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Validation of a linear numerical model of wave interactions with floating compliant
disks is sought using data obtained from the wave basin experiments reported by Montiel
et al. (submitted, submitted in parallel for publication in J. Fluid Mech.). Comparisons
are made for both single-disk tests and the two-disk tests in which wave interactions be-
tween disks are observed. The deflection of the disk or disks is separated into the natural
modes of vibration in vacuo. The decomposition allows the rigid-body motions and flex-
ural motions to be analysed separately. Rigid-body motions are accurately replicated by
the numerical model but, although passable agreement is found, the amplitudes of flex-
ural modes are consistently overestimated. Extensions of the numerical model are used
to discount the experimental configuration as a source of the discrepancies. An enhanced
viscoelastic model for the disks is also proposed, which results in improved model/data
agreement for the flexural motions but cannot account for all of the disagreement.

1. Introduction

In a companion paper Montiel et al. (2012b, hereinafter referred to as Part 1), a series
of wave basin experiments are described. The aim of the experiments is to characterise
the response of floating compliant disks to regular waves. The experiments are designed
specifically to provide benchmark data for validation of the standard hydroelastic model
(SHM) based on thin-elastic plate theory for the disks and the potential flow of an
incompressible and inviscid fluid to describe the fluid motion. The model forms the
kernel of theoretical research in the field of linear hydroelasticity.
Contemporary applications of the SHM are (i) the modelling of ocean waves/sea-

ice interactions and (ii) the design of mat-like very large floating structures (VLFSs).
Comprehensive accounts of the research in these two areas are reported in recent reviews
by Squire (2007, 2011) for sea-ice, and Watanabe et al. (2004) and Chen et al. (2006)
for VLFSs. Very few experimental studies to validate the SHM are reported by these
authors, and they highlight the need for new investigations to remedy this important
shortcoming.
We seek validation of the SHM for one and two compliant disks in a fluid domain of

finite depth, and laterally unbounded, under the restrictions of the linear theory of water
waves. In particular, our goal is to characterise the flexural motion of the disks under
regular wave forcing. In Part 1 we described an experimental setup in a wave basin that
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complies with the restrictions of the numerical model. We measured the deflection of the
disks, for a range of thicknesses and wave forcings, and performed pointwise comparisons
with the numerical model at a few isolated points. Good agreement was found for both
the single- and two-disk tests datasets. The pointwise analysis gives little information
on the flexural motion of the disks, however. In particular, the deflection of a disk is
composed of rigid-body and flexural components, which need to be analysed separately
to validate the SHM in the three-dimensional setting considered here.
In this paper, we propose an enhanced comparison analysis for the response of one

and two disks. We use the decomposition of the vertical displacement of the circular
thin-elastic plate into its natural modes of vibrations (NMV) in vacuo (Itao & Crandall
1979) to conduct our analysis. This decomposition separates the contribution due to the
rigid-body modes (heave, pitch and roll) from that due to an infinite number of flexural
modes. The amplitude associated with each mode provides a single quantity that can
be estimated numerically by integration over the surface of the disk from the theoretical
and experimental deflection data. Comparing these quantities then provides trends of
agreement and discrepancy for the rigid-body and flexural motions separately.
Preliminary analyses conducted in Part 1 suggest that the numerical model tends to

overestimate the bending motion in the disk or disks compared to that measured ex-
perimentally. A theoretical analysis is conducted here to determine if the discrepancy in
flexural motion is due to the experimental setup described below. We also consider a new
plate model that includes viscoelastic effects to introduce frequency-dependent damping
in the motion of the disks.
The SHM consists of a collection of floating thin-elastic disks (Love 1944). Under

time-harmonic linear wave forcing, the disks respond freely in the vertical direction but a
restriction is imposed on the in-plane rigid-body motions (surge, sway and yaw). We ex-
tend previous solutions to the single-disk problem (see Meylan & Squire 1996; Peter et al.
2003; Andrianov & Hermans 2005), as we consider the effect of Archimedean draught on
the response. Application of Graf’s interaction theory (Kagemoto & Yue 1986) is used
for the multiple-disk problem.
In order to reproduce experimentally the conditions of the SHM, we implemented a

number of innovative technical solutions in the setup. We used disks of radius 0.72m
and made of expanded PVC to test the validity of thin-elastic plate model. Preliminary
bending tests were conducted to measure the Young’s modulus of the material. To restrict
the in-plane rigid-body motions, we constructed an anti-motion device comprising two
vertical aluminium rods respectively passing through the disk at its centre (central rod)
and close to an edge (edge rod). The disks were also equipped with an edge barrier stuck
along their circular contour to prevent flooding events.
Measurements of the deflection of the disks were performed with a remote sensing

motion tracking device. We were able to reconstruct the motion of each disk using dis-
placement data obtained at 78 points. Single-disk tests were carried out for three thick-
nesses (3, 5 and 10mm), two incident wave steepnesses (ε = 2A/λ = 1 and 2%, where
A is the incident wave amplitude and λ is the wavelength) and eight frequencies (dis-
tributed evenly over the range 0.6–1.3Hz). We also conducted tests with two disks for
two thicknesses (3 and 10mm), one steepness (1%) and four arrangements, over the same
frequency range. To the authors’ knowledge, this is the first attempt to test the validity
of the SHM in three dimensions.
An appropriate data processing technique was devised in Part 1 to extract the linear

time-harmonic component of the raw time series, that complies with the conditions of
application of the SHM. The method is a discrete version of the short-time Fourier
transform (STFT; see, e.g., Allen & Rabiner 1977; Cohen 1989), which generates the
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time evolution of each Fourier component. Truncating the first-order component in a
relevant steady-state window provides the processed data. In the present paper, we use
the STFT method to generate the experimental modal amplitudes associated with the
NMV of the disks.
To justify the discrepancies in the flexural motion observed in the comparisons, we

analyse the effects of a number of components from the experimental setup by extending
the original numerical model. In particular, we discuss the effect of the central rod on
the motion and conduct a theoretical analysis to determine if the edge barrier affects the
flexural motion of the disk.
A brief description of the numerical model and solution method is given in §2. The

NMV of the disk in vacuo and the corresponding modal expansion for its deflection is
introduced in §3. A model/experiment comparative analysis for the single-disk tests is
then conducted on the modal amplitudes associated with the rigid-body modes and a
relevant set of flexural modes. After identifying the trends of agreement and discrepancy,
a list of potential sources of discrepancy is given. In §4, we model the influence of the
edge barrier on the response of the disk to validate the experimental procedure. Based on
a preliminary analysis showing the sensitivity of modal amplitude spectra to variations
of the Young’s modulus, an extension to the SHM is proposed in §5 to account for
damping effects in the bending motion of the disk. A viscoelastic model is derived and
calibrated using the data from the bending tests that were conducted to measure the
Young’s modulus of the disks. The improvements of this approach compared to the SHM
are then examined. In §6, a model/experiment comparative analysis is conducted for the
two-disk tests. A summary of the main findings of the analysis is given in §7.
The investigation described in this paper is part of a PhD project, and is reported in

full detail by Montiel (2012).

