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ABSTRACT
A first-order analytical solution for the diffraction and radi-

ation of ocean surface waves around a suspended hollow cylin-
drical shell is presented. We revisit the problem first studied by
Garrett (1970), using a new and more direct technique to ob-
tain the solution for the wave potential. Numerical resultsare
presented for the combined diffraction and radiation problems,
showing the wave field inside and around the structure. The
results give fundamental insight into both the ideal designand
placement of an Oscillating Water Column (OWC) device in the
ocean, so as to extract the maximum possible energy from an
incident plane wave field.

NOMENCLATURE
a Cylinder radius
d Ocean depth
δβα Kronecker delta
εm ε0 = 1, otherwiseεm = 2
g Acceleration due to gravity
Hm m-th order Hankel function of the first kind
Im m-th order modified Bessel function of the first kind
Jm m-th order ordinary Bessel function of the first kind
Km m-th order modified Bessel function of the second kind
ω Oscillating surface pressure frequency
P0 Surface pressure inside cylinder

∗Address all correspondence to this author.

φ Velocity potential of fluid
ρ Fluid density
σ Incoming plane wave frequency
ζ0 Incoming plane wave amplitude

1 INTRODUCTION
Utilizing renewable energy resources has become an impor-

tant field of study with regard to combatting climate change.Re-
cent studies show that Oscillating Water Column (OWC) devices
are an attractive approach to convert the power of ocean surface
waves to electrical energy or to directly use the converted me-
chanical energy to desalinate water. One example is the wave
energy plant at Vizhinjam, Kerala in India [1]. However, to effi-
ciently harness the ocean wave energy, diffraction, refraction and
reflection of surface waves around an OWC as well as radiation
of waves generated by the turbine attached to an OWC need to
be better understood. There is thus renewed research interest in
studying wave diffraction around a hollow cylindrical shell struc-
ture suspended in an ocean of finite depth.

Two of the problems that arise when trying to design an
OWC plant to efficiently extract the maximum energy from an
incoming wave field are:

1. how to design the shape of the OWC chamber to extract the
largest possible oscillating pressure inside the device, and

2. where to position the device in the ocean to capture waves
as large as possible.
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The first point relates to diffraction of incoming plane waves in-
side the cylinder - we would like to know the optimal design for
which the wave elevation inside the cylinder is a maximum, that
is for which a wave would resonate and interfere constructively
inside the cylinder. The second relates to the combined wavera-
diation and diffraction by an oscillating surface pressureinside
the cylinder - we would like to plot the superimposed radiated
and diffracted wave field along with incident plane wave fieldto
fully understand how the OWC structure affects its environment.

Various mathematical treatments of problems relating to
OWC devices have appeared in the literature over the years. A
fundamental contribution was made by Garrett [2], who solved
the first-order diffraction problem for a hollow suspended cylin-
der in an ocean of constant finite depth. Attempts at solving the
radiation problem have been made by Evans [3], who used an
unwieldy integral formulation, Evans and Porter [4], who used a
numerical method, and Falnes [5], who solved a similar problem
to ours, but unlike us focussed more on the calculation of hydro-
dynamic forces than on the solution for the actual wave field.

In this paper we present an analytical solution for the diffrac-
tion and radiation problems for a hollow suspended cylinderin
an ocean of constant finite depth, in the form of an infinite series
expansion. Solutions of this form are common in physics and en-
gineering [6, 7], and permit numerical calculation to any desired
degree of accuracy.

The main difference between our solution and Garrett’s lies
in the procedure used. Whereas Garrett used a minimization
technique to solve the problem, we discovered that it is possible
to formulate the problem as a matrix equation, which we solveto
obtain the solution directly. This approach has the advantage of
requiring less work in analysis than is required by Garrett,and is
also computationally easier and more elegant to implement.

In section 2 we formulate the diffraction and radiation prob-
lems in terms of an infinite set of simultaneous linear equations,
each containing an unknown Fourier coefficientFmα. We show
how to solve the system for the unknownFmα’s in section 3, thus
obtaining the complete analytic solution for the velocity poten-
tial of the fluid at every point in the domain. In section 4 we
present our numerical results, with reference to the convergence
and accuracy of the solution, and the limitations of the method
used. Finally, in section 5 we present our conclusions and discuss
further extensions to the theory.

