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2000BC ?? “Quadratic formula”

ax2 + bx + c = 0

has solution

x =
−b ±

√
b2 − 4ac

2a

1540 ?? Solution of Cubic

x3 + px + q = 0

has solution
x = x1 + x2, ρx1 + ρ2x2, ρ2x1 + ρx2

where

ρ, ρ2 =
−1 ±

√
−3

2
and x1, x2 =

1

3

3

√

−27q ± 3
√

−3(−4p3 − 27q2)

2

1545 ?? Solution of Quartic

Published in Ars Magna by Geronimo Cardano,

but due to Luigi Ferrari.



Principal works in the development of Group Theory

1770 Lagrange Study of the number of values of a function to solve

the problem of algebraic solutions of equations.

1815 Cauchy First systematic study of “substitutions” (permutations).

1824 Abel Substitutions used to show the non-solvability of
the 5th degree equation.

1830 Galois Connected groups and solution of equations.

1845-6 Cauchy Extensive study study of substitutions and groups of substitutions.

1854 Cayley First definition of an abstract group.

1860 Mathieu Discovery of five multiply transitive permutation groups,
M11, M12, M22, M23, M24.

1870 Jordan First book on permutation groups (Traité des Substitutions).

1872 Sylow Sylow Theorems.

1889 Holder Completed the proof of the “Jordan-Holder Theorem”.
Problem: Find all of the finite simple groups.

1869 Lie Study of infinite (Lie) groups.



Jordan - Holder Theorem

Definition A normal subgroup M in a group G is a maximal normal subgroup

if whenever M ≤ N ≤ G, N ⊳ G then M = N or N = G.

As there are no proper normal subgroups between M and G, the factor group

G/M also contains no proper normal subgroups and so G/M is a simple group.

If G is a finite group then we can choose a maximal normal subgroup M1 of G;
and then choose a maximal normal subgroup M2 of M1 and eventually we will

reach the identity subgroup 〈1〉 as G is a finite group. Thus we have a series of
normal subgroups, called a composition series

〈1〉 = Mn ⊳ Mn−1 ⊳ . . . ⊳ M2 ⊳ M1 ⊳ G = M0

in which each of the factor groups Mi/Mi+1, i = 0, 1, . . . , n− 1 is a simple group.

The Jordan - Holder Theorem states that if we choose any other composition series

〈1〉 = Nk ⊳ Nk−1 ⊳ . . . ⊳ N2 ⊳ N1 ⊳ G = N0

then n = k and the two sets of simple factors are exactly the same:

{Mi/Mi+1 | i = 0, 1, . . . , n − 1} = {Ni/Ni+1, i = 0, 1, . . . , n − 1}.

As each finite group G has a uniquely determined set of simple groups “involved”

in G, it is not surprising that Holder posed the problem: Find all of the finite

simple groups.

Just knowing the simple factors will not (in general) determine the group.

Example Each of the following, non-isomorphic groups have the same set of
composition (simple) factors: C2, A5.

1. The symmetric group S5 has only one proper normal subgroup A5 with

S5/A5
∼= C2.

2. The special linear group SL(2, 5) has only one proper normal subgroup

Z(SL(2, 5)) ∼= C2 with SL(2, 5)/Z(SL(2, 5) ∼= PSL(2, 5) ∼= A5.

3. The direct product G = C2×A5 has two proper normal subgroups, C2 andA5

with G/C2
∼= A5 and G/A5

∼= C2.



Two examples of simple groups of finite order

1. If G is an abelian simple group then G is cyclic of order p, where p is a prime
number. That is, G ∼= Cp

∼= (Zp, +).

2. The Alternating groups An, n ≥ 5 are simple.
The Alternating group An is the subgroup of even permutations in the sym-
metric group Sn, the group of all permutations on n objects, {1, 2, . . . , n}.
The order of An, |An| =

|Sn|
2

=
n!

2
.

The Alternating group A5 of order 60 is the smallest non-abelian simple group.

Solution of polynomial equations

A polynomial equation with integer coefficients is soluble by radicals if the solutions
can be obtained by successively taking

√
, 3
√

, etc in some order.

Galois Corresponding to every polynomial equation there is a (finite) group (of
permutations of the roots of the equation). The equation is soluble by radicals
if and only if the corresponding (Galois) group has all of its composition factors

abelian (i.e. cyclic of prime order).