2. Model of wave scattering by a floating elastic disk

Consider a compliant disk of thickness D and radius R floating freely on a fluid do-
main Ω, which is of constant depth h and unrestricted in the horizontal directions. Let
x = (r, θ, z) denote the cylindrical coordinates of a point in the fluid. The vertical coor-
dinate is z ∈ (h, 0), which points upwards and has its origin located at the undisturbed
free surface. The horizontal plane is described by the radial coordinate r > 0 and the az-
imuthal coordinate θ ∈ (−π, π]. The origin of the radial coordinate r is the disk’s centre,
and that of the azimuthal coordinate θ is aligned with the direction of the incident wave.
From Archimedes’ principle, the draught of the disk at rest is given by d = (ρ/ρ0)D,
where ρ is the density of the disk and ρ0 ≈ 1000 kgm−3 is the density of the fluid. From
the measurements reported in Part 1, we have ρ ≈ 623, 547 and 530 kgm−3 for D = 3, 5
and 10mm, respectively.
Under the standard assumptions of linear water-wave theory and time-harmonic mo-

tions (with radian frequency ω), we describe the fluid motion using the velocity po-
tential Φ(x, t) = Re{φ(x) e iωt}. The (reduced) potential φ is complex-valued. It satisfies
Laplace’s equation throughout the fluid and a no-flow condition on the bed, i.e.

∇2φ+ ∂2
zφ = 0 (x ∈ Ω) and ∂zφ = 0 (z = −h), (2.1)

where ∇2 denotes the Laplace operator in polar coordinates, i.e. ∇2 = ∂2
r + (1/r)∂r +

(1/r2)∂2
θ . On the mean free surface, the linearised condition

∂zφ = αφ (r > R, z = 0) (2.2)
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applies, where α = ω2/g is a frequency parameter and g ≈ 9.81m s−2 is acceleration due
to gravity.
We describe the vertical deformations of the disk using thin-elastic plate theory (Love

1944), which assumes a small aspect ratio (D/2R ≪ 1) and that the deformation remains
small compared to the thickness. The elastic behaviour is characterised by two constants,
the Young’s modulus E and Poisson’s ratio ν ≈ 0.3. Allowing the disk to move freely in
the vertical direction, we obtain a condition for φ on the disk’s underside, given by

(
β∇4 + 1− αd

)
∂zφ = −αφ (z = −d) (2.3)

where β = F/ρ0g, with F = ED3/12(1− ν2) the flexural rigidity. In addition, free-edge
conditions apply. These are

[
r2∇2 − (1− ν)

(
r∂r + ∂2

θ

)]
∂zφ = 0 (r = R), (2.4a)

and [
r3∂r∇

2 + (1− ν) (r∂r − 1) ∂2
θ

]
∂zφ = 0 (r = R), (2.4b)

which represent, respectively, vanishing of bending moment and shearing stress. We also
assume that the motions in the horizontal directions are restricted, so that

∂rφ = 0 (r = R, −d ≤ z ≤ 0). (2.5)

We express the solution of the boundary value problem using eigenfunction expansions.
In the free-surface region (r > R), the potential is denoted by φ(o) = φI + φS , and is
composed of a prescribed harmonic forcing term φI(x) = ( ig/ω) exp (k0r cos θ) cos k0(z+
h)/ cos k0h with unit amplitude (travelling in the direction θ = 0 towards θ = π) and an
as yet unknown scattered wave component φS(x). In the far field (r → ∞), the scattered
wave decay is governed by the Sommerfeld radiation condition

r1/2 (∂r + k0)φS → 0, (2.6)

where the wavenumber k0 will be defined shortly. The eigenfunction expansion is then
given by the truncated series

φS(x) ≈
M∑

m=0

ϕ(o)
m (z)

N∑

n=−N

A(o)
m,nKn(kmr) e inθ (r > R), (2.7)

where A
(o)
m,n (m = 0, . . . ,M, n = −N, . . . , N) represent unknown amplitudes and Kn de-

notes the modified Bessel function of the second kind of order n. We have also introduced
the vertical modes ϕ

(o)
m (z) = cos km(z + h), 0 ≤ m ≤ M , where the quantities km are

roots the dispersion relation

k tankh = −α, (2.8)

such that k0 is purely imaginary and km, m ≥ 1, are real and ordered in ascending
magnitude. In (2.7), the wave-like component associated with k0 supports a travelling
wave that decays geometrically as O

(
r−1/2

)
, while those associated with km, m ≥ 1,

support evanescent waves, which decay exponentially with distance away from the edge
of the disk. Numerical evidence indicates that as km increases, the contribution of the
corresponding eigenfunctions in (2.7) diminishes, which justifies the truncation in (2.7).
In the disk-covered fluid domain, the eigenfunction expansion of the potential, denoted

by φ(i), takes the form

φ(i)(x) ≈
M∑

p=−2

ϕ(i)
p (z)

N∑

n=−N

A(i)
p,nIn(κpr) e

inθ (r < R), (2.9)
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where A
(i)
p,n (p = −2, . . . ,M, n = −N, . . . , N) are the unknown amplitudes, and In (n =

−N, . . . , N) are the modified Bessel functions of the first kind of order n. The vertical

modes are ϕ
(i)
p (z) = cosκp(z + h), −2 ≤ p ≤ M , such that κp are roots of the dispersion

relation
(
βκ4 + 1− αd

)
κ tanκ (h− d) = −α. (2.10)

Similarly to the free-surface dispersion relation (2.8), κ0 is purely imaginary and is as-
sociated with a travelling wave component, and κp, 1 ≤ p ≤ M , are real and ordered
in ascending, and define vertical modes that support evanescent waves. The dispersion
relation (2.10) also admits two typically complex roots labelled κ−2 and κ−1, which sup-
port damped travelling waves (Bennetts 2007). Thus, two additional modes are present
in comparison to the solution in the free-surface region.
We devise a version of the eigenfunction matching method (EMM) to solve for the

unknown amplitudes. This technique is based on enforcing weak continuity of fluid pres-
sure and velocity at the interface between free-surface and disk-covered fluid regions. Our
solution extends the two-dimensional EMM of Montiel et al. (2012a). The EMM is an
efficient method to obtain two to three significant digit accuracy (Kohout et al. 2007),
which is sufficient for comparison with experimental data. It is also suitable for the model
enhancements made in §4 and §5.
To implement the EMM, let u describe the normal velocity at the interface between

the free-surface and disk-covered fluid domains (r = R). Using angular periodicity, we
decompose u in its Fourier modes as u(θ, z) =

∑n=∞

n=−∞
un(z) e

inθ. Invoking continuity of
fluid pressure and velocity throughout the fluid, the matching equations are given by

φ(o)(x) = φ(i)(x), ∂rφ
(o)(x) = u(θ, z) = ∂rφ

(i)(x) (r = R, −h ≤ z < −d). (2.11)

Using the linear independence of the Fourier basis in the matching equations (2.11), yields
a set of one-dimensional matching equations involving the functions un(z). To implement
the numerical procedure, we approximate un(z) as a partial expansion of Q+1 weighted
Gegenbauer polynomials uq

n(z), which dictate the asymptotic behaviour of the velocity in
the vicinity of the submerged corner (Williams & Porter 2009). Montiel (2012) proposed
a detailed analysis of the convergence properties of this expansion.

