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¢ Velocity potential of fluid
p Fluid density

ation of ocean surface waves around a suspended hollow cylin ¢ Incoming plane wave frequency

drical shell is presented. We revisit the problem first stddiy

Garrett (1970), using a new and more direct technique to ob-

tain the solution for the wave potential. Numerical resaits
presented for the combined diffraction and radiation prots,

showing the wave field inside and around the structure. The

results give fundamental insight into both the ideal desigd

(o Incoming plane wave amplitude

1 INTRODUCTION
Utilizing renewable energy resources has become an impo
tant field of study with regard to combatting climate charige-

placement of an Oscillating Water Column (OWC) device in the cent studies show that Oscillating Water Column (OWC) dewvic
ocean, so as to extract the maximum possible energy from an are an attractive approach to convert the power of oceaairf

incident plane wave field.

NOMENCLATURE

a Cylinder radius

d Ocean depth

dpo  Kronecker delta

€m €& =1, otherwisen =2

g Acceleration due to gravity

Hm mth order Hankel function of the first kind

lm  mth order modified Bessel function of the first kind
Jn mth order ordinary Bessel function of the first kind
Km mth order modified Bessel function of the second kind
w Oscillating surface pressure frequency

Po Surface pressure inside cylinder

*Address all correspondence to this author.

waves to electrical energy or to directly use the converted m
chanical energy to desalinate water. One example is the way
energy plant at Vizhinjam, Kerala in India [1]. However, ffi-e
ciently harness the ocean wave energy, diffraction, réraand
reflection of surface waves around an OWC as well as radiatio
of waves generated by the turbine attached to an OWC need"
be better understood. There is thus renewed researchshiere
studying wave diffraction around a hollow cylindrical ststtuc-
ture suspended in an ocean of finite depth.

Two of the problems that arise when trying to design an
OWC plant to efficiently extract the maximum energy from an
incoming wave field are:

1. how to design the shape of the OWC chamber to extract th
largest possible oscillating pressure inside the deviog, a

2. where to position the device in the ocean to capture wave
as large as possible.
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The first point relates to diffraction of incoming plane wawe-
side the cylinder - we would like to know the optimal design fo
which the wave elevation inside the cylinder is a maximurat th
is for which a wave would resonate and interfere constrabtiv
inside the cylinder. The second relates to the combined vave
diation and diffraction by an oscillating surface pressaside
the cylinder - we would like to plot the superimposed radiate
and diffracted wave field along with incident plane wave field
fully understand how the OWC structure affects its envirenin

equation which can be solved to any desired level of accurac
for all of the unknown constants in the solution. We treat the
diffraction and radiation problems separately, becautteatih
the mathematics is similar in both cases, the two probleprere
sent different physical phenomena.

Diffraction Problem
We consider a plane wave of amplitudg that is incident

Various mathematical treatments of pr0b|ems re|ating to upona hollow C)./Iinder of radiua and zero thickness which is
OWC devices have appeared in the literature over the years. A suspended at heightabove the floor of an ocean of degthThe

fundamental contribution was made by Garrett [2], who sblve
the first-order diffraction problem for a hollow suspendgtine
der in an ocean of constant finite depth. Attempts at solvieg t

radiation problem have been made by Evans [3], who used an

unwieldy integral formulation, Evans and Porter [4], wheds
numerical method, and Falnes [5], who solved a similar pnabl
to ours, but unlike us focussed more on the calculation ofdwyd
dynamic forces than on the solution for the actual wave field.

In this paper we present an analytical solution for the adffr
tion and radiation problems for a hollow suspended cylinder
an ocean of constant finite depth, in the form of an infinitéeser
expansion. Solutions of this form are common in physics and e
gineering [6, 7], and permit numerical calculation to angickd
degree of accuracy.

The main difference between our solution and Garrett’s lies
in the procedure used. Whereas Garrett used a minimization

technique to solve the problem, we discovered that it isiptess
to formulate the problem as a matrix equation, which we stive
obtain the solution directly. This approach has the adggntd
requiring less work in analysis than is required by Gareatt] is
also computationally easier and more elegant to implement.