Examples

1. The polynomial equation x5 − 2 is soluble by radicals.

The corresponding Galois group has all of its composition factors abelian.

2. The polynomial equation x5 − 4x + 2 is not soluble by radicals.

The corresponding Galois group has one of its composition factors a non-
abelian simple group, namely A5.



Examples of simple groups of finite order - known around 1900

1. The abelian simple groups Cp, p a prime number.

2. The Alternating groups An, n ≥ 5 are simple.

3. The General Linear group (GL(n, F ), ·), F a field, is a non-abelian group,
where (GL(n, F ), ·) denotes the invertible n×n matrices under multiplication

with entries in the field F .

Besides the finite fields Zp there is a (unique) finite field GF (pn) for every
prime power q = pn, n ≥ 1.

Notation: For finite fields GF (q) we often write GL(n, q) for GL(n, F ).

Note that GL(n, F ) can also be thought of as the group of invertible linear
transformations GL(V ) on a finite vector space V of dimension n over the
finite field F .

GL(n, F ) is not simple and contains a normal subgroup SL(n, F ), the Special

Linear group which consists of all of the n × n matrices with determinant 1.

In general SL(n, F ) is also not simple, but the factor group

PSL(n, F ) = SL(n, F )/Z(SL(n, F ))

is a non-abelian simple group for all n, F (except for a couple of cases in which
both n and |F | = q are very small).

4. Other “classical groups” - orthogonal, unitary and symplectic groups.

5. The five Mathieu groups, M11, M12, M22, M23, M24.



Group Representations

A representation of a group G is a (group) homomorphism

f : G → GL(V ) = GL(n, F )

where V is a vector space of dimension n over the field F .

The representation f is irreducible if V has no f(G)− invariant subspace.

When F = C, the complex numbers, the function χ(x) = trace (f(g)) is called
an (ordinary) character of G. Note that χ(x) = χ(g−1xg).

The number of (distinct) irreducible representations (and hence characters) is

equal to the number of conjugacy classes of G.

For a simple group, as ker f ⊳ G, ker f = 〈1〉 or G. Thus either f : G → 〈1〉 or f

is an isomporphism.

In any case f(1) = In and χ(1) = n called the degree of the representation.

The Character Table of a group G

A square array which gives the values of the irreducible characters on the different
conjugacy classes.

Character Table of A5, the Alternating group of order 60.

Class 1 (12)(34) (123) (12345) (13524)

χ1 1 1 1 1 1

χ2 4 0 1 −1 −1
χ3 5 1 −1 0 0
χ4 3 −1 0 α1 α2

χ5 3 −1 0 α2 α1

where α1 =
1 +

√
5

2
and α2 =

1 −
√

5

2
.



What is known about the finite simple groups?

p-groups (groups of order pn, p a prime) are not simple (unless n = 1).

1897 Burnside First book on abstract groups (Theory of groups of finite order).

Theorem: Groups of order paqb are not simple.

Theorem: A simple group of even order has order divisible by 4.

Conjecture: A non-abelian simple group must have even order.

Finite groups of even order

Definitions Let G be a finite group.

An element x ∈ G is an involution if x has order 2.

The centralizer of x in G, CG(x) = {g ∈ G | g−1xg = x (or gx = xg) ∀g ∈ G}.
1954 Brauer There are only a finite number of non-abelian simple groups

with a given centralizer of an involution.

Theorem: If G is a non-abelian simple group which contains

an involution z with CG(z) ∼= GL(2, q), q odd, then
G ∼= PSL(3, q) or q = 3 and G ∼= M11.

Programme: If G is a known non-abelian simple group containing

an involution z, show that CG(z) characterizes G.



Algebras

An algebra is a vector space A over a field F in which there is a product defined
on the vectors in A. The product satisfies certain distributive conditions and
may/may not be associative or commutative depending on the algebra.