A system of equations for the unknown amplitudes A
(o)
m,n and A

(i)
p,n is obtained by

projecting the matching equations (2.11) onto spaces spanned by the different vertical
modes. Using (2.5), we obtain

M∑

m=0

kmA(o)
m,nK

′

n(kmR)

∫ 0

−h

ϕ(o)
m (z)ϕ(o)

r (z) dz ≈

∫
−d

−h

un(z)ϕ
(o)
r (z) dz, (2.12a)

r = 0, . . . ,M , and

M∑

p=−2

κpA
(i)
p,nI

′

n(κpr)

∫ 0

−h

ϕ(i)
p (z)ϕ(i)

s (z) dz ≈

∫
−d

−h

un(z)ϕ
(i)
s (z) dz, (2.12b)

s = −2, . . . ,M , for the continuity of fluid velocity. In the last two equations, the prime
superscript denotes the derivative. Continuity of the fluid pressure is given by

M∑

m=0

A(o)
m,nKn(kmR)

∫
−d

−h

ϕ(o)
m (z)uq

n(z) dz ≈

M∑

p=−2

A(i)
p,nIn(κpR)

∫
−d

−h

ϕ(i)
p (z)uq

n(z) dz,

(2.12c)

0 ≤ q ≤ Q. Note that the modes ϕ
(o)
m (z) are orthogonal, but the modes ϕ

(i)
p (z) are not.
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Equations (2.12) define a system of 2M+Q+3 equations for each Fourier component. Ap-
plying the edge conditions (2.4) completes the system. Algebraic manipulations, similar
to those described in Montiel et al. (2012a), are used to obtain the solution.
The deflection of the disk, η(r, θ, t) = Re{w(r, θ) e iωt}, is obtained from the kinematic

condition w = (1/ iω)∂zφ
(i) at z = −d. This gives

w(r, θ) ≈ (1/ iω)

M∑

p=−2

ϕ(i)′

p (−d)

N∑

n=−N

A(i)
p,nIn(κpr) e

inθ (r < R). (2.13)

3. Modal analysis of a single disk

3.1. Natural modes expansion

We will compare theoretical and experimental data for integrated quantities over the
disk’s surface as a means to characterise the response of the disk. We decompose the
motion of the disk into the natural modes of vibration (NMV) of the disk in vacuo,
denoted by wn,j(r, θ), n ∈ Z, j ∈ N. A derivation of the NMV, also commonly referred to
as the dry modes in ship hydroelasticity, is given in Meylan & Squire (1996). The NMV
are orthogonal with respect to the inner-product

〈f1, f2〉 =

∫ R

0

∫ 2π

0

f1(r, θ)f2(r, θ)r dr dθ.

The deflection of the disk may therefore be represented as a superposition of the NMV
with corresponding amplitudes An,j , i.e.

w(r, θ) =

∞∑

n=−∞

∞∑

j=0

An,jwn,j(r, θ), An,j =
〈w,wn,j〉

〈wn,j , wn,j〉
, (3.1)

n ∈ Z, j ∈ N.
The advantage of decomposing the deflection of the disk into the NMV is that it

separates the rigid-body and flexural motions. Heave, roll and pitch are the rigid-body
modes, denoted by w0,0, w−1,0 and w1,0, respectively. In contrast, in the eigenfunction
decomposition (2.13), each mode consists of rigid-body and flexural components. Also
note that the NMV are separated into symmetric and anti-symmetric modes (with respect
to θ = 0, π), corresponding to n ≥ 0 and n < 0, respectively. This reduces our analysis
to evaluating the modal amplitudes An,j for n ≥ 0 for symmetric problems.
We consider a subset of eight modal amplitudes An,j for the comparison analysis,

corresponding to the modes being the most excited, later referred to as dominant modes.
These are An,0, n = 0–4, and An,1, n = 0–2. Preliminary analyses showed that higher-
order NMV undergo very little excitation in our parameter range. Figure 1 shows the
mode shape of the dominant modes. Surfaces are shown for a disk of unit radius, without
loss of generality. Note that the angular and radial indexes (n and j) represent the number
of nodal diameters and nodal circles of the NMV, respectively.
The experimental deflection data are obtained by interpolation of the displacement

data from 78 points of the disk surface, while the theoretical deflection is calculated from
(2.13). Standard integration techniques are used to evaluate the amplitudes. The results
provided in this paper are given with an accuracy of at least two decimal places for a
unit wave forcing.
Using the experimental measurements, we generate a time series for each modal am-

plitude, which is then processed using the short-time Fourier transform (STFT) method
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Figure 1. Diagram of the mode shape of eight symmetric NMV wn,j , n = 0–3, j = 0, 1.

described in Part 1. The method provides the time evolution of each Fourier compo-
nent of the signal. We then take the mean of the fundamental amplitude in a relevant
steady-state time-window, which removes the influence of the transient regime and the
wave basin lateral boundaries. Therefore, we obtain the linear time-harmonic amplitude
associated with the time series, which can be compared with the model’s prediction.
Additional details regarding the experimental setup and the STFT method are given in
Part 1 (§4.1).
The STFT processing technique generates a single value for each test and mode, there-

fore allowing us to analyse the modal amplitudes over the frequency range of interest
f = 0.5–1.5Hz. In addition, we remove the dependence of the results due to the inci-
dent wave amplitude, A say, as we use the conventional scalings Ãn,j = An,j/A, for

all (n, j) 6= (1, 0), and Ã1,0 = A1,0/|k0|A, where k0 is defined in §2. Subsequently,
frequency-dependent scaled modal amplitudes are referred to as response amplitude op-
erators (RAOs).

