Assisted reproduction technology: how maths can contribute

Yvonne Stokes

Applied Mathematics

School of Mathematical Sciences
In vitro fertilisation

Egg (oocyte) a few hours after fertilisation.

Day 3, 8 cell stage (6 only visible).

Day 5, blastocyst ready for implantation.

Nick > 9 months later.

Pictures from Advanced Fertility Centre of Chicago www.advancedfertility.com
IVF versus IVM

In-vitro fertilisation (IVF):
- drugs used to stimulate maturation of eggs in the ovary;
- surgical removal of mature eggs;
- laboratory fertilisation, implantation in the uterus.
IVF versus IVM

In-vitro fertilisation (IVF):
- drugs used to stimulate maturation of eggs in the ovary;
- surgical removal of mature eggs;
- laboratory fertilisation, implantation in the uterus.

Life-threatening for some + drugs + monitoring.
IVF versus IVM

In-vitro fertilisation (IVF):
- drugs used to stimulate maturation of eggs in the ovary;
- surgical removal of mature eggs;
- laboratory fertilisation, implantation in the uterus.

Life-threatening for some + drugs + monitoring.

In-vitro maturation (IVM):
- surgical removal of immature eggs from the ovary;
- maturation in the laboratory;
- laboratory fertilisation, implantation in the uterus.
IVF versus IVM

In-vitro fertilisation (IVF):
- drugs used to stimulate maturation of eggs in the ovary;
- surgical removal of mature eggs;
- laboratory fertilisation, implantation in the uterus.
Life-threatening for some + drugs + monitoring.

In-vitro maturation (IVM):
- surgical removal of immature eggs from the ovary;
- maturation in the laboratory;
- laboratory fertilisation, implantation in the uterus.

Much less successful; more time in the lab.
IVM history

- 1935: G. Pincus & E.V. Enzmann report research on IVM of immature mammalian oocytes.
- 1999: First IVM baby in Canada.
- 2007: First IVM baby in the UK.
IVF/IVM statistics

IVF 2001–2007 (Reproductive Association of Delaware)

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Pregnancy rate per retrieval (%)</th>
<th>Pregnancy rate per transfer (%)</th>
<th>Ongoing pregnancy rate per transfer (%)</th>
<th>Implantation rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><35</td>
<td>52.9</td>
<td>48.8</td>
<td>48.2</td>
<td>47.0</td>
</tr>
<tr>
<td>35–39</td>
<td>43.2</td>
<td>46.6</td>
<td>39.4</td>
<td>28.1</td>
</tr>
<tr>
<td>≥40</td>
<td>24.1</td>
<td>24.8</td>
<td>19.0</td>
<td>11.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Clinical pregnancy rate per retrieval (%)</th>
<th>Implantation rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><35</td>
<td>38</td>
<td>13</td>
</tr>
<tr>
<td>36–40</td>
<td>21</td>
<td>5</td>
</tr>
</tbody>
</table>
Why pursue IVM?

- Lower costs since
 - no expensive gonadotropin stimulation,
 - no extensive monitoring scans.
- Shorter treatment schedule, so less disturbance.
- No 2–3 month wait between treatments as no stimulation involved.
- Remove risk of ovarian hyperstimulation syndrome which can be fatal.
- Remove concerns about development of ovarian cancer from stimulation drugs.
- More acceptable to egg donors.
Culture conditions critical

- Typical oocyte maturation time is 24–48 hrs.
- 2–3 days culture after fertilization, or 5–6 days if taken to blastocyst stage.

“The competence of a fertilized oocyte is profoundly affected by the culture conditions and, therefore, optimal culture conditions are vital for a successful IVM program.”

(G. Durga Rao et al. 2005)
Maths can help!

We need to better understand the natural environment in which eggs develop in order to create better lab environments.
Maths can help!

We need to better understand the natural environment in which eggs develop in order to create better lab environments.

Much cannot be measured experimentally:
- eggs are very small,
- they are enclosed in a shell of cells which controls the environment to some degree,
- in vivo measurements very difficult to obtain.
Maths can help!

- We need to better understand the natural environment in which eggs develop in order to create better lab environments.

- Much cannot be measured experimentally:
 - eggs are very small,
 - they are enclosed in a shell of cells which controls the environment to some degree,
 - in vivo measurements very difficult to obtain.