In section 2 we formulate the diffraction and radiation prob
lems in terms of an infinite set of simultaneous linear equnest;
each containing an unknown Fourier coefficiefif,. We show
how to solve the system for the unknownpy's in section 3, thus
obtaining the complete analytic solution for the velocitten-
tial of the fluid at every point in the domain. In section 4 we
present our numerical results, with reference to the cqerere
and accuracy of the solution, and the limitations of the roéth
used. Finally, in section 5 we present our conclusions asligs
further extensions to the theory.

2 PROBLEM FORMULATION

This problem was first solved by Garrett in 1970 [2]. We
employ a different method than that used by Garrett to aatve
the numerical solution. We formulate the problem in terma of
system of coupled partial differential equations (PDEB}Y| ase
standard separation of variables techniques to obtainfanitén
series expansion of the solution. We then use the orthotjpnal
of the eigenfunctions of the system of equations to form aimat

2

cylinder is fixed to the ocean floor so does not exhibit anyngll
or surging motion. A schematic diagram for the diffractioolp
lem is shown in figure 1.
Under a set of standard assumptions [8] for linear watel
waves, e.g.,

(=Y

. incompressible fluid,

. irrotational flow,

. inviscid fluid, and

. small wave amplitude and wavelength ratio (i.%.<< 1,
whereA is the amplitude andl is the wavelength)

A WN

the full Navier-Stokes equations reduce to Laplace’s eqnat
subject to a set of linearized boundary conditions. Thah&th-
ematically, we solve

%@ =0, 1)
subject to
op _
5, =0 onz=0, (2)
op o> B
E_E(p_o onz=d, (3)
g—(rp:O onr=a,forh<z<d, (4)

where @ is the velocity potential at a point in the fluid. Here
Equation (2) represents a zero flux condition on the ocean floo
(3) is the linearized free surface condition, and (4) repmés
zero flux on the radial surface of the cylinder. Note that (4) i
plies that a zero-flux condition has been imposed on both th
inner and outer surfaces of the cylinder.

Using the cylindrical symmetry of the problem, we can write
@as

@(r,z,0) = Lo i €mi"Pm(r, ) cosMB, (5)
mM=0
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Figure 1. SCHEMATIC DIAGRAM.

and define the surface disturbardcas

r,0) =120 i €mi™Xm(r) cosme, (6)
m=0

wherexm andy, are related by thkinematic surface condition,
giving

_ O

Xm(r) = 0z lz=d’ (7)

We decompose into two functions defined on< aandr > a
respectively:

o { g 122 @

Qot, [ > A

In doing this we introduce two continuity conditionsrat a:

Ont = @¢, and )
O@nt O
A _ e <z<

ar ar for0<z<h, (20)

which are necessary to close the system.
Solving(1) - (4), we obtain an expansion for the interior po-
tential,

Im(ar)
al/(oa)

Wmint(1,2) = > Frna Zi(2) (11)

and similarly we obtain an expansion for the exterior paaint

Yme (1,2) = {Jm(kr) - %Hm(kr)} 2(((?)
+§?W%Zq(z), (12)
wherek anda are solutions of
0?—gktanhkd =0 and (13)
o2+ agtanad = 0 (14)
respectively. Also,
Z(2) = N;% coslkz, (15)
Zy(2) = N;% cosuz, (16)
where
N = % (1—|— %) ;
oo b (14 300

Kreisel [9] showed that the s¢¥y, Z }, wherek anda are given

by the dispersion relations (13) and (14) are a complete fset ¢
eigenfunctions on the domain<0z < d. The #'s are then a
set of unknown constants to be determined.