3.2. Comparison model/experiments

Figure 2 shows the scaled rigid-body RAOs, i.e. heave and pitch, for the three disk
thicknesses considered, D = 3, 5 and 10mm. We use a logarithmic scale to facilitate
the readings for low magnitude responses. Each experimental amplitude is defined as the
mean value of four repeated tests and the error bars correspond to the standard deviation
(see Part 1 for more information about the tests conducted).
The experimental and theoretical RAOs display good agreement, with a relative dif-

ference (at each experimental frequency) of 5–20%. The only significant differences are
found in the vicinity of the phase change in heave predicted by the model for the 3
and 5mm disks (see panels a and b, respectively). This feature is not present in the
experimental RAOs, although we would need to conduct additional tests using a denser
frequency sampling to give conclusive statements. Away from these frequencies, the nu-
merical model slightly overestimates the measured response. It is seen that the error bars
are small for these modes (relative standard deviation of 5–10%) except at a few isolated
frequencies, suggesting good repeatability of the tests. At f = 0.6Hz, we observe that
the discrepancy between theoretical and experimental RAOs is larger for the pitch mode
(≈ 20% pointwise relative difference), consistently for the three thicknesses. In §3.3, we
will list possible drivers of the discrepancies observed.
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The RAOs associated with the six dominant flexural modes are shown in figure 3. The
agreement between numerical predictions and experimental data is not as good for the
flexural modes as for the rigid-body modes. However, we note that the frequencies at
which resonance peaks are observed for Ã2,0 and Ã0,1, are consistent between numerical
model and experiments. The numerical model overestimates the experimental amplitudes
of the flexural modes in all cases, except for low amplitude responses (e.g. Ã2,1 at low
frequencies for all thicknesses and at high frequencies for D = 10mm) due to the limited
resolution of the measuring device. For the other modes, we find a relative difference
of 30–70% overall for the three disks considered, away from the frequencies associated
with significant discrepancies (e.g. phase changes or very low theoretical amplitudes).
The agreement is better for the 3 and 10mm disks (30–50% relative difference) than for
the 5mm disk (40–70% relative difference). The relative difference is higher than that
estimated for the rigid-body modes and does not depend strongly on the frequency. We
observe that all occurrences of significant discrepancy between theoretical and experi-
mental data (e.g. panel c for D = 10mm and panel f for D = 5 and 10mm) correspond
to RAOs with magnitudes less than 0.01. This relates to dimensional modal amplitudes
of less than 1% of the incident wave amplitude, for which the accuracy is limited by the
resolution of the measuring device. Such small amplitudes contribute very little to the
motion of the disk and are not discussed further in this paper.

3.3. Possible sources of discrepancy

Although pointwise model/data comparisons of disk deflections showed a good overall
agreement (see Part 1), discrepancies have been found in the more rigorous comparison of
RAOs. In particular, the numerical model consistently overestimates the flexural response
by at least 30%, suggesting that additional physical processes have been neglected in the
model.
A number of phenomena can be discarded straightforwardly as major sources of dis-

crepancy. In particular, theoretical analyses conducted by Fox & Squire (1991) and Balm-
forth & Craster (1999) on semi-infinite plates have shown that the effect of rotary inertia
and shear distortion are negligible in a regime similar to that considered here. There-
fore, it is reasonable to conclude that these effects are irrelevant in our experiments. In
addition, the validity of the inviscid fluid approximation is deduced from the order of
magnitude of the two non-dimensional quantities kR ≥ O(1) and A/R ≪ 1, where k is
the wavenumber of the incident wave. These validate the large body approximation and
allow us to discard form drag. Additional frictional sources arising from fluid/structure
interaction, such as skin friction are neglected, based on previous observations that form
drag dominates skin friction in similar situations (Kohout et al. 2011).
A pointwise analysis of non-linearities in the motion was conducted in Part 1. It was

found that the amplitudes of the second–order harmonics are less than 5% of the funda-
mental amplitude in most cases, and that similar non-linearities inherent to the incident
wave explain this behaviour in the disk’s motion. We expect to find similar non-linear
effects in the experimental RAOs when the magnitude of the fundamental amplitude is
sufficiently high to be captured accurately by the measuring device. On the other hand,
the limited resolution of the measuring device does not provide accurate measurements
in regimes characterised by RAOs of very low magnitude, e.g. O

(
10−5

)
m. In these cases,

experimental noise has the same order of magnitude as that of the amplitude, so that the
proportion of higher-order harmonics compared to the fundamental component increases.
We illustrate these assertions for the RAOs Ã2,0 and Ã3,0. We define the relative

harmonic amplitude Ã
(2)
n,0 (expressed in percent), n = 2, 3, as the ratio of the second-order

amplitude to the fundamental amplitude. Figure 4 shows the relative second-order RAOs,
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Figure 4. Relative second-order RAOs of (a–c) Ã2,0 and (d–f) Ã3,0 (in percents). Panels
(a,d), (b,e) and (c,f) show the RAOs associated with D = 3, 5 and 10mm, respectively.

for each disk thickness. Each data point is defined as the mean over four repeated tests,
similarly to the fundamental amplitudes analysed in §3.2, and error bars are included.
As expected, we observe that the proportion of second-order components increases at
low frequencies consistently for all the thicknesses and both NMV. In the low frequency
regime, the NMV have very low magnitude, as shown in figure 3, and contribute very
little to the motion of the disk. Experimental noise due to the limited resolution of
the measuring device is likely to explain this behaviour. In the mid- to high-frequency
range, we find relative harmonic amplitude of less than 10%, which can be attributed
to non-linearities in the incident wave or arising from scattering at the disk edge. These
higher-order components are filtered as part of the data processing method. Therefore,
we do not consider the influence of non-linear effects further in this paper, keeping in
mind that in regimes characterised by RAOs of very low magnitude (low frequencies for
the dominant flexural modes and pitch, and high frequencies for heave), non-linearities
are probably a major source of discrepancy due to experimental noise of the same order
of magnitude as the fundamental amplitude.

The experimental setup does not restrict the anti-symmetric motion in the disk. Al-
though the forcing is applied symmetrically, imperfections in the setup may cause anti-
symmetric modes to be slightly excited. Unfortunately, we have no means of quantifying
the magnitude of the anti-symmetric NMV for the single disk case, as we have measured
the displacement on half the disk only. However, we have validated the symmetry assump-
tion pointwise for a few test cases (see Montiel 2012), suggesting that anti-symmetric
modes experience negligible excitation.

We now consider the influence of the central rod restricting partially the disk’s hori-
zontal motion on the response of the disk. An extension of the SHM that accounts for
surge and sway has been devised by Montiel (2012) to estimate the effect of the residual
horizontal motion. The analysis concluded that the effect on the rigid-body and flexural
modes is insignificant. Montiel (2012) also proposed a numerical model to include fric-
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Ã
2
,0

Ã
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Ã
2
,1

f(Hz) f(Hz) f(Hz)

(a) (b) (c)

(d) (e) (f)

Figure 5. Influence of the edge beam on the flexural modes. The theoretical RAOs are given
for the free edge case (solid and dashed line), and for an edge beam with Young’s modulus
Eb = 1MPa (pluses and crosses) and Eb = 10MPa (circles and squares), for two disk thicknesses
(D = 3 and 10mm, respectively).

tional effects arising from the quasi-permanent contact between the oscillating hole at
the disk centre and the central rod. Friction introduces a local restriction of the displace-
ment at the disk centre, which is an axisymmetric process. A Green’s function is used
to embed the point restriction in the SHM which, as expected, only affects the axisym-
metric NMV, i.e. n = 0. As the trends of discrepancy are similar for all the dominant
flexural modes (see figure 3), we conjecture that frictional effects are not the main cause
of the model/data discrepancies. The influence of the rod on the motion can therefore
be disregarded as it only affects certain modes.
Additional phenomena may be responsible for the observed discrepancy in flexure

between theoretical and experimental data and require further analysis to confirm or
discard their influence on the motion. In the subsequent sections, we investigate the
influence of the edge barrier, stuck along the disk’s contour to prevent potential flooding
events, on the vibrational behaviour of disk. A viscoelastic disk model is also proposed
as an extension of the SHM to account for internal damping.

