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Abstract

These notes contain some basic facts about discrete series rep-
resentations of semisimple Lie groups. For a large part, they sum-
marise relevant material from Knapp’s book [12]. We discuss the
classification of discrete series representations, their characters, their
relevance to representation theory, and some explicit realisations of
their representation spaces. We also go into classes defined by dis-
crete series representations in K-theory of group C∗-algebras.
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1 Introduction

Let G be a linear, connected, semisimple Lie group. Discrete series repre-
sentations occur discretely in the Plancherel decomposition of L2(G), and
in the unitary dual Ĝ. See for example Figure 1, where the unitary dual of
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Figure 1: The unitary dual of SL(2,R)

SL(2,R) is pictured. The topology is as in the diagram, with the exceptions
that

1. the left-most two discrete series representations, as well as the triv-
ial representation, are limits as one goes left in the complementary
series;

2. both limits of discrete series representations are limits as one goes
down in the right hand component of the principal series.

This topology is not Hausdorff, but it is T1. The discrete series representa-
tions are pictured in pairs with the same multiplicity in L2(SL(2,R)).

More generally, (almost) all irreducible representations of G that occur
in the Plancherel decomposition can be constructed from discrete series
representations of subgroups of G. This makes discrete series representa-
tions important objects of study in representation theory.

In these notes, some facts about discrete series representations are col-
lected. These mainly summarise parts of Knapp’s books [12, 13]. For the
proofs of the facts we mention, references are given to these books. As in
[12], we will consider linear groups, which makes some constructions and
arguments simpler. Most statements given are valid slightly more gener-
ally, though.
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2 Preliminaries

Throughout these notes, G will be a Lie group, with Lie algebra g. All Lie
algebras and Lie groups are assumed to be finite-dimensional. We fix a
maximal compact subgroup K < G, with Lie algebra k. We also fix a right
Haar measure dg on G.

2.1 Reductive and semisimple groups

Recall that g is reductive if for every ideal a ⊂ g there is an ideal b ⊂ g such
that g = a⊕ b. It is simple if it has no nontrivial ideals, and semisimple if the
equivalent conditions of Proposition 2.1 hold.

Proposition 2.1. The following conditions on a finite-dimensional Lie algebra g
are equivalent.

1. g has no nonzero solvable ideals;

2. g is a direct sum of simple Lie algebras;

3. the Killing form B on g, defined by

B(X, Y) = tr(ad(X) ◦ ad(Y))

for X, Y ∈ g, is nondegenerate.

If these conditions hold, g is called semisimple.

Proof. See Theorem 1.42 and 1.51 in [13].

A Lie algebra is reductive if and only if it is the direct sum of an abelian
and a semisimple Lie algebra. (In particular, semisimple Lie algebras are
reductive.)

The group G is called reductive or semisimple if g has the correspond-
ing property.
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2.2 Admissible and tempered representations

Let π be a continuous representation ofG in a Hilbert space H. Let (−,−)H
be the inner product on H. A vector v ∈ H is K-finite if π(K)v spans a
finite-dimensional linear subspace of H. A K-finite matrix coefficient of π is
a function on G of the form

g 7→ (v, π(g)w)H,

for K-finite vectors v,w ∈ H.

Definition 2.2. The representation π is

• admissible if the restriction π|K is unitary, and decomposes into irre-
ducible representations of Kwith finite multiplicities;

• if π is admissible, it is tempered if all its K-finite matrix coefficients are
in L2+ε(G), for all ε > 0.

If one studies unitary irreducible representations for the class of groups
we consider, one only needs to consider the addmissible ones.

Theorem 2.3. IfG is linear, connected and reductive, then all unitary irreducible
representations of G are admissible.

Proof. See Theorem 8.1 in [12].

2.3 Discrete series representations

Suppose G is linear, connected and reductive. We consider an irreducible
representation π of G in a Hilbert space H.

Definition 2.4. The representation π belongs to the discrete series of G if all
its matrix coefficients are in L2(G).

Proposition 2.5. An irreducible unitary representation belongs to the discrete
series if and only if it is equivalent to a closed subspace (i.e. a direct summand) of
the right regular representation of G in L2(G).