- Mathematical modelling of the in-vivo nutrient environment of eggs, in conjunction with experiments is needed.
Ovary, follicle, COC
Bovine ovary

Bovine oocyte diameter $\sim 100\,\mu m$, COC diameter $\sim 300\,\mu m$, antral follicle diameter nearing oocyte release $\sim 1 - 2\,cm$.
Cumulus oocyte complex

www.microscopy.fsu.edu/primer/anatomy/brightfieldgallery/mammaliangraafianfollicle40xlarge.html

©1998-2006 Michael W. Davidson, Mortimer Abramowitz, Olympus America Inc., and The Florida State University.
Model assumptions

- Spherical symmetry.
- Known nutrient levels in follicular fluid (F).
- Two regions: Egg and cumulus shell.
- Transport/consumption of one nutrient independent of others.
- Diffusive transport, no flow.
- No time dependence.
- Neglect COC growth.
Basic model

Two ODEs

\[
\frac{D}{r^2} \frac{d}{dr} \left(r^2 \frac{dO}{dr} \right) = Q_O,
\]

\[
\frac{D}{r^2} \frac{d}{dr} \left(r^2 \frac{dC}{dr} \right) = Q_C,
\]

and boundary conditions

\[C(b) = F, \quad O(0) \text{ bounded}, \]

\[O(a) = C(a), \quad -D \frac{dO}{dr}(a) = -D \frac{dC}{dr}(a). \]

If we assume \(Q_O\) and \(Q_C\) are constant we can solve.
Analytic solution

\[\frac{D}{r^2} \frac{d}{dr} \left(r^2 \frac{dO}{dr} \right) = Q_0, \]
Analytic solution

\[D \frac{d}{r^2 dr} \left(r^2 \frac{dO}{dr} \right) = Q_O, \]

\[\Rightarrow \quad \frac{d}{dr} \left(r^2 \frac{dO}{dr} \right) = \frac{Q_O}{D} r^2, \]
Analytic solution

\[
\frac{D}{r^2} \frac{d}{dr} \left(r^2 \frac{dO}{dr} \right) = Q_0, \\
\Rightarrow \quad \frac{d}{dr} \left(r^2 \frac{dO}{dr} \right) = \frac{Q_0}{D} r^2, \\
\Rightarrow \quad r^2 \frac{dO}{dr} = \frac{Q_0}{3D} r^3 + A_1,
\]
Analytic solution

\[
\frac{D}{r^2} \frac{d}{dr} \left(r^2 \frac{dO}{dr} \right) = Q_0 ,
\]

\[\Rightarrow \]

\[
\frac{d}{dr} \left(r^2 \frac{dO}{dr} \right) = \frac{Q_0}{D} r^2 ,
\]

\[\Rightarrow \]

\[
r^2 \frac{dO}{dr} = \frac{Q_0}{3D} r^3 + A_1 ,
\]

\[\Rightarrow \]

\[
\frac{dO}{dr} = \frac{Q_0}{3D} r + \frac{A_1}{r^2} ,
\]
Analytic solution

\[
\frac{D}{r^2} \frac{d}{dr} \left(r^2 \frac{dO}{dr} \right) = Q_O,
\]

\[\Rightarrow\]

\[
\frac{d}{dr} \left(r^2 \frac{dO}{dr} \right) = \frac{Q_O}{D} r^2,
\]

\[\Rightarrow\]

\[
r^2 \frac{dO}{dr} = \frac{Q_O}{3D} r^3 + A_1,
\]

\[\Rightarrow\]

\[
\frac{dO}{dr} = \frac{Q_O}{3D} r + \frac{A_1}{r^2},
\]

\[\Rightarrow\]

\[
O(r) = \frac{Q_O}{6D} r^2 - \frac{A_1}{r} + A_2, \quad O(0) \text{ bounded } \Rightarrow A_1 = 0
\]
Analytic solution

\[
\frac{D}{r^2} \frac{d}{dr} \left(r^2 \frac{dO}{dr} \right) = Q_\circ,
\]

\[\Rightarrow \quad \frac{d}{dr} \left(r^2 \frac{dO}{dr} \right) = \frac{Q_\circ}{D} r^2,
\]

\[\Rightarrow \quad r^2 \frac{dO}{dr} = \frac{Q_\circ}{3D} r^3 + A_1,
\]