4. Edge barrier

We devised a technical solution to prevent flooding events that would otherwise disturb
the motion of the disk. The barrier is a strip of neoprene foam (synthetic rubber) with
rectangular cross-section, which is fixed around the perimeter of each disk (see Part 1 for
a complete description). The edge barrier may be seen as an edge stiffener with a given
mass, which may potentially modify the vibrational behaviour of the disk.
We have estimated the density of the barrier to be ρb ≈ 150 kgm−3, the Young’s

modulus to be Eb ≈ 1MPa and Poisson’s ratio to be νb ≈ 0.5, as they are common
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values for this material. We denote by hb and wb the height and width of the rectangular
cross-section, respectively. The following values are used: hb = 30mm and wb = 10mm
for the 3mm disk, hb = 50mm and wb = 5mm for the 5mm disk, and hb = 50mm and
wb = 10mm for the 10mm disk.
We derive an elastic ring model (see Love 1944) for the edge barrier. The model con-

siders the inertial and elastic properties of the barrier. The ring may be seen as a beam,
which is curved at rest, and is referred to as an edge beam in this paper. The vertical
motion of the coupled disk/edge beam system is assumed to be unrestricted. The transfer
of forces and moments from the edge beam to the disk is modelled in the edge conditions
of the disk.
The equations used in the present model were derived by Amon & Dundurs (1968),

who solved the coupled disk/beam problem assuming a simply supported or vertically
guided beam. The edge-beam model includes the effects of flexure and torsion, in addition
to its mass, as these parameters possibly influence the stiffening of the disk edge. Later,
Stuart & Carney (1974) considered the vibration problem of an annular plate with a
free interior edge beam and a simply supported exterior edge. We follow the approach
of Stuart & Carney (1974) for a free edge beam. Neglecting the effects of rotary inertia,
the disk’s edge conditions are obtained by application of Newton’s second law of motion.
The force equation is
{

−D∂r∇
2 +

D (1− ν)

r2

(
1

r
− ∂r

)
∂2
θ +

1

r4
∂2
θ

[
Kb (1− r∂r)

]}

{[
− Fb

(
∂2
θ + r∂r

) ]
}
∂zφ

(i) = −mbω
2∂zφ

(i) (r = R), (4.1a)

where Lb is the torsional rigidity, Fb is the beam’s flexural rigidity and mb = ρbhbwb.
Likewise, we express the moment equation as

{
−D∇2 +

D (1− ν)

r

(
1

r
∂2
θ + ∂r

)
+

1

r3

[
Kb (1− r∂r) ∂

2
θ

]}

{[
+ Fb

(
∂2
θ + r∂r

) ]
}
∂zφ

(i) = 0 (r = R). (4.1b)

The flexural rigidity of the ring is Fb = Ebh
3
bwb/12(1− ν2b ). The torsional rigidity lin-

early maps the angle of twist along the ring to the torque applied. For a rectangular
cross-section, Timoshenko & Goodier (1951) derived an exact series expansion in terms
of the width to height ratio. We retain the first three terms only and obtain

Kb ≈ hbw
3
b

(
1

3
− 3.36

wb

hb

(
1−

w4
b

12h4
b

))
Gb, (4.2)

where Gb = Eb/2(1 + νb) is the shear modulus of the ring. Note that the free edge
conditions (2.4) used in §2 are retrieved by setting Kb = Fb = mb = 0.
The solution method requires very little modification to accommodate the new edge

conditions (4.1). All that is required is that the eigenfunction expansion for the disk’s
deflection (2.13) is substituted in (4.1) rather than (2.4).
In order to assess the effects of the edge beam on the response of the disk, we decompose

the displacement of the disk with respect to the NMV of the free disk. By using the same
basis of NMV to decompose the deflection of the disk, we can compare the RAOs obtained
with the edge-beam and free-edge disk models.
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Figure 5 shows the flexural modes RAOs for the free-edge and the edge-beam disk
models. We show results for D = 3 and 10mm only. The parameters used for the sim-
ulations are those specified earlier. Due to uncertainty regarding the values taken for
the edge beam parameters, we also examine the sensitivity of the model to the barrier’s
Young’s modulus by generating the RAOs for Eb = 10MPa, i.e. ten times the estimated
value.
We observe that the addition of an edge barrier has little effect on the RAOs. In

particular, the flexural modes are not affected by the barrier for Eb = 1MPa. However,
the RAOs Ã2,0, Ã3,0 and Ã2,0 have slightly increased magnitudes over the frequency
range considered, for Eb = 10MPa. It is also seen that the phase shift associated with
Ã2,1 is moved towards higher frequencies.
The edge beam (as modelled here) tends to induce modifications in the RAOs that

increase the deviation from the experimental data. In results that are not shown here,
we also found that the rigid-body modes are less affected by the edge beam than the
flexural modes. Therefore, it is reasonable to conjecture that the edge barrier does not
affect the response of the disks in our experiments.

5. Extension to the disk model

5.1. Sensitivity with respect to Young’s modulus

Figure 6 shows the RAOs of Ã2,0 and Ã0,1 for the following values of the Young’s modulus:
E = 500, 838, 1300 and 1600MPa for D = 3mm, E = 250, 503, 750 and 1000MPa for
D = 5mm, and E = 250, 496, 750 and 1000MPa for D = 10mm. We observe that,
as the Young’s modulus increases, the magnitude of the RAOs decreases, although the
qualitative behaviour remains the same. Increasing the Young’s modulus stiffens the disk,
so that it bends less. Therefore, it is sensible that the amplitudes associated with the
flexural modes are lower for higher values of E. The theoretical and experimental RAOs
are therefore in better agreement as the Young’s modulus is increased.
Furthermore, variations of Young’s modulus affect the RAOs more for larger thick-

nesses, which is a result of the cubic thickness term in the expression of the flexural
rigidity. For the 10mm disk, we obtain a very good agreement between theoretical and
experimental RAOs when the Young’s modulus is approximately doubled.
Thus far, we have calibrated the SHM with values of the Young’s modulus that were

measured experimentally by means of four-point bending tests. These values, Eexp = 838,
503 and 496MPa, are significantly smaller than those specified by the manufacturer of
the material, Espec = 1300, 750 and 750MPa, for D = 3, 5 and 10mm, respectively. The
model/data comparisons and results of the sensitivity study suggest that the values of
Young’s modulus used in our model may be inaccurate
Although good repeatability was found during the bending tests (less than 2% relative

