The University of Adelaide
You are here » Home » News and events » All events
Text size: S | M | L
Printer Friendly Version
October 2018
MTWTFSS
1234567
891011121314
15161718192021
22232425262728
293031    
       

Forthcoming events in the School of Mathematical Sciences

Expand or collapse all abstracts.

Random walks
15:10 Fri 12 Oct, 2018 :: Napier 208 :: A/Prof Kais Hamza :: Monash University

A random walk is arguably the most basic stochastic process one can define. It is also among the most intuitive objects in the theory of probability and stochastic processes. For these and other reasons, it is one of the most studied processes or rather family of processes, finding applications in all areas of science, technology and engineering. In this talk, I will start by recalling some of the classical results for random walks and then discuss some of my own recent explorations in this area of research that has maintained relevance for decades.
How long does it take to get there?
11:10 Fri 19 Oct, 2018 :: Engineering North N132 :: Professor Herbert Huppert :: University of Cambridge

In many situations involving nonlinear partial differential equations, requiring much numerical calculation because there is no analytic solution, it is possible to find a similarity solution to the resulting (still nonlinear) ordinary differential equation; sometimes even analytically, but it is generally independent of the initial conditions. The similarity solution is said to approach the real solution for t >> tau, say. But what is tau? How does it depend on the parameters of the problem and the initial conditions? Answers will be presented for a variety of problems and the audience will be asked to suggest others if they know of them.
An Introduction to Ricci Flow
11:10 Fri 19 Oct, 2018 :: Barr Smith South Polygon Lecture theatre :: Miles Simon :: University of Magdeburg

In these three talks we give an introduction to Ricci flow and present some applications thereof. After introducing the Ricci flow we present some theorems and arguments from the theory of linear and non-linear parabolic equations. We explain why this theory guarantees that there is always a solution to the Ricci flow for a short time for any given smooth initial metric on a compact manifold without boundary. We calculate evolution equations for certain geometric quantities, and present some examples of maximum principle type arguments. In the last lecture we present some geometric results which are derived with the help of the Ricci flow.
Local Ricci flow and limits of non-collapsed regions whose Ricci curvature is bounded from below
11:10 Fri 26 Oct, 2018 :: Barr Smith South Polygon Lecture theatre :: Miles Simon :: University of Magdeburg

We use a local Ricci flow to obtain a bi-Holder correspondence between non-collapsed (possibly non-complete) 3-manifolds with Ricci curvature bounded from below and Gromov-Hausdorff limits of sequences thereof. This is joint work with Peter Topping and the proofs build on results and ideas from recent papers of Hochard and Topping+Simon.
Bayesian Synthetic Likelihood
15:10 Fri 26 Oct, 2018 :: Napier 208 :: A/Prof Chris Drovandi :: Queensland University of Technology

Complex stochastic processes are of interest in many applied disciplines. However, the likelihood function associated with such models is often computationally intractable, prohibiting standard statistical inference frameworks for estimating model parameters based on data. Currently, the most popular simulation-based parameter estimation method is approximate Bayesian computation (ABC). Despite the widespread applicability and success of ABC, it has some limitations. This talk will describe an alternative approach, called Bayesian synthetic likelihood (BSL), which overcomes some limitations of ABC and can be much more effective in certain classes of applications. The talk will also describe various extensions to the standard BSL approach. This project has been a joint effort with several academic collaborators, post-docs and PhD students.
TBA
11:10 Fri 16 Nov, 2018 :: Napier 208 :: Luis Alvarez-Gaume :: Simons Center for Geometry and Physics