\[\Rightarrow \quad \frac{dO}{dr} = \frac{Q_\circ}{3D} r + \frac{A_1}{r^2},
\]

\[\Rightarrow \quad O(r) = \frac{Q_\circ}{6D} r^2 - \frac{A_1}{r} + A_2, \quad O(0) \text{ bounded} \Rightarrow A_1 = 0
\]

\[
C(r) = \frac{Q_c}{6D} r^2 - \frac{B_1}{r} + B_2
\]
Solving for constants

\[
\frac{dO}{dr}(a) = \frac{dC}{dr}(a) \Rightarrow \frac{Q_O a}{3D} = \frac{Q_C a}{3D} + \frac{B_1}{a^2} \Rightarrow B_1 = \frac{a^3}{3D}(Q_O - Q_C).
\]
Solving for constants

\[
\frac{dO}{dr}(a) = \frac{dC}{dr}(a) \Rightarrow \frac{Q_O a}{3D} = \frac{Q_C a}{3D} + \frac{B_1}{a^2} \Rightarrow B_1 = \frac{a^3}{3D} (Q_O - Q_C).
\]

\[
C(b) = \frac{Q_C b^2}{6D} - \frac{a^3}{3bD} (Q_O - Q_C) + B_2 = F
\Rightarrow B_2 = F - \frac{Q_C b^2}{6D} + \frac{a^3}{3bD} (Q_O - Q_C)
\]
Solving for constants

\[\frac{dO}{dr}(a) = \frac{dC}{dr}(a) \Rightarrow \frac{Q_O a}{3D} = \frac{Q_C a}{3D} + \frac{B_1}{a^2} \Rightarrow B_1 = \frac{a^3}{3D} (Q_O - Q_C). \]

\[C(b) = \frac{Q_C b^2}{6D} - \frac{a^3}{3bD} (Q_O - Q_C) + B_2 = F \]

\[\Rightarrow B_2 = F - \frac{Q_C b^2}{6D} + \frac{a^3}{3bD} (Q_O - Q_C) \]

\[O(a) = C(a) \Rightarrow \frac{Q_O a^2}{6D} + A_2 = \frac{Q_C a^2}{6D} - \frac{B_1}{a} + B_2 \]

\[\Rightarrow A_2 = F - \frac{Q_C b^2}{6D} - \frac{a^2}{3D} (Q_O - Q_C) \left(\frac{3}{2} - \frac{a}{b} \right) \]
Solving for constants

\[
\frac{dO}{dr}(a) = \frac{dC}{dr}(a) \Rightarrow \frac{Q_O a}{3D} = \frac{Q_C a}{3D} + \frac{B_1}{a^2} \Rightarrow B_1 = \frac{a^3}{3D}(Q_O - Q_C).
\]

\[
C(b) = \frac{Q_C b^2}{6D} - \frac{a^3}{3bD}(Q_O - Q_C) + B_2 = F
\]

\[
\Rightarrow B_2 = F - \frac{Q_C b^2}{6D} + \frac{a^3}{3bD}(Q_O - Q_C)
\]

\[
O(a) = C(a) \Rightarrow \frac{Q_O a^2}{6D} + A_2 = \frac{Q_C a^2}{6D} - \frac{B_1}{a} + B_2
\]

\[
\Rightarrow A_2 = F - \frac{Q_C b^2}{6D} - \frac{a^2}{3D}(Q_O - Q_C) \left(\frac{3}{2} - \frac{a}{b}\right)
\]

Now we have the solution . . . we can graph it for given parameter values.
Solution

\[F = 1, \ Q_O = 3Q_C, \ Q_C = 1, \ D = 1, \ a = 0.3, \ b = 1: \]

\[O(r), C(r) \]
This is a very simple model and could be improved, but let’s suppose it is sufficiently accurate.

To use it we still need to determine the true values of the parameters.

Some can be measured reasonably easily: F, D, a, b.

Others are hard to measure: Q_O, Q_C. In fact these can’t be directly measured and mathematical models are needed again.

Let’s look at one example.
An oxygen assay

\(\phi = 0.5 \text{ mm}, \ L_O = 5 \text{ mm}, \ L_M = 15 \text{ mm}. \)

The oil is the \(O_2 \) source (contains \(4.5 \times \) more \(O_2 \) than the medium, at the same partial pressure).

