC and ETKFE-TV showed improvements upon
the ETKF with optimized inflation and localization parameters,
with the ETKF-TV showing the lowest RMS errors of all three
methods. The two methods with deterministic model error
treatment showed further improvements once inflation and
localization were retuned, but importantly were found to be
less sensitive to the precise tuning of these parameters than
the ETKF was. This is a desirable property when considering
the potential implementation of ETKF-TC or ETKF-TV in an
operational setting. Room for additional improvements in the
ETKE-TC and -TV are based on the recognition that the adopted
model error treatment is prone to suffer from an overestimation
of the actual model error, due to the presence of initial condition
error. Results confirmed this conjecture and showed that the
skill of both ETKF-TC and -TV can be further improved by
deflating the associated model error contribution to the state-
estimation error. This is particularly relevant for the ETKE-TC
in view of its description of the model error being constant in
time, which has both advantages and disadvantages. A stationary
model error treatment suggests that the ETKF-TC should be
expected to perform well only on average, and indeed we did
find that the ETKF-TV was better able to capture intermittent
events such as are expected in forecasting on a meteorological
time-scale. However, the independence over the ensemble size
of the model error contribution in the ETKF-TC makes this
algorithm less sensitive to errors arising from small ensemble
size effects than the time-varying ETKF-TV was. The overall
performance of the ETKF-TV is markedly better than the ETKF-
TC, however the aforementioned features make the ETKF-TC
attractive in situations where a pre-existing ensemble scheme is
already implemented and the computational recourses are already
fully exploited.

This study has been carried out using a simplified chaotic
dynamical system which has allowed for an extensive and robust
exploration of the methods under consideration. Furthermore,
the use of this model has enabled us to use the ETKF in all
numerical experiments, which is known to be impractical in
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operational contexts due to the inability to store the forecast
covariance matrix P', An important step forward will be through
applications of the same approach to model and observational
set-ups of increasing complexity. In parallel to this application-
oriented research direction, the authors are studying alternative
formulations of the square-root filter in which the model error
treatment does not give rise to the inconsistency described in
section 4.3. It may also be possible to use methods such as the
LETKF or EnSRF which allow for localization to be implemented
to the forecast perturbations. How such filters perform with the
proposed model error treatment is a direction for future research,
and how such methods compare with standard procedures is
of great relevance in the ongoing debate over model error and
ensemble filtering.

A logical further extension of this work would be to explicitly
incorporate the temporal evolution of model error. Model error
temporal correlations are allowed in a weak-constraint variational
framework (Tremolet, 2006), and the use of a deterministic
method for their estimation has been introduced in Carrassi and
Vannitsem (2010). An extension of the present study along this
same line implies the use of ensemble-based smoother, a research
direction that we leave for future work.
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