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Counting with the Natural Numbers

A set S is countable if there is a function f from N onto S.
That is, we can label each s ∈ S by a different natural
number.
Examples: finite sets, Z
Positive Rational Numbers:

p
q
⇐⇒ 3p5q ∈ N for p,q ∈ N.

Paul McCann The Real Thing



Countability
Sets of Measure Zero

Random Reals
Normal Numbers

There’s a Bear in There

Counting with the Natural Numbers

A set S is countable if there is a function f from N onto S.
That is, we can label each s ∈ S by a different natural
number.
Examples: finite sets, Z
Positive Rational Numbers:

p
q
⇐⇒ 3p5q ∈ N for p,q ∈ N.

Paul McCann The Real Thing



Countability
Sets of Measure Zero

Random Reals
Normal Numbers

There’s a Bear in There

Counting with the Natural Numbers

A set S is countable if there is a function f from N onto S.
That is, we can label each s ∈ S by a different natural
number.
Examples: finite sets, Z
Positive Rational Numbers:

p
q
⇐⇒ 3p5q ∈ N for p,q ∈ N.

Paul McCann The Real Thing



Countability
Sets of Measure Zero

Random Reals
Normal Numbers

There’s a Bear in There

Finite subsets of N

Map subsets of N to binary sequences
eg {1,3,4,9} ⇐⇒ 10110000100000000 . . .
Finite subsets of N (except ∅) always finish with the “tail”
100000000 . . .
The collection of all such subsets is countable. If n is the
number of digits before the tail of a particular sequence,
there are exactly 2n such sequences.
So we can always count to our particular sequence in at
most 1 + 20 + 21 + 22 + · · ·+ 2n steps.
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General subsets of N
Assume they are countable, so we have a map f from N onto
the set of all such sequences.

f (1) = 0 1 1 0 1 1 1 0 1 0 1 0 1 0 0 0 1 . . .

f (2) = 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 1 . . .

f (3) = 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 0 . . .

f (4) = 1 1 1 1 0 1 0 0 1 0 1 0 0 1 1 1 0 . . .

f (5) = 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 . . .

. . . = . . .

We can always make a sequence not in this list by flipping the
diagonal elements: so it begins

1 0 0 0 1 . . .
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Uncountable Sets

So we cannot have listed all the sequences.

The set of all subsets of N is uncountable.
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There’s a map from the set of all such sequences onto [0,1].
Given a binary sequence s = a1a2a3a4a5 . . . define

xs =
∞∑

n=1

an

2n .

At most two sequences correspond to a single real number.
Note, for example, that

01111111... = 10000000000 . . .⇐⇒ 1/2.

So (small exercise!) the real numbers in [0,1] are also
uncountable.
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Definition

Definition

A subset S of R is said to have measure zero if for every ε > 0
there are open intervals {In : n ∈ N} such that

S ⊂
⋃
n∈N

In and
∞∑

n=1

length(In) < ε.

Examples: a single real number, any finite set.
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Countable Sets

If {an : n ∈ N} is countable then take

I1 = (a1 −
ε

23 ,a1 +
ε

23 ), I2 = (a2 −
ε

24 ,a2 +
ε

24 ), . . .

. . . , In = (an −
ε

2n+2 ,an +
ε

2n+2 ), . . .

∞∑
n=1

length(In) =
∞∑

n=1

ε

2n+1 =
ε

22

∞∑
n=0

1
2n

=
ε

22
1

1− 1
2

=
ε

2
< ε.
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Consequences

So every countable set has measure zero.
But not just countable sets. . .

A property is said to hold for almost every real number if the set
of elements for which it does not hold has measure zero.

Probabilistically: a property is true almost certainly if the set of
elements for which it fails to hold has measure zero.

Paul McCann The Real Thing



Countability
Sets of Measure Zero

Random Reals
Normal Numbers

There’s a Bear in There

Consequences

So every countable set has measure zero.
But not just countable sets. . .

A property is said to hold for almost every real number if the set
of elements for which it does not hold has measure zero.

Probabilistically: a property is true almost certainly if the set of
elements for which it fails to hold has measure zero.

Paul McCann The Real Thing



Countability
Sets of Measure Zero

Random Reals
Normal Numbers

There’s a Bear in There

Consequences

So every countable set has measure zero.
But not just countable sets. . .

A property is said to hold for almost every real number if the set
of elements for which it does not hold has measure zero.

Probabilistically: a property is true almost certainly if the set of
elements for which it fails to hold has measure zero.

Paul McCann The Real Thing



Countability
Sets of Measure Zero

Random Reals
Normal Numbers

There’s a Bear in There

Consequences

So every countable set has measure zero.
But not just countable sets. . .

A property is said to hold for almost every real number if the set
of elements for which it does not hold has measure zero.

Probabilistically: a property is true almost certainly if the set of
elements for which it fails to hold has measure zero.

Paul McCann The Real Thing



Countability
Sets of Measure Zero

Random Reals
Normal Numbers

There’s a Bear in There

Generating a Random Real

Assume we have a perfectly fair coin.
Toss it once, twice, . . .
Faster!
Note the result is a binary sequence, and hence a real
number, say x , in [0,1].

x =11010001.. . .
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Monkey Business, Part 1
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SuperCoder
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Simply Normal (base 2)

Definition

A real number written in binary is simply normal (base 2) if

lim
n→∞

#1′s in the first n digits
n

=
1
2
.

Examples

.010101010101010101... = 1/3

.110011001100110011... = 4/5.
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Normal (base 2)

Definition

A real number written in binary is normal (base 2) if every
binary string s of length k occurs with limiting frequency 2−k ,
for every k ∈ N. That is:

lim
n→∞

#occurrences of s in the first n digits
n

=
1
2k .

So “111” occurs 1/8th of the time, “010101” occurs 1/64th of the
time (in the limit), and so on.
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Testing Normality

Testing is hopeless!
How many non-normal numbers are there?
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Normal is Normal

Theorem

(Borel 1909) Almost every real number is normal.

That is, the set of numbers that are not normal has measure
zero. So x , our randomly generated real number is almost
certainly normal.
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The world’s best key drive?

What does the real number contain?

Files
Movies
A very helpful Index
Backups!
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The world’s best key drive?

Wenger 16999 Giant Swiss Army Knife
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The world’s worst key drive

So many near misses! Trust no one!
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The world’s worst key drive
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Champernowne’s Number

Normal numbers base 10. Every string of length k occurs with
limiting frequency 10−k , for all k ∈ N.

.123456789101112131415161718...
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Ohne Titel

Thank you
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