Associative algebras

1. The n × n matrices over a field F .

2. The group algebra.

Lie algebras

An algebra A is a Lie Algebra if, for all x, y, z ∈ A,

(i) x2 = 0

(ii) x(yz) + z(xy) + y(zx) = 0

The semi-simple complex Lie algebras were classified late in the 19th Century.
These Lie algebras consist of 4 infinite families :

An, Bn, Cn, Dn

and 5 “exceptional” Lie algebras:

G2, F4, E6, E7, E8



The simple groups of Lie type

1956 Chevalley

An(q) PSLn+1(n, q)
Bn(q) n > 1 Orthogonal groups

Cn(q) n > 2 Symplectic groups
Dn(q) n > 3 Orthogonal groups

G2(q)
F4(q)
E6(q)

E7(q)
E8(q)

“Twisted Lie groups”

1959 Steinberg

1962 Suzuki

1961 Ree

2An(q) n > 1 Unitary groups
2Dn(q) n > 3 Orthogonal groups
3D4(q) Steinberg groups
2E6(q) Steinberg groups
2B2(q) q = 22m−1 Suzuki groups
2G2(q) q = 32m−1 Ree groups
2F4(q) q = 22m−1 Ree groups

An n ≥ 5 Alternating groups

“Sporadic groups” - the Mathieu groups

M11 24 · 32 · 5 · 11 4-transitive
M12 26 · 33 · 5 · 11 5-transitive

M22 27 · 32 · 5 · 7 · 11 3-transitive
M23 27 · 32 · 5 · 7 · 11 · 23 4-transitive

M24 210 · 33 · 5 · 7 · 11 · 23 5-transitive



The Odd Order Theorem

1963 Feit, W. & Thompson, J.G.

There are no non-abelian finite simple groups of odd order.

1965 Janko, Z

There is (another) sporadic non-abelian simple group of order

175560 = 23 · 3 · 5 · 7 · 11 · 19

This group, now denoted by J1 is a subgroup of GL(7, 11) and is generated by the
matrices Y and Z:

Y =























0 1 0 0 0 0 0

0 0 1 0 0 0 0
0 0 0 1 0 0 0

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

1 0 0 0 0 0 0























Z =























−3 2 −1 −1 −3 −1 −3

−2 1 1 3 1 3 3
−1 −1 −3 −1 −3 −3 2

−1 −3 −1 −3 −3 2 −1
−3 −1 −3 −3 2 −1 −1

1 3 3 −2 1 1 3

3 3 −2 1 1 3 1























The Character table for J1 is a 15 × 15 array.

The matrices given above were derived by taking a complex representation and

“reducing” (mod 11) - that is by finding a representation from J1 to GL(7, 11).



The 26 Sporadic groups

Group Order Name

M11 24 · 32 · 5 · 11 Mathieu
M12 26 · 33 · 5 · 11 Mathieu

M22 27 · 32 · 5 · 7 · 11 Mathieu
M23 27 · 32 · 5 · 7 · 11 · 23 Mathieu
M24 210 · 33 · 5 · 7 · 11 · 23 Mathieu

J1 23 · 3 · 5 · 7 · 11 · 19 Janko
J2 27 · 33 · 52 · 7 Janko

J3 27 · 35 · 5 · 17 · 19 Janko
J4 221 · 33 · 5 · 7 · 113 · 23 · 29 · 31 · 37 · 43 Janko

HS 29 · 32 · 53 · 7 · 11 Higman-Sims
Mc 27 · 36 · 53 · 7 · 11 McLaughlin

Suz 213 · 37 · 52 · 7 · 11 · 13 Suzuki
Ly 28 · 37 · 56 · 7 · 11 · 31 · 37 · 67 Lyons
He 210 · 33 · 52 · 73 · 17 Held

Ru 214 · 33 · 53 · 7 · 13 · 29 Rudvalis
O′N 29 · 34 · 5 · 73 · 11 · 19 · 31 Suzuki

.3 210 · 37 · 53 · 7 · 11 · 23 Conway

.2 218 · 36 · 53 · 7 · 11 · 23 Conway

.1 221 · 39 · 54 · 72 · 11 · 13 · 23 Conway
M(22) 217 · 39 · 52 · 7 · 11 · 13 Fischer
M(23) 218 · 39 · 52 · 7 · 11 · 13 · 17 · 23 Fischer

M(24)′ 221 · 316 · 52 · 73 · 11 · 13 · 17 · 23 · 29 Fischer
F3 215 · 310 · 53 · 72 · 13 · 19 · 31 Thompson

F5 214 · 36 · 56 · 7 · 11 · 19 Harada
F2 241 · 313 · 56 · 72 · 11 · 13 · 17 · 19 · 23 · 31 · 47 Baby Monster

F1 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 Monster
· 31 · 41 · 47 · 59 · 71

All but the Mathieu groups were discovered in the period from 1963−1975.