Proof. See Theorem 8.51(b) in [12]. If the matrix coefficients of a represen-
tation π are in L2(G), an equivariant isometric embedding B : H → L2(G)
can be defined a follows. Fix a nonzero v0 ∈ H, and define the map B by(

B(v)
)
(g) = (π(g)v, v0)H,

for v ∈ H and g ∈ G.
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Let Ĝ be the unitary dual of G, i.e. the set of all unitary irreducible
representations of G.

The Plancherel theorem states that there exists a measure µ on Ĝ, called
the Plancherel measure, such that, viewed as a representation of G × G by
the left and right regular representations, one has the direct integral de-
composition

L2(G) ∼=

∫⊕
Ĝ

Hπ⊗̂H∗π dµ(π).

Proposition 2.5 implies that the discrete series representations are exactly
those with positive Plancherel measure. If G is semisimple, the Plancherel
measure is supported precisely on the tempered representations.

2.4 Cartan subalgebras and subgroups

Let g be a complex Lie algebra. Let h ⊂ g be a nilpotent complex subalge-
bra. For α ∈ h∗, set

(2.1) gα :=

{X ∈ g; for all Y ∈ h there is an n ∈ N such that (ad(Y) − α(Y))nX = 0}.

Then one has the decomposition

g =
⊕

α∈h∗ s.t. gα 6=0

gα,

and since h is nilpotent, h ⊂ g0. (See Proposition 2.5 in [13].)

Definition 2.6. The subalgebra h ⊂ g is a Cartan subalgebra if h = g0. Then
the roots of (g, h) are the nonzero α ∈ h∗ for which gα 6= 0. The root space
associated to a root α is the space gα. The Weyl group associated to these
roots is the subgroup of the orthogonal group of the real span of the roots
generated by the reflections in the orthogonal complements of the roots,
with respect to some inner product.

Cartan subalgebras of complex Lie algebras are unique up to conjuga-
tion.

Theorem 2.7. If h1 and h2 are Cartan subalgebras of a complex Lie algebra, then
there is a a ∈ Int(g), the analytic subgroup of AutR(g) with Lie algebra ad(g),
such that

h2 = a(h1).
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Proof. See Theorem 2.15 in [13].

For semisimple Lie algebras, Cartan subalgebras and the associated
root spaces have additional properties.

Theorem 2.8. If g is a complex semisimple Lie algebra, then

• all Cartan subalgebras are abelian;

• a subalgebra h ⊂ g is a Cartan subalgebra if and only if adg(h) diagonalises
simultaneously;

• all root spaces are one-dimensional, and one may take n = 1 in (2.1).

Proof. See Proposition 2.10, Corollary 2.13 and Proposition 2.21 in [13].

Definition 2.9. If g is a real Lie algebra, then a Cartan subalgebra of g is a
subalgebra h ⊂ g whose complexification hC is Cartan subalgebra of the
complexification gC. For a reductive group G, the Cartan subgroup asso-
ciated to a Cartan subalgebra h of its Lie algbera is the centraliser of h in
G.

Note that not all Cartan subalgebras of a real Lie algebra need to be
conjugate in g; only their complexifications are conjugate in gC. This does
imply that all Cartan subalgebras have the same dimension. This dimen-
sion is the rank of g.

3 Infintesimal characters

Let G be a linear reductive Lie group, with lie algebra g. Let gC be its com-
plexification, and hC ⊂ gC a Cartan subalgebra. Let U(gC) be the universal
enveloping algebra of gC, and let Z(gC) ⊂ U(gC) be its centre.

If π is an irreducible, admissible representation of G in a Hilbert space
H, then the action of every element Z ∈ Z(gC) on H commutes with the
representation, and is hence given by a scalar χπ(Z) (by Schur’s lemma).
This way, one gets a homomorphism χπ : Z(gC) → C. Such homomor-
phisms can be classified, which provides information about classifying
repreentations of G. This classification involves the Harish–Chandra ho-
momorphism.
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3.1 The Harish–Chandra homomorphism

Let R be the root system of (gC, hC), and let R+ ⊂ R be a choice of positive
roots. Consider the root space decomposition

gC = hC ⊕
⊕
α∈R

gC,α.

Let Eα ∈ gC,α be nonzero, and set

P :=
⊕
α∈R+

U(gC)Eα.