2 PROBLEM FORMULATION
This problem was first solved by Garrett in 1970 [2]. We

employ a different method than that used by Garrett to arriveat
the numerical solution. We formulate the problem in terms ofa
system of coupled partial differential equations (PDEs), and use
standard separation of variables techniques to obtain an infinite
series expansion of the solution. We then use the orthogonality
of the eigenfunctions of the system of equations to form a matrix

equation which can be solved to any desired level of accuracy
for all of the unknown constants in the solution. We treat the
diffraction and radiation problems separately, because although
the mathematics is similar in both cases, the two problems repre-
sent different physical phenomena.

Diffraction Problem
We consider a plane wave of amplitudeζ0 that is incident

upon a hollow cylinder of radiusa and zero thickness which is
suspended at heighth above the floor of an ocean of depthd. The
cylinder is fixed to the ocean floor so does not exhibit any rolling
or surging motion. A schematic diagram for the diffraction prob-
lem is shown in figure 1.

Under a set of standard assumptions [8] for linear water
waves, e.g.,

1. incompressible fluid,
2. irrotational flow,
3. inviscid fluid, and
4. small wave amplitude and wavelength ratio (i.e.A

λ << 1,
whereA is the amplitude andλ is the wavelength)

the full Navier-Stokes equations reduce to Laplace’s equation,
subject to a set of linearized boundary conditions. That is,math-
ematically, we solve

∇2φ = 0, (1)

subject to

∂φ
∂z

= 0 onz = 0, (2)

∂φ
∂z

−
σ2

g
φ = 0 onz = d, (3)

∂φ
∂r

= 0 onr = a, for h ≤ z ≤ d, (4)

whereφ is the velocity potential at a point in the fluid. Here
Equation (2) represents a zero flux condition on the ocean floor,
(3) is the linearized free surface condition, and (4) represents
zero flux on the radial surface of the cylinder. Note that (4) im-
plies that a zero-flux condition has been imposed on both the
inner and outer surfaces of the cylinder.

Using the cylindrical symmetry of the problem, we can write
φ as

φ(r,z,θ) = ζ0

∞

∑
m=0

εmimψm(r,z)cosmθ, (5)
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Figure 1. SCHEMATIC DIAGRAM.

and define the surface disturbanceζ as

ζ(r,θ) = ζ0

∞

∑
m=0

εmimχm(r)cosmθ, (6)

whereχm andψm are related by thekinematic surface condition,
giving

χm(r) =
∂ψm

∂z

∣

∣

∣

z=d
. (7)

We decomposeφ into two functions defined onr ≤ a andr ≥ a
respectively:

φ =

{

φint , r ≤ a
φext , r ≥ a.

(8)

In doing this we introduce two continuity conditions atr = a:

φint = φext , and (9)

∂φint

∂r
=

∂φext

∂r
for 0≤ z ≤ h, (10)

which are necessary to close the system.
Solving(1) - (4), we obtain an expansion for the interior po-

tential,

ψm,int(r,z) = ∑
α
Fmα

Im(αr)
αI′m(αa)

Zα(z) (11)

and similarly we obtain an expansion for the exterior potential,

ψm,ext (r,z) =

{

Jm(kr)−
J′m(ka)

H ′
m(ka)

Hm(kr)

}

Zk(z)
Z′

k(d)

+∑
α
Fmα

Km(αr)
αK′

m(αa)
Zα(z), (12)

wherek andα are solutions of

σ2−gk tanhkd = 0 and (13)

σ2 + αg tanαd = 0 (14)

respectively. Also,

Zk(z) = N
− 1

2
k coshkz, (15)

Zα(z) = N
− 1

2
α cosαz, (16)

where

Nk =
1
2

(

1+
sinh2kd

2kd

)

,

Nα =
1
2

(

1+
sin2αd

2αd

)

.

Kreisel [9] showed that the set{Zk,Zα}, wherek andα are given
by the dispersion relations (13) and (14) are a complete set of
eigenfunctions on the domain 0≤ z ≤ d. TheFmα’s are then a
set of unknown constants to be determined.

