next up previous contents
Next: Partitions of unity. Up: Stokes theorem. Previous: Manifolds with boundary.   Contents

Stokes theorem.

Let $ M$ be a manifold of dimension $ n$ with boundary $ \partial M$ and let $ \omega$ be an $ n-1$ form on $ M$ with compact support. We want to prove

Theorem 6.1 (Stoke's theorem)   Let $ M$ be an oriented manifold with boundary of dimension $ n$ and let $ \omega$ be a differential form of degree $ n-1$ with compact support then

$\displaystyle \int_M d\omega = \int_{\partial M} \omega.
$

Proof. We cover $ M$ with a covering by co-ordinate charts $ (U_\alpha, \psi_\alpha)$ and choose a partition of unity $ \phi_\alpha $ subordinate to this cover. Notice that because $ \sum_\alpha \phi_\alpha =1$ we have $ \sum_\alpha d\phi_\alpha = 0$ and hence

$\displaystyle \int_M d\omega$ $\displaystyle = \sum_\alpha \int_M \phi_a d\omega$    
  $\displaystyle = \sum_\alpha \int_M d(\phi_a \omega)$    
  $\displaystyle = \sum_\alpha \int_{U_\alpha } d(\phi_a \omega)$    
  $\displaystyle = \sum_\alpha \int_{\psi_\alpha (U_\alpha )} (\psi^{-1})^* d(\phi_a \omega)$    
  $\displaystyle = \sum_\alpha \int_{\psi_\alpha (U_\alpha )} d((\psi^{-1})^* (\phi_a \omega) )$    

and

$\displaystyle \int_{\partial M} \omega$ $\displaystyle =\sum_\alpha \int_{\partial M} \phi_\alpha \omega$    
  $\displaystyle = \sum_\alpha \int_{\partial U_\alpha } \phi_\alpha \omega$    
  $\displaystyle = \sum_\alpha \int_{\partial \psi_\alpha (U_\alpha )} (\psi^{-1})^*(\phi_\alpha \omega).$    

So it suffices prove that

$\displaystyle \int_{\psi_\alpha (U_\alpha )} d((\psi^{-1})^* (\phi_a \omega) ) ...
...lpha \int_{\partial \psi_\alpha (U_\alpha )} (\psi^{-1})^*(\phi_\alpha \omega)
$

or equivalently Stoke's theorem for differential forms with compact support on $ \mathbb{R}^n_+$. Let us assume then that $ \omega$ is a differential form on $ U$, where $ U$ is of the form $ U =
\mathbb{R}^n_+ \cap V$ for $ V $ open in $ \mathbb{R}^n$. As as $ \omega$ is has compact support it has bounded support so there is an $ R > 0$ such that if $ \vert x^i\vert > R$ for all $ i = 1, \dots, n$ then $ \omega(x) = 0$. Write $ x = (t, y)$ for $ y \in
\mathbb{R}^{n-1}$ and $ \omega = f dt\wedge dy^1 \dots dy^{n-1}$ so we have

$\displaystyle \int_U d\omega$ $\displaystyle = \int_{U} \frac{\partial f}{\partial t} dt \wedge dy^{1} \dots d...
...} \frac{\partial f}{\partial x^{i}} dy^{i}\wedge dt \wedge dy^{1} \dots dy^{n}.$    
  $\displaystyle = \int_{U} \frac{\partial f}{\partial t} dt \wedge dy^{1} \dots d...
...nt_{U} \sum_{i=1}^{n-1} [f(t,y^{1}, \dots, y^{i-1}, R, y^{i+1}, \dots, y^{n-1})$    
  $\displaystyle \quad - \dots f(t,y^{1}, \dots, y^{i-1}, -R, y^{i+1}, \dots, y^{n-1})] dt \wedge dy^{1} \dots dy^{n}.$    
  $\displaystyle =\int_{U} \frac{\partial f}{\partial t} dt \wedge dy^{1} \dots dy^{n}$    
  $\displaystyle =\int_{\partial U}f(0, y^{1},\dots, y^{n-1}) dy^{1}\dots dy^{n}$    
  $\displaystyle = \int_{\partial U} \omega$    

$ \qedsymbol$


next up previous contents
Next: Partitions of unity. Up: Stokes theorem. Previous: Manifolds with boundary.   Contents
Michael Murray
1998-09-16