error as shown by Marsault 2010), it is possible that the tests do not provide a good
representation of the bending experienced by the disks in the wave basin experiments. The
four-point bending tests consist of loading a parallelepipedic simply supported sample of
the material at two points. The load is applied vertically to induce a constant low strain
rate, of deflection speed 0.33mms−1 (speed at which the load moves and deforms the
sample of material). In our hydroelastic experiments, this quantity may be estimated by
2A/T = O(10) mms−1, where T is the period of the wave forcing. Therefore, the strain
rates involved in our experiments are much higher than those of the bending tests. For
a purely elastic material the deflection speed would not have any influence on the value
of E but, for viscoelastic materials, the effects of delayed elasticity render the Young’s
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Figure 6. Influence of the Young’s modulus on the RAOs (a–c) Ã2,0 and (d–f) Ã0,1

for D = 3mm (panels a,d), D = 5mm (panels b,e) and D = 10mm (panels c,f).
In each panel, the theoretical RAOs are given for E = 500, 250, 250MPa (dash-dot),
E = 838, 503, 496MPa (solid), E = 1300, 750, 750MPa (dot) and E = 1600, 1000, 1000MPa
(dash) for D = 3, 5, 10mm, respectively.

modulus dependent on the strain rates involved (structure more rigid for higher strain
rates), which, in our case, are governed by the deflection speed. In particular, polymeric
foams, such as the PVC utilised in the wave basin tests, are known to exhibit linear
viscoelastic effects (see, e.g., Altenbach & Eremeyev 2009), which are characterised by
lower strain deformations for increased stress rates and increasing strain deformations
under sustained load (Flügge 1975).

5.2. Linear viscoelasticity

5.2.1. Model

For a purely elastic material, Hooke’s law is given by

σij = σv
ij + σd

ij = 3Kδijǫ
v + 2Gsǫ

d
ij , (5.1)

whereK andGs are the bulk and shear moduli, respectively. The components of the stress
tensor σij are here expressed in terms of the volumetric strain ǫv (change of volume at
constant shape) and the deviatoric strain ǫdij (change of shape at constant volume). The

first and second terms of (5.1) are denoted by σv
ij and σd

ij , respectively, corresponding to
the volumetric and deviatoric stress components.
We now assume the material is viscoelastic. For small deformations, it is reasonable to

consider a linear relation between volumetric stress and strain (Flügge 1975, §8.3). We
introduce viscoelasticity in the disk model by describing the deviatoric stress/strain map-
ping by a standard three-parameter spring/dashpot solid model, composed of a spring
(with constant E0) in series with a Kelvin element, composed of a spring (with constant
E1) and a dashpot (with constant F1) in parallel. Assuming time-harmonic motion, the
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stress/strain mapping is given by

σd
ij =

q0 + iωq1
1 + iωp1

ǫdij , (5.2a)

where

p1 =
F1

E0 + E1
, q0 =

E0E1

E0 + E1
and q1 =

E0F1

E0 + E1
. (5.2b)

The correspondence principle of viscoelasticity states that the viscoelastic problem can
be formulated as in the purely elastic case, but replacing the elastic constants by their cor-
responding complex frequency-dependent map (see, e.g., Biot 1955; Flügge 1975). There-
fore, the disk equation can be rewritten by substituting 2Gs by (q0 + iωq1)/(1 + iωp1).
Following Altenbach & Eremeyev (2009), we assume a constant Poisson’s ratio, so that
only the Young’s modulus needs to be replaced by its frequency-dependent viscoelastic
counterpart, denoted Ev, which is obtained from the identity E = 2Gs(1 + ν). We then
obtain

Ev =
q0 + iωq1
1 + iωp1

(1 + ν). (5.3)

The boundary value problem described in §2 is now reformulated by replacing the
elastic constant β in (2.3) by βv(ω) = Ev(ω)D3/12ρ0g(1 − ν2). Therefore, the solution
method only differs in that the roots of the dispersion relation in the disk-covered fluid
region (2.10), denoted by κv

p, p ≥ −2 are all complex. Note that there is a one-to-one
correspondence between the roots of the purely elastic and viscoelastic problems. In
practice, each κv

p is located close to κp (in the complex plane), so we use the latter as an
initial guess in the dispersion relation solver.

5.2.2. Calibration

To estimate the additional parameters (E0, E1 and F1) introduced in the viscoelastic
model, we use the data obtained from the four-point bending tests. Although these
quasistatic flexural tests are not suitable to measure viscoelastic effects (due to low
strain rates and insignificant inertial effects), they allow us to obtain estimates for the
parameters. To characterise properly the viscoelastic properties of the PVC used in this
work, dynamic tests would be required (Deverge & Jaouen 2004).
The four-point bending tests consist of loading a simply-supported beam vertically

and simultaneously at two points, that are equidistant from the mid-point. For a purely
elastic material, it is straightforward to obtain a linear mapping P̃ (t) = 2GswP (t), where

wP is the deflection of the beam at the points at which the load is applied and P̃ is the
scaled load. For a viscoelastic material, the correspondence principle applied in the time
domain yields (

q0 + q1
d

dt

)
wl =

(
1 + p1

d

dt

)
P̃ . (5.4)

The tests were performed with a constant deflection speed, so that wl(t) = c0t with
c0 ≈ 0.33mms−1. We then obtain a theoretical estimate for the load

P̃ (t) = c0 (q1 − p1q0)
(
1− e−t/p1

)
+ c0q0t. (5.5)

Note that the system behaves elastically once the exponential term dies out. Therefore,
viscoelastic effects influence the response in the early moments only, which is referred to
as the viscoelastic regime.
Using the load and deflection data provided by the flexural tests, we estimate the pa-
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Figure 7. Influence of viscoelastic effects on the (a–c) heave and (d–f) pitch RAOs, for
D = 3mm (panels a,d) D = 5mm (panels b,e) and D = 10mm (panels c,f). In each panel,
the theoretical RAOs are given for the complex Young’s modulus Ev (dotted line) and for the
purely elastic modulus E (solid line). The experimental RAOs are also given for reference.

rameters q0, q1 and p1, in the least square sense, using a non-linear regression of (5.5). We
obtained the following values: q0 ≈ 587, 357 and 349MPa, q1 ≈ 58.3, 52.3 and 45.4MPa s,
and p1 ≈ 433, 219 and 10.3µs, for D = 3, 5 and 10mm, respectively. While conducting
the calibration analysis, we found an inconsistency between the bending test data and
the numerical model in the viscoelastic regime, as the linear theory of viscoelasticity
predicts an initial slope larger than the elastic regime slope, i.e. P̃

′

(0) > c0q0, which
is not respected by the data. This suggests that the experimental data obtained from
the four-point bending tests are flawed in the viscoelastic regime. Therefore, the values
obtained for the viscoelastic parameters are considered as rough estimates at best, which
only allow us to introduce realistic damping effects in the numerical model.