Radiation Problem
Mathematically, the radiation of surface waves by an os-

cillating surface pressure within a hollow suspended cylinder
may be considered a dual problem to Garrett’s diffraction prob-
lem, as the formulation and solution procedure are similar.The
physics of the problem however is different to that for diffraction.
Whereas in the diffraction problem no energy is generated within
the system, the radiation problem involves the continual gen-
eration of energy by the oscillating surface pressure within the
cylinder, which is carried away by the radiating surface waves.
Although this difference is physically important, the formulation
for the radiation problem is similar to that of the diffraction prob-
lem. The major difference is that the free surface boundary con-
dition (3) is changed to

∂φ
∂z

−
ω2

g
φ =

{ iPs
ρω if r ≤ a
0 if r ≥ a

on z = d, (17)
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where the surface pressurePs oscillates with simple harmonic
motion at frequencyω. As we are not considering transient be-
havior the radiated waves, only one mode of the excited wave
motion is produced, which matches with the mode of the forced
oscillation inside the cylinder by this prescribed surfacepressure.
We will consider a non-uniform pressure distribution, letting

Ps(r) = P0cos2
(

2πr
a

)

. (18)

We transform the problem into Hankel space to obtain the inte-
rior solution

ψ0,int(r,z) =
iω
ρ

PV
Z ∞

0

κP(κ)coshκzJ0(κr)
κgsinhκd−ω2coshκd

dκ

+
kP(k)coshkzJ0(kr)

gsinhkd + kdgcoshkd−ω2d sinhkd
,

(19)

whereP(κ) is the Hankel transform ofP0,

P(κ) =

Z a

0
rPs(r)J0(κr)dr,

andPV represents a Cauchy principal value integral. We find that
ψm,int = 0 for all m > 0, and the exterior expansion is the same
as for the diffraction problem.

3 SOLUTION
The solution for both the diffraction and radiation problems

involves using the orthogonality of the eigenfunctionsZα(z) on
the domain 0≤ z ≤ d. Substituting the interior and exterior ex-
pansions forψ into the continuity condition (9) and integrating
over the domain 0≤ z ≤ d, we obtain a matrix equation:

EβαFmα = FmCβ (20)

for the diffraction problem, where

Fm = 2i
[

πka2H ′
m(ka)Z′

k(d)
]−1

, (21)

Rα =
[

α2a2I′m(αa)K′
m(αa)

]−1
, (22)

Cβ =
1
d

Z h

0
Zk(z)Zβ(z)dz, (23)

Dβα =
1
d

Z h

0
Zα(z)Zβ(z)dz, (24)

Eβα = (Rα −1)Dβα + δβα. (25)

We obtain a similar expression for the radiation problem:

EβαF1mα = Fβ, (26)

where

Fβ =
iω
ρd

PV
Z ∞

0

κP(κ)J0(κa)

κgsinhκd−ω2coshκd

Z h

0
coshκzZβ(z)dzdκ

+
kP(k)J0(ka)N1/2

k

gsinhkd + kdgcoshkd −ω2d sinhkd
Cβ, (27)

Eβα = (Rα −1)Dβα + δβα, (28)

Rα =
Km(αa)

αK′
m(αa)

. (29)

The solution of the matrix equations (20) and (26) give the com-
plete series solution for the fluid potentialφ on the whole do-
main. For computational purposes we truncate the series over
m afterM terms and the series overα afterN terms. ThenEβα
is an N ×N matrix, Fmα is a vector withN elements,Fm is a
scalar which depends uponm, andCβ as another vector withN
elements. Solving this matrix equation for the unknownFmα we
obtain the solution forφ on the whole domain,r ≤ a andr ≥ a.

4 RESULTS
In analysing our solution there are three important issues to

consider:

1. rate of convergence of the series solution,
2. agreement with previous numerical results and experiments,

and
3. how well the boundary conditions are satisfied by the solu-

tion.

We examine each of these for the diffraction and radiation prob-
lems. Unless otherwise indicated, we use the parameter values
g = 9.8 ms−1, P0 = 100 Pa,σ = 1.2 s−1, ρ = 1 kgm−3 andζ0 = 1
m in the following numerical examples. Figure 2 shows a surface
wave elevation profile for the diffraction problem for a range of
values ofm, demonstrating that the solution converges quickly
with m. Figure 3 shows the convergence of the solution by mea-
suring the difference between consecutive terms||ζn − ζn−1||,
where the norm is defined by

||ζn|| =
n

∑
m=0

εmim
R

∑
r=0

χm(r)cosmθ.

Here R is an arbitrary distance from the cylinder, which we
choose as 7a in our numerical examples, and the norm measures
the firstn partial sums of the series solution.
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Figure 2. SURFACE DISPLACEMENT ALONG θ = 0 FOR a = 10m,

d/a = 0.6, h/a = 0.4.
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Figure 3. ERROR ||ζm − ζm−1|| AS A FUNCTION OF m, for a = 10
m.