Initial partial pressure in oil and medium is 20% of one atmosphere.

Experimental data

- Fluorescence of pyrene is quenched in presence of O_2.
- Fluorescence measurements are taken at $x = 0, L_O$ at intervals in time.
- These are converted into O_2 concentrations at $x = 0, L_O$.
- We need a mathematical (diffusion) model to relate concentrations to the O_2 consumption rate of embryos.
Mathematical model

PDEs for O_2 concentrations $C_O(x, t)$, $C_M(x, t)$:

$$\frac{\partial C_O}{\partial t} = D_O \frac{\partial^2 C_O}{\partial x^2}, \quad 0 \leq x \leq L_O,$$

$$\frac{\partial C_M}{\partial t} = D_M \frac{\partial^2 C_M}{\partial x^2} - k, \quad L_O \leq x \leq L_M,$$

Boundary conditions:

$$\frac{\partial C_O}{\partial x}(0, t) = 0, \quad \frac{\partial C_M}{\partial x}(L_M, t) = 0,$$

$$\frac{C_O}{K_O}(L_O, t) = \frac{C_M}{K_M}(L_O, t), \quad -D_O \frac{\partial C_O}{\partial x}(L_O, t) = -D_M \frac{\partial C_M}{\partial x}(L_O, t),$$

Initial conditions: $C_O(x, 0) = C_{O0}$, $C_M(x, 0) = C_{M0}$.
Parameters to determine

Both D_O (the diffusivity of O_2 in paraffin oil) and k (O_2 consumption rate) are unknown. Other parameters are known.
Parameters to determine

- Both D_O (the diffusivity of O_2 in paraffin oil) and k (O_2 consumption rate) are unknown. Other parameters are known.

- We seek to find both by matching model solutions to experimental data.
Parameters to determine

- Both \(D_O \) (the diffusivity of \(O_2 \) in paraffin oil) and \(k \) (\(O_2 \) consumption rate) are unknown. Other parameters are known.

- We seek to find both by matching model solutions to experimental data.

- The drop in \(O_2 \) concentration across the oil is determined by \(D_O \).
Parameters to determine

Both D_O (the diffusivity of O_2 in paraffin oil) and k (O_2 consumption rate) are unknown. Other parameters are known.

We seek to find both by matching model solutions to experimental data.

The drop in O_2 concentration across the oil is determined by D_O.

The time rate of change of concentration is determined by k.
Solution for 18 blastocysts

\[u(0, t) \]

\[u(1, t) = v(1, t) \]

\[v(\ell, t) \]

\[u(x, t) = \frac{C_O(x, t)}{C_{O0}}, \quad v(x, t) = \frac{C_M(x, t)}{C_{M0}}. \]
Important findings

- $D_O \approx 1.8 \times 10^{-9} \text{ m}^2/\text{s}$. This is a new result; previous guess was $D_O \approx 2.5 \times 10^{-7} \text{ m}^2/\text{s}$.

- For 18 blastocysts,

$$k = 0.0198 \text{ mol/m}^3/\text{s} \equiv 0.2014 \text{ nL/embryo/hr}.$$
Important findings

- $D_O \approx 1.8 \times 10^{-9} \text{ m}^2/\text{s}$. This is a new result; previous guess was $D_O \approx 2.5 \times 10^{-7} \text{ m}^2/\text{s}$.

- For 18 blastocysts,

$$k = 0.0198 \text{ mol/m}^3/\text{s} \equiv 0.2014 \text{ nL/embryo/hr}.$$

This assay and model will also give O_2 consumption rate of COCs.

More modelling is needed to separate this into Q_O and Q_C (consumption rates of egg and cumulus cells).
Conclusions

- Lots more research is yet needed.
Conclusions

- Lots more research is yet needed.
- I hope you can appreciate the importance of mathematical modelling for successful IVM and IVF.
Conclusions

• Lots more research is yet needed.
• I hope you can appreciate the importance of mathematical modelling for successful IVM and IVF.
• Statistics is also highly important for extracting information from experimental data.
Conclusions

- Lots more research is yet needed.
- I hope you can appreciate the importance of mathematical modelling for successful IVM and IVF.
- Statistics is also highly important for extracting information from experimental data.

THANKYOU ... ANY QUESTIONS?