5.2.3. Results

We again decompose the deflection of the viscoelastic disk into the NMV of the purely
elastic disk. Figure 7 shows the heave and pitch RAOs for the three disk thicknesses. Pre-
dictions from the purely elastic and viscoelastic disk models are compared. As expected,
viscoelastic effects have little influence on the RAOs of the rigid-body modes. However,
in the vicinity of the phase change frequencies for the elastic model (see panels a and
b), a non-zero minimum is reached by the viscoelastic model. Therefore, damping effects
provide a reasonable explanation to the apparent absence of phase change frequencies in
the experimental data.
Figure 8 shows the RAOs associated with the flexural amplitudes Ã2,0 and Ã0,1. We

restrict this analysis to two flexural modes for clarity, as, in results not shown here, similar
observations for the other dominant flexural modes are made (see Montiel 2012). It is seen
that viscoelastic effects become more significant as frequency increases. This is related
to the frequency variations Ev(ω). It can be shown that |Ev(ω)| ≈ E at low frequencies
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Figure 8. As in figure 7 but for the RAOs (a–c) Ã2,0 and (d–f) Ã0,1.

and steadily increases with frequency over the spectrum. Therefore, viscoelastic effects
tend to lower the magnitude of the RAOs towards high frequencies.
It is therefore reasonable to conjecture that viscoelastic effects (as modelled here) may

explain part of the discrepancy between experimental and theoretical data for the flexural
modes at high frequencies. The analysis conducted in this section provides satisfactory
results as part of the objectives of the present investigation. Additional dynamic tests
would be required to characterise the behaviour of the disks properly and design a model
better suited to capture the internal damping in the disks.

6. Modal analysis for the two-disk tests

For the two-disk tests, let s denote the spacing (centre to centre) and ̟ the an-
gle between the incident wave direction and the axis joining the disk centres. We have
recorded the deflection of two disks for four different arrangements and two disk thick-
nesses, D = 3mm and 10mm. We tested one symmetric arrangement (̟ = 0) for two
different spacings s = 1.88 and 3m, and two non-symmetric arrangements (̟ = 30◦ and
45◦) with a single spacing s = 3m.
We obtain a theoretical solution to the two-disk problem using the interaction theory

of Kagemoto & Yue (1986). The method is based on defining the forcing on each disk
as the sum of the incident wave forcing and the scattered wavefield from the other disk.
The method is theoretically exact in terms of capturing multiple scattering effects.
Using the deflection data allows us to evaluate the amplitudes of the NMV of the

two disks. Recall from Part 1 that to define linear time-harmonic quantities from the
experimental data, we average the fundamental amplitude of the corresponding time
series in a steady-state window, chosen to remove the effects of the transient regime
and the reflections from the wave basin’s boundaries. For the two-disk tests, our goal
is to characterise the effect of the presence of the disks on one another. Therefore, we
define the start of the steady-state window after one interaction cycle (i.e. scattered wave
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Figure 9. Comparison of the theoretical and experimental RAOs of four modes for a symmetric
two-disk arrangement with spacing s = 1.88m and disk thickness (a–d) D = 3m and (e–h)

D = 10m. Results are given for the RAOs (a,e) Ã0,0, (b,f) Ã1,0, (c,g) Ã2,0 and (d,h) Ã0,1.
Each panel shows the theoretical and experimental RAOs associated with the front disk (dotted
lines and circles, respectively), the back disk (dashed lines and pluses, respectively) and the
corresponding single disk (solid lines and crosses, respectively).

travelling from one disk to the other one and back). The proximity of the side walls does
not allow us to consider further multiple scattering effects on the response of the system.

6.1. Symmetric arrangements

We examine the response of the two symmetric arrangements first, so that we need only
consider the symmetric NMV, similarly to the single-disk investigation. We refer to the
front and back disks as the closest and furthest disks from the wavemaker in a given
arrangement. In addition to analysing the trends of agreement between theoretical and
experimental data, we discuss how the RAOs associated with the front and back disks
compare to the corresponding single-disk data (with the same thickness parameter). In
the following, we present results for four RAOs only, Ã0,0, Ã1,0, Ã2,0 and Ã0,1. The
behaviours observed for these amplitudes are indicative of those of all the dominant
flexural modes.
Figures 9 and 10 show the RAOs of the four modes considered here for the symmetric

arrangements, with spacings s = 1.88m and 3m, respectively. At low frequencies (f <
1Hz for D = 3mm and f < 0.8Hz for D = 10mm), the RAOs associated with the
front disk, back disk and single disk coincide for both experimental and theoretical data.
The trends of agreement between theory and experiments are therefore similar to those
discussed for the single disk in this regime (see §3.2).
For higher frequencies, the experimental and theoretical RAOs provide evidence that

the two disks affect each other’s motion. In particular, we observe that the RAOs associ-
ated with the back disk have lower magnitude than those associated with the front disk.
They are characterised by a minimum for most modes. We observe that this minimum is
more pronounced for the large spacing than for the small spacing. At high frequencies the
presence of the front disk alters the incident wave by scattering, so that the back disk
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Figure 10. As figure 9 but for the large spacing s = 3m.

undergoes excitations due to waves with reduced energy. These interaction effects are
more significant for the 10mm disks, as thicker disks more strongly scatter the incident
wave. Therefore, we can conclude on the good qualitative agreement between theoretical
and experimental RAOs in the high frequency range for both spacings.
To understand how the presence of the back disk affects the front disk’s motion, we

discuss the theoretical RAOs obtained for the 10mm disks (see panels e–h). We observe
that for each mode, the front disk RAO oscillates about that of the single disk. The
3mm front disk RAOs show a similar oscillatory behaviour, but of lower magnitude. The
maxima of these oscillations (resonances) are associated with the multiple interaction
effects of the hydroelastic system. This behaviour is mainly driven by the spacing (see
differences between figures 9 and 10), although the properties of the disks also affect the
resonances to a lesser extent (differences between D = 3mm and D = 10mm). This is
consistent with the results of the two-dimensional analysis of Montiel et al. (2012a), who
found that the number of resonances in the reflection coefficient frequency variations
increases with the spacing between two floating beams.
We observe a similar oscillatory behaviour in the experimental RAOs, although we

do not have a sufficient frequency resolution to show a correspondence of the resonance
peaks with those in the theoretical RAOs. As a single interaction cycle was considered
in the experiments, we do not expect to observe resonances in the experimental RAOs
identical to those in the theoretical RAOs, where multiple interaction effects induce
this behaviour. Additional tests in a larger wave basin are required to capture further
interactions between the disks once the system is at its steady state without interference
from the basin’s boundaries.
The oscillations in the front disk remain of low magnitude, even for the 10mm disks.