Figure 4 shows a comparison between our solution (solid
line) and Garrett’s solution (dots) for two different cylinder ge-
ometries. The function being plotted is

Am = Fmk
Z′

k(d)

kJ′m(ka)
, (30)

for m = 0, and represents the first term in the expansion of the
wave amplitude inside the cylinder. Numerically and physically,
this is the most important term in the solution. As the figures
show, our solution generally agrees well with Garrett’s. Also,
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(a) h/a = 0.4.
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(b) h/a = 0.2.

Figure 4. NUMERICAL COMPARISON OF INTERNAL WAVE AMPLI-

TUDES FOR m = 0, d/a = 0.6. SOLID LINE IS OUR SOLUTION,

DOTS ARE GARRETT’S SOLUTION.

the fit is better forh/a = 0.2 than forh/a = 0.4. We believe this
is an indication of how well the boundary condition is satisfied at
r = a. Overall, our numerical experiments show good agreement
with Garrett’s results, and are more than sufficient for practical
purposes.

To demonstrate how well our series solution satisfies each
of the three boundary conditions we examine how close each of
the functions in equations (2) - (4) are to zero. The first two
boundary conditions (2) and (3) are exactly satisfied, so theonly
boundary condition of interest to study is (4).
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Figure 5 shows∂ψm
∂r as a function ofz for r = a. That is, the

figure shows how well the solution matches the boundary con-
dition (4) for different values ofm. The figures show that the
solution converges quickly, but figure 5(b) in particular shows
that (4) is not perfectly satisfied forh ≤ z ≤ d. This is due to
Gibbs phenomenon, which occurs when trying to use a Fourier
series to describe a function with a discontinuity, as happens here
at r = a andz = h. The effect of this singularity however is de-
creased as the cylinder submergence is increased - figure 6 shows
an example of how the error in matching the boundary condition
(4) depends on the cylinder submersion, by defining a norm of
the error per unit submergence depth

∣

∣

∣

∣

∣

∣

∂ψm

∂r

∣

∣

∣

∣

∣

∣
=

∑z∈[h,d]

∣

∣

∣

∂ψ(a,z)
∂r

∣

∣

∣
∆h

d−h
,

where∆h is a small height increment, and plotting it as a function
of h/a. In general the solution is more accurate for deeper sub-
mergence, but figure 5(b) shows that even for shallow submer-
gence the results are at worst less thanO(1). We thus conclude
that Gibbs phenomenon only poses an issue for extremely shal-
low submergence depths, so in general the singularity atz = d
has only a minor effect upon the solution.

Finally, we present surface wave plots for the diffraction and
radiation problems. Figures 7 and 8 show some representative
wave height contour plots for the diffraction problem. Figure
7 shows the diffracted wave only outside the cylinder, not the
incoming plane wave. Similarly, figure 8 shows the diffracted
wave heights only inside the hollow cylinder. Figures such as
this provide information about the relationship between cylinder
radius (and submersion) and wave elevation, as well as the non-
uniformity of the wave inside the cylinder.

Figure 9 shows a surface profile for the radiation problem,
usingP(r) = P0cos2

(

2πr
a

)

. As the pressure distribution used is
θ - independent, the radiated wave heights will be as in the sur-
face profile figure in every direction around the cylinder. The
complete surface profile, incorporating the combined diffraction
and radiation effects, is the linear superposition of the two rele-
vant plots, figures 7 and 9. A superposition such as this provides
information about how the cylindrical structure affects its envi-
ronment in a plane surface wave field.

5 CONCLUSIONS
This analysis has allowed us to obtain fundamental insights

into how the excited waves inside of a hollow structure such as an
OWC device would behave. By focussing our study on analytic
solutions, we obtained an exact solution for the diffraction and
radiation problems of a suspended hollow cylinder in an ocean
of finite depth. This is important in the study of actual OWC
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Figure 5.
∂φ
∂r AS A FUNCTION OF z, DIFFERENT VALUES OF m.

devices, as a fundamental basis for the theory of more compli-
cated structures. In particular, this work will be useful for later
numerical modelling of OWC structures, as a tool for verifying
the validity of a particular numerical scheme. This work then
represents a first step towards a more complete model of a real
OWC device.
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