Lemma 3.1. One has U(hC) ∩ P = {0}, and Z(gC) ⊂ U(hC)⊕ P.

Proof. See Lemma 8.17 in [12].

Let
p : Z(gC)→ U(hC)

be the projection according to the decomposition in Lemma 3.1. Let ρ be
half the sum of the positive roots in R+, and let

σ : hC → U(hC)

be given by σ(X) = X − ρ(X). By the universal property of the universal
enveloping algebra (Proposition 3.1 in [12]), the homomorphism σ extends
to an algebra endomorphism of U(hC), which we still denote by σ.

Definition 3.2. The Harish–Chandra homomorphism is the map

γ := σ ◦ p : Z(gC)
p
−→ U(hC)

σ
−→ U(hC).

Theorem 3.3. The Harish–Chandra homomorphism is an algebra isomorphism
from Z(gC) onto the algebraU(hC)W of Weyl group-invariant elements of U(hC).

Proof. See Theorem 8.18 in [12].
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3.2 The infinitesimal character of an irreducible, admissi-
ble representation

Keeping the notation from the start of this section, let λ ∈ h∗C. Then λ is an
algebra homomorphism from hC to C, which by the universal property of
the universal enevloping algebra extends to an algebra homomorphism

λ : U(hC)→ C.

Definition 3.4. The infinitesimal character χλ : Z(gC)→ C is defined as

χλ := λ ◦ γ : Z(gC)
γ
−→ U(hC)

λ
−→ C.

Theorem 3.5. Every algebra homomorphism χ : Z(gC) → C is of the form
χ = χλ, for a λ ∈ h∗C. Two such homomorphisms χλ and χλ ′ are equal if and only
if λ ′ = wλ for a Weyl group element w.

Proof. See Propositions 8.20 and 8.21 in [12].

In particular, the homomorphism χπ : Z(gC) → C associated to the
irreducible, admissible representation π is of the form

χπ = χλ

for a λ ∈ h∗C, determined up to the action of the Weyl group.

Definition 3.6. In this setting, λ or χλ is called the infinitesimal character of
π.

4 Global characters

Let G be a linear, connected, reductive Lie group.

4.1 Existence of global characters

Let π be an admissible representation of G in a Hilbert space H.
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Definition 4.1. A distribution Θ ∈ D ′(G) on G is the global character of π if
for all f ∈ C∞

c (G), the operator

π(f) :=

∫
G

f(g)π(g)dg

is trace class, and
tr(π(f)) = Θ(f).

Theorem 4.2. Every unitary irreducible representation and every admissible ir-
reducible representation of G has a global character.

Proof. See Theorem 10.2 in [12].

4.2 Infinitesimal equivalence

We will see that representation with the same global character are infinites-
imally equivalent. Let us introduce this type of equivalence.

There is a notion of smooth maps from manifolds to the Hilbert space
H. A vector v ∈ H is a smooth vector if the map G → H given by g 7→ g · v
is smooth.

Proposition 4.3. For an admissible representation, everyK-finite vector is smooth.

Proof. See Proposition 8.5 in [12].

Hence every admissible representation of G gives a representation of g
on the space of K-finite vectors.

Definition 4.4. Two admissible representations ofG are infinitesimally equiv-
alent if the corresponding representations of g on the spaces of K-finite vec-
tors are algebraically equivalent.

Here algebraic equivalence means that there is a linear isomorphism
betwene the two spaces intertwining the representations. This isomor-
phism is not required to be bounded, for example.

Theorem 4.5. Two irreducible unitary representations of G that are infinitesi-
mally equivalent, are unitarily equivalent.

Proof. See Corollary 9.2 in [12].
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Theorem 4.6. Consider two admissible representations of G with global char-
acters. Then these characters are equal if and only if the representations are in-
finitesimally equivalent.

Proof. See Proposition 10.5 and Theorem 10.6 in [12].

Combining Theorems 4.2, 4.5 and 4.6, we see that irreducible unitary
representations of linear, connected, reductive Lie groups have global char-
acters, which determine them up to unitary equivalence.

4.3 Regularity of global characters

By conjugation invariance of the trace, a global character Θ of an admis-
sible representation is a conjugation-invariant distribution. The universal
enveloping algebra U(gC) of the complexified Lie algebra gC of G acts on
distributions by differential operators. An additional property of Θ is that
the centre Z(gC) of U(gC) acts on it by scalars.

