Spot the Difference:
How to tell when two things are the same
(and when they’re not!)

Raymond Vozzo

School of Mathematical Sciences
Undergraduate Seminar

May 2010
Outline

Introduction

Topology

Category Theory
Outline

Introduction

Topology

Category Theory
Examples of Mathematical Structures

<table>
<thead>
<tr>
<th>Example</th>
<th>General concept</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{R}^n)</td>
<td>Vector space</td>
<td>((V, +, \mathbb{R}\text{-mult}))</td>
</tr>
<tr>
<td>Symmetries</td>
<td>Group</td>
<td>((G, \cdot))</td>
</tr>
<tr>
<td>Functions on (\mathbb{R})</td>
<td>Algebra</td>
<td>((A, +, \times, \mathbb{R}\text{-mult}))</td>
</tr>
<tr>
<td></td>
<td>(non)-example: ((\mathbb{R}^3, \times) \xrightarrow{\sim} \text{Lie algebra})</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{R}) (cts properties)</td>
<td>Topological space</td>
<td></td>
</tr>
</tbody>
</table>
Sameness Problems

Problem
How to come up with a natural notion of “sameness” for these (& other) structures?

▶ “=” is usually too strict

e.g. \(\{ x-y \text{ plane} \} \subseteq \mathbb{R}^3 \)

\[\mathbb{R}^2 \]

\[\{ x-y \} \neq \mathbb{R}^2 \quad \text{but} \quad \{ x-y \} \simeq \mathbb{R}^2 \]

Similarly: any 2D subspace of any \(\mathbb{R}^n \simeq \mathbb{R}^2 \)
Sameness Problems

Key Idea

Change object but preserve structure

Want maps $V \rightarrow W$ which preserve the vector space (or group, or algebra, or . . .) structure

- e.g. **NOT** $\mathbb{R}^3 \rightarrow \mathbb{R}^2$; $(x, y, z) \mapsto (x^2 y, \sin(z)/\sqrt{x})$

Examples:

<table>
<thead>
<tr>
<th>Object</th>
<th>Maps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector spaces</td>
<td>linear maps</td>
</tr>
<tr>
<td>Groups</td>
<td>homomorphisms</td>
</tr>
<tr>
<td>Algebra</td>
<td>(algebra) homomorphisms</td>
</tr>
<tr>
<td>Topological spaces</td>
<td>continuous functions</td>
</tr>
</tbody>
</table>
Equivalence: Find maps both ways (i.e. maps with inverses)

Problem

How can you tell if 2 objects are equivalent or not?

- $A \simeq B$: Find one
- $A \not\simeq B$: Extract info which doesn’t change under equivalence and show it’s different for A and B

\leadsto invariants

Example: (finite-dimensional) vector spaces:

\[V \simeq W \iff \dim V = \dim W \]
Outline

Introduction

Topology

Category Theory
Topology

Idea: Throw away notions of measurement, distances, etc. . .
Keep ideas of “closeness” and “connectedness”

Example:
Equivalency condition: Continuous deformations

\((\text{homeomorphisms}) \)

\[X \xrightarrow{f} Y \quad \text{and} \quad Y \xrightarrow{f^{-1}} X \text{ continuous} \]

Example: \(\mathbb{R} \to \mathbb{R}; \ x \mapsto x^3 \) vs \(\mathbb{R} \to \mathbb{R}; \ x \mapsto \begin{cases} 1/x, & x \neq 0 \\ 0, & x = 0 \end{cases} \)
Manifolds

Manifolds are important examples of topological spaces

Roughly: A manifold is a topological space which locally looks like (i.e. is homeomorphic to) \mathbb{R}^n

Examples:

1D S^1

2D S^2

\mathbb{T}^2

Other surfaces

3D $S^3 = \{(x, y, z, w) \in \mathbb{R}^4 \mid x^2 + y^2 + z^2 + w^2 = 1\}$

4D The Universe!

10D The Universe?
Question
How can you tell if 2 manifolds are homeomorphic?

Answer: Look for invariants!

Example Question: $S^2 \not\cong \mathbb{T}^2$

Note: It’s not necessarily obvious. Consider
The Fundamental Group

Consider loops:
\[\{ \gamma : [0, 1] \to X \mid \gamma(0) = \gamma(1) = x_0 \} \]

\[\gamma_1 \sim \gamma_2 \iff \gamma_1 \xrightarrow{\text{cts deform}} \gamma_2 \]

e.g. \(\gamma \not\sim \gamma' \)
The Fundamental Group

Define:

- $\gamma_1 \ast \gamma_2 = \gamma_1$ then γ_2

- $\gamma^{-1} = \gamma$ backwards

\implies It’s a group!

The Fundamental Group, $\pi_1(X)$

Important Property: $X \simeq Y \implies \pi_1(X) \simeq \pi_1(Y)$
The Fundamental Group

Back to question: \(S^2 \cong \mathbb{T}^2 \) \(\rightsquigarrow \) is \(\pi_1(S^2) \cong \pi_1(\mathbb{T}^2) \)

\(\pi_1(S^2) : \)

\[\xrightarrow{\quad} \]

\[\xrightarrow{\quad} \]

\[\xrightarrow{\quad} \]

\[\xrightarrow{\quad} \]

\[\Rightarrow \pi_1(S^2) \cong \{0\} \quad \text{(i.e. } S^2 \text{ is simply connected)} \]

\(\pi_1(\mathbb{T}^2) : \)

\[\& \]

\[\Rightarrow \pi_1(\mathbb{T}^2) \cong \mathbb{Z} \oplus \mathbb{Z} \]

\[\pi_1(S^2) \ncong \pi_1(\mathbb{T}^2) \Rightarrow S^2 \ncong \mathbb{T}^2 \]
Classification of Surfaces

In general π_1 doesn’t completely characterise X

- 2D: it does

Interesting Question: What about higher dimensions?

e.g. $\pi_1(X^3) = 0 \Rightarrow X^3 \simeq S^3$
More about π_1

Important Property: $f: X \to Y$ induces $f_* : \pi_1(X) \to \pi_1(Y)$

π_1 is an example of a functor
Outline

Introduction

Topology

Category Theory
Category Theory

- Formalism for talking about structures and maps which preserve them
- A category consists of
 - Objects
 - Arrows between them

Examples:
- Top: Topological spaces and continuous maps
- Grp: Groups and group homomorphisms
- Vect: Vector spaces and linear maps
- Cat: Category of Categories!

- Invariants for topological spaces \longleftrightarrow Functors $\text{Top} \to \text{Grp}$

More functors: π_n, H_n