Radiation Problem

Mathematically, the radiation of surface waves by an os-
cillating surface pressure within a hollow suspended c@dm
may be considered a dual problem to Garrett’s diffractiabpr
lem, as the formulation and solution procedure are similaie
physics of the problem however is different to that for difftion.
Whereas in the diffraction problem no energy is generatéuinvi
the system, the radiation problem involves the continual-ge
eration of energy by the oscillating surface pressure withe
cylinder, which is carried away by the radiating surface egav
Although this difference is physically important, the fartation
for the radiation problem is similar to that of the diffraartiprob-
lem. The major difference is that the free surface boundany c
dition (3) is changed to

onz=d,

iPs
% o :{pw'”ga (17)

oz ¢ 0 ifr>a
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where the surface pressulRe oscillates with simple harmonic
motion at frequencw. As we are not considering transient be-

havior the radiated waves, only one mode of the excited wave

motion is produced, which matches with the mode of the forced
oscillation inside the cylinder by this prescribed surfpoessure.
We will consider a non-uniform pressure distribution,ifegt

Ps(r) = Pycos (2?”) . (18)

We transform the problem into Hankel space to obtain the inte
rior solution

|w K) coshkzJp(Kr)
Woin(r2) = / Kgsmth w?coshkd
kP(K) coshkzJg(kr)
gsinhkd + kdgcoshkd — w?d sinhkd’

(19)

whereP(k) is the Hankel transform d®,

P(K) — /0 *FPy(r) Jo(Kr ),

andPV represents a Cauchy principal value integral. We find that
Umint = O for allm > 0, and the exterior expansion is the same
as for the diffraction problem.

3 SOLUTION

The solution for both the diffraction and radiation probem
involves using the orthogonality of the eigenfunctidagz) on
the domain (< z < d. Substituting the interior and exterior ex-
pansions fonp into the continuity condition (9) and integrating
over the domain & z < d, we obtain a matrix equation:

Epa Fma = FmC (20)
for the diffraction problem, where

Fin = 2i [Tka®H/,(ka)Zi(d)] *, (21)
Ra = [0a2ly(0@)Kp(0@)] ", (22)

1 rh
=3 /0 Z(2)Z3(2)dz (23)

1 rh
Dpa = 5 | Za(@Z5(20z (24)
Eﬁq = (Ra - 1)DBu + 6[30(- (25)

4

We obtain a similar expression for the radiation problem:

EpaF1ma = Fp, (26)
where
_iw ® KP(K)Jo(Ka) h
B = deV/O kgsinhkd — w2costkd Jo coshkzZg(z)dzdk
kP(K)Jo(ka)N/? o
gsinhkd 1 kdgcosrkd — c2dsinhkd
EBU = (RU - 1) DBq + 6[30(, (28)
_ Kn(aa)
Ra= akK/ (0a)’ (29)

The solution of the matrix equations (20) and (26) give th@co
plete series solution for the fluid potentiglon the whole do-
main. For computational purposes we truncate the seriess ove
m afterM terms and the series ovarafterN terms. TherEg,

is anN x N matrix, Fmq iS a vector withN elementsFy, is a
scalar which depends upaon andCg as another vector witN
elements. Solving this matrix equation for the unknamg we
obtain the solution fop on the whole domairr, < aandr > a.

4 RESULTS
In analysing our solution there are three important issaes t
consider:

1. rate of convergence of the series solution,

2. agreement with previous numerical results and expetisnen
and

3. how well the boundary conditions are satisfied by the solu
tion.

We examine each of these for the diffraction and radiatiatpr
lems. Unless otherwise indicated, we use the parameteesvalu
g=98ms ! Pp=100Pag=12s"1 p=1kgm3andlo=1

m in the following numerical examples. Figure 2 shows a srfa
wave elevation profile for the diffraction problem for a ramf
values ofm, demonstrating that the solution converges quickly
with m. Figure 3 shows the convergence of the solution by mea
suring the difference between consecutive tetfds— (n-1||,
where the norm is defined by

n R
[|nl] = emi™'S Xm(r)cosme.

Here R is an arbitrary distance from the cylinder, which we
choose as&in our numerical examples, and the norm measure:
the firstn partial sums of the series solution.
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Figure 2. SURFACE DISPLACEMENT ALONG 6 = OFORa = 10m,
d/a=0.6,h/a=0.4

10

10"

12,2, , I

10°f

1071

Figure 3. ERROR ||{m— {m-1|| AS A FUNCTION OF m, for a = 10
m.