Discovery of the sporadic simple groups

Janko’s four groups and a number of other sporadic groups were discovered by
considering the centralizer of an involution of a known group or one having a
similar structure to one of the sporadic groups.

The three Conway groups arose as subgroups of the automorphism group .0 of
the “Leech Lattice”. The Leech lattice is associated with a very good example of

sphere packing in 24-dimesional space.

The last seven groups on the list were discovered due to work by Fischer who
considered finite groups in which a class of involutions has certain properties. If

x, y are involutions then x2 = y2 = 1 and if xy = yx then (xy)2 = 1.

Now consider a finite group of even order in which a conjugacy class K of in-

volutions has the property that if x, y ∈ K the the order of xy is either 1, 2 or
3.

An example of groups containing such a class of involutions is the symmetric

groups Sn, n ≥ 3 and the conjugacy class of transpositions

K = {(a, b) | a, b = 1, 2, . . . , n, a 6= b}.

The groups M(22), M(23), M(24) also satisfy this condition and contain the re-

spective Mathieu groups (as suggested by Fischer’s notation).

The “Baby Monster” F2 arose from an extension of the above problem. Namely,
suppose that the possible orders for the product of two involutions is either 1, 2,

3 or 4.

The existence of the Monster F1 was then conjectured as being a simple group G

containing a class of involutions K1 with CG(t)/〈t〉 ∼= F2 for t ∈ K1 and another
class of involutions K2 such that if z ∈ K2 then CG(z) contains a normal subroup
N with CG(z)/N ∼= .0 and |N | = 225.



The Monster or Friendly Giant

The Monster has order

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71
= 808017424794512875886459904961710757005754368000000000

≈ 8 · 1053.

The Monster has 194 conjugacy classes and so its Character Table is a 194× 194
array.

The smallest non-trivial irreducible (complex) representation (character) has de-

gree 196883.

Although the Monster was conjectured to exist as early as 1972, its existence was
not proved until 1980 by Griess. Griess constructed a 196884-dimensional algebra

(as the sum of the trivial and smallest representations) and, using properties
derived from the character table, showed it possessed certain “forms” and that

the Monster was the automorphism group of this algebra.

Amazingly Griess did not use the computer in his calculations - it was all done by
hand and induced him to name the monster as the “Friendly Giant”.

Exactly 20 of the 26 sporadic groups occur in the Monster.

Monstrous Moonshine

Shortly after the possible existence of the Monster was first suggested, the likely

degrees of the irreducible representations were calculated. John McKay made the
observation that 196883 was “almost equal” to the coefficient 196884 in the elliptic

modular function, well known in number theory:

j(τ) = q−1 + 744 + 196884q + 21493760q2 + . . .

where q = e2πiτ . Shortly afterwards John Thompson observed that the second

coefficient 21493760 is the sum of the degrees (dimensions) of the first three irre-
ducible representations of the Monster (and similarly all other coefficients seemed

to be simple linear combinations of the dimensions of the irreducible representa-
tions of the Monster).

It has since been shown that the Monster acts on an infinite dimensional algebra

and a number of the moonshine conjectures have been shown, but even today
some of the remarkable coincidences are still not fully understood.



Classification of finite simple groups - announced 1980

A non-abelian simple group is one of the groups appearing above in the list of 17
infinite series or one of the 26 sporadic groups.

1984 Thompson, J.G.

The Monster is the Galois group of a certain polynomial with integer coefficients.

For a brief, up to date summary of Moonshine and the Monster the following book
review is worth reading.

Book review by Richard Borcherds, Bulletin Amer Math Soc Vol 45, p. 675,

2008:

Terry Gannon, Moonshine beyond the Monster: The bridge connecting algebra,

modular forms and physics, C.U.P.

For more information on the classification of the simple groups and the sporadic

groups, the following is a good reference.

Daniel Gorenstein, Finite Simple Groups, Plenum