Therefore, the interaction effects between the two disks are essentially driven by the front
disk altering the incident wave so that the motion of the back disk decreases.
The quantitative agreement between the theoretical and experimental RAOs is similar

to that estimated for the single disk. In particular, we observe 5–25% relative difference
for the rigid-body modes (see panels a,b,e,f), for both front and back disks over the
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Figure 11. As in figure 10 but for an angle ̟ = 30◦.

frequency range considered here. Similarly to the single-disk analysis, more discrepancy
is observed for the flexural modes (see panels c,d,g,h in figures 9 and 10), as we have
estimated a relative difference of 30–60%. Therefore, it is logical to conclude that the
discrepancies between experimental and theoretical data have the same sources as those
observed in the single disk analysis.

6.2. Non-symmetric arrangements

For the two non-symmetric arrangements, the asymmetry of the configuration requires
that the anti-symmetric NMV are analysed. In results not shown here, we have found
that the anti-symmetric RAOs have very low magnitude, and very poor agreement is
found between theory and experiments (Montiel 2012). We conjecture that a significant
part of the measured amplitudes is due to experimental noise that does not necessarily
arise from the asymmetry of the arrangement. To keep the discussion clear and concise,
we do not consider these modes in the analysis presented hereinafter.
Figures 11 and 12 show the RAOs for the non-symmetric two-disk arrangement with

angles̟ = 30◦ and 45◦, respectively. At low frequencies, the theoretical and experimental
RAOs of the front and back disks behave as the single disk, similarly to the symmetric
case (see §6.1). In addition, we observe an oscillatory behaviour of the theoretical and
experimental front disk RAOs about those associated with the single disk, as for the
symmetric arrangements. Therefore, the difference in the response of the front disk to
that of the single disk is strongly dependent on the spacing parameter but depends very
little on the angle.
On the other hand, the response of the back disk differs from that of the symmetric

case. Specifically, it is found that the experimental and theoretical RAOs have magnitudes
slightly higher than those of the single disk, in the high frequency range. Although the
difference with the single-disk response is not large, nor is it negligible.
The response of the back disk is induced by a forcing with an energy higher than that of

the incident wave alone. In the present non-symmetric arrangement, the back disk is not
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Ã
0
,1

Ã
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Figure 12. As in figure 10 but for an angle ̟ = 45◦.

hidden behind the front disk in the direction of propagation of the incident wave, so that
it is excited by the incident wave that has not been (or has been minimally) altered by
the front disk. The second source of excitation comes from the scattered waves produced
by the front disk under the incident wave forcing. This phenomenon is already well
documented for problems involving multiple bodies and is commonly used to optimise
the positioning of arrays of wave energy absorbers (WEAs; see, e.g., Falnes 2002). It is
usually characterised by an interaction factor larger than one. The interaction factor is
defined as the ratio of the maximum power absorbed by a certain number of interacting
WEAs to that absorbed by all these WEAs placed in isolation. In comparison, the RAOs
obtained for the symmetric arrangements are characterised by an interaction factor lower
than one.
The qualitative agreement between experimental and theoretical data at high frequen-

cies is found to be reasonably good overall. We observe some variability in the experimen-
tal data for the 10mm disks (see panels e–h), so that the partition of energy between the
front and back disks is less consistent with the theoretical predictions than for the sym-
metric arrangement. Quantitatively, the difference between theoretical and experimental
data is similar to that found for the single disk.
Overall, we find a good agreement between numerical predictions and experimental

data for the symmetric and non-symmetric two-disk tests, suggesting that the interaction
theory of multiple scattering used for theoretical predictions is valid in the frequency
range considered in the present work.

7. Conclusions

The primary focus of this work has been to validate experimentally a SHM combining
thin-elastic plate and potential flow theories, in the framework of the theory of linear
water waves. We considered a prototypical problem, that consists of time-harmonic reg-
ular wave scattering by one and two floating compliant disks. This is novel experimental
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research in that we have characterised (i) the flexural motion of a thin-elastic disk and
(ii) the interaction effects on the bending motion when two disks are present. A de-
scription and validation of the experimental procedure, designed to reproduce closely the
restrictions of the numerical model, are given in Part 1.
An extensive model/experiment comparison was proposed here. We decomposed the

motion of the disks into the NMV of the disk in vacuo to determine the contribution of the
rigid-body modes and the flexural modes separately, for the modes undergoing significant
excitation. We analysed the RAOs for the single-disk tests, listed the potential sources
of discrepancy between theoretical predictions and experimental data and investigated
theoretically the influence of a number of these sources on the response by extension of
the standard numerical model.
The main findings of the study conducted for a single disk are as follows.
- The RAOs of the rigid-body modes agree well in the frequency range (5%–20%

of pointwise relative difference), except in the vicinity of the theoretical phase change
in heave, which is not observed in the experimental data, possibly due to the coarse
frequency sampling. The relative difference is largest at low frequencies (≈ 20%) for
pitch motion.
- The numerical model overestimates the RAOs of the flexural modes consistently

over the frequency range (30%–50% relative difference for the 3 and 10mm disks, and
40%–70% for the 5mm disk). The maxima observed for a few flexural modes are in good
agreement, and the trends of agreement and discrepancy are consistent for the three
thicknesses and for all the modes.
- An analysis of the RAOs at second order allowed us to conjecture that non-linearities

are an important source of discrepancy in regimes characterised by modal amplitudes of
very low magnitude (e.g. at low frequencies for the flexural modes or in the vicinity
of phase change frequencies). This is attributed to the limited resolution of the mea-
suring device. They have minimal importance when the modal amplitudes contribute
significantly to the motion.
- The model that includes the edge barrier indicated that the device has little effect

on the response of the disk.
- The viscoelastic properties of the disks may explain part of the discrepancy in the

flexural modes RAOs at high frequencies, although additional tests are required to char-
acterise the behaviour of the disks properly.
Data comparisons for the response of two disks were also conducted. The RAOs of

each disk were compared to the single-disk RAOs, allowing us to determine the influence
of the disks on each other’s motion. A summary of the outcomes of this analysis is given
as follows.
- The front disk behaves similarly to the single disk with additional small-amplitude

peaks that arise from the multiple interaction effect in the hydroelastic system. Increasing
the spacing between the disks tends to create more peaks in the fixed frequency range.
These observations hold for both theoretical and experimental RAOs.
- The motion of the back disk is reduced for symmetric arrangements and increased

for non-symmetric arrangements, in comparison to that of the single disk. The energy
partition between the front and back disks depends strongly on the combined scattering
directional spectrum of the two-disk system, characterised by the interaction factor.
These observations hold for both theoretical and experimental RAOs.
- The trends of agreement and discrepancy between theoretical and experimental data

are similar to those observed for a single disk. Overall, the qualitative and quantitative
agreement of the interaction effects is good for both disks.
The outcomes of the present study (including Part 1) are of primary significance to
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sea-ice and VLFS research. We have provided benchmark experimental data for the
validation of numerical models used in these fields as the theoretical core of the research
to produce more sophisticated models. The experimental method has been proved to be
reliable and, therefore, can be reused for other campaigns.
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