Figure 4 shows a comparison between our solution (solid
line) and Garrett’s solution (dots) for two different cydier ge-
ometries. The function being plotted is

Zi(d)

"L (ka)’ (30)

Am= %

for m= 0, and represents the first term in the expansion of the
wave amplitude inside the cylinder. Numerically and phatyc
this is the most important term in the solution. As the figures
show, our solution generally agrees well with Garrett's.sdl

(a) h/a=0.4.

(b) h/a=0.2.

Figure 4. NUMERICAL COMPARISON OF INTERNAL WAVE AMPLI-
TUDES FOR m= 0, d/a = 0.6. SOLID LINE IS OUR SOLUTION,
DOTS ARE GARRETT'S SOLUTION.

the fit is better foh/a = 0.2 than forh/a= 0.4. We believe this
is an indication of how well the boundary condition is satidfat
r = a. Overall, our numerical experiments show good agreemer
with Garrett's results, and are more than sufficient for ficat
purposes.

To demonstrate how well our series solution satisfies eac
of the three boundary conditions we examine how close each c
the functions in equations (2) - (4) are to zero. The first two
boundary conditions (2) and (3) are exactly satisfied, sotthe
boundary condition of interest to study is (4).
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Figure 5 showg% as a function ot forr = a. That s, the
figure shows how well the solution matches the boundary con-
dition (4) for different values ofm. The figures show that the
solution converges quickly, but figure 5(b) in particulansis
that (4) is not perfectly satisfied fdr < z < d. This is due to
Gibbs phenomenon, which occurs when trying to use a Fourier
series to describe a function with a discontinuity, as happere
atr = aandz= h. The effect of this singularity however is de-
creased as the cylinder submergence is increased - figum& sh
an example of how the error in matching the boundary conditio
(4) depends on the cylinder submersion, by defining a norm of
the error per unit submergence depth

de(a,z) /dr

0y(az)

OWm|| ZZE[h,d]’ Ah
HWH_ d—h ’

whereAhis a small heightincrement, and plotting it as a function
of h/a. In general the solution is more accurate for deeper sub-
mergence, but figure 5(b) shows that even for shallow submer-
gence the results are at worst less tlqa). We thus conclude
that Gibbs phenomenon only poses an issue for extremely shal 004
low submergence depths, so in general the singulari-atd

has only a minor effect upon the solution.

Finally, we present surface wave plots for the diffractiod a
radiation problems. Figures 7 and 8 show some represemtativ
wave height contour plots for the diffraction problem. Figu -002
7 shows the diffracted wave only outside the cylinder, net th
incoming plane wave. Similarly, figure 8 shows the diffracte

dg(a,z) / dr

-0.04

wave heights only inside the hollow cylinder. Figures sush a 006
this provide information about the relationship betweelincer
radius (and submersion) and wave elevation, as well as the no OB TTo1 02 03 04 05 06 07 o8 os 1
uniformity of the wave inside the cylinder. Z/d
Figure 9 shows a surface profile for the radiation problem, (b) a=60m.

usingP(r) = Pycog (%T") As the pressure distribution used is

6 - independent, the radiated wave heights will be as in the sur  ggyre 5. g_frp AS A FUNCTION OF Z DIFFERENT VALUES OF m.
face profile figure in every direction around the cylinder.eTh

complete surface profile, incorporating the combined afion

and radiation effects, is the linear superposition of the tele- devices, as a fundamental basis for the theory of more cempl

vant plots, figures 7 and 9. A superposition such as this gesvi  cated structures. In particular, this work will be useful kater

information about how the Cylindrical structure affects énvi- numerical mode"ing of OWC structures, as a tool for Ven'g/i

ronment in a plane surface wave field. the validity of a particular numerical scheme. This workrthe
represents a first step towards a more complete model of a re
OWC device.

5 CONCLUSIONS

This analysis has allowed us to obtain fundamental insights
into how the excited waves inside of a hollow structure sischra REFERENCES
OWC device would behave. By focussing our study on analytic [1] Sharmila, N., Jalihal, P., Swamy, A. K., and Ravindran, M
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of finite depth. This is important in the study of actual OWC [2] Garrett, C. J. R., 1970. “Bottomless harbourd”Fl. Mech,
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