Lemma 4.7. Suppose π is irreducible and admissible. Let χπ : Z(gC)→ C be its
infinitesimal character. Then for all Z ∈ Z(gC),

ZΘ = χπ(Z)Θ

Proof. See Proposition 10.24 in [12].

The two properties of global characters of irreducible, admissible rep-
resentations just mentioned, are important enough to put in a definition.

Definition 4.8. A distribution onGwhich is conjugation invariant, and on
which Z(gC) acts by scalars, is called an invariant eigendistribution.

SupposeG is linear, connected and semisimple. Any invariant eigendis-
tribution on G is given by an analytic function on the regular set of G. To
define the regular set of a semisimple group G, note that all Cartan subal-
gebras of g are abelian (see Theorem 2.8). Hence for every element g ∈ G,
the map Ad(g) is the identity on the Lie algebra of the Cartan subgroup
containing g. Therefore, the dimension of the kernel of Ad(g) − Ig is at
least equal to the rank of G.

Definition 4.9. The regular set in G is the set

Greg :=
{
g ∈ G;dim

(
ker(Ad(g) − Ig)

)
= rank(G)

}
.
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The regular set is open dense in G.

Theorem 4.10. The restriction of an invariant eigendistribution on G to the reg-
ular set is given by an analytic function.

Proof. See Theorem 10.25 in [12].

A priori, it is possible that an invariant eigendistribution has contribu-
tions outside the regular set that mean it is not given by a function on all
ofG. It is a very deep theorem by Harish–Chandra that this is not the case.

Theorem 4.11. Any invariant eigendistribution on G is given by a locally inte-
grable function.

This theorem is stated as Theorem 10.36 in [12], but a proof is omitted.
The proof spans five papers by Harish–Chandra [4, 5, 6, 7, 8].

By Theorem 4.10, the restriction of the locally integrable function of
Theorem 4.11 to the regular set is analytic.

4.4 Computing global characters

By Theorem 4.10, one knows that on the regular set Greg, the global char-
acter of an irreducible admissible representation is given by an analytic
function. A general form for such a function is given in Theorem 4.14. The
expression given there will be made explicit for discrete series representa-
tions in Subection 5.2.

Suppose G is linear, connected and semisimple. Let H < G be a Cartan
subgroup, with Lie algebra h.

The general expression for a global character on the regular set will
involve the Weyl denominator. This function involves exponentials of ana-
lytically integral linear forms on hC.

Definition 4.12. An element λ ∈ h∗C is analytically integral, if it maps the
kernel of the exponential map of H into 2πiZ.

This condition is equivalent to the existence of a group homomorphism
ξλ : H→ C× such that

ξλ(exp(X)) = eλ(X)

for all x ∈ h.
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Let R be the root system of (gC, hC). Let R+ ⊂ R be a choice of positive
roots, and let ρ be half the sum of these positive roots. Then all roots
are analytically integral, and the fact that the complexification GC of G is
simply connected implies that ρ is analytically integral as well. Thus, one
has group homomorphisms ξα as above for all roots α and also ξρ.

Definition 4.13. The Weyl denominator is the function D on H given by

D := ξρ
∏
α∈R+

(1− ξ−1α ).

Now let π be an irreducible, admissible representation of G. Let χλ be
its infinitesimal character, for λ ∈ hC∗. Let Θ be its global character. By
Lemma 4.7, this global character satisfies ZΘ = χλ(Z)Θ for all Z ∈ Z(gC),
where χλ is the infinitesimal character of π.

Fix an element h1 ∈ H. Let h1 be a connected component of the set

{X ∈ h;D(h1 exp(X)) 6= 0}.

Set
(Hreg)G := {ghg−1;g ∈ G,h ∈ Hreg},

Theorem 4.14. There are unique polynomial functions pw on h, for w in the
Weyl group W, such that on (Hreg)G, the global character Θ is given by the ana-
lytic function Θ̃ satisfying

Θ̃(ghg−1) =
τ(h)

D(h)
,

for g ∈ G and h ∈ Hreg, where for all X ∈ h1,

τ(h1 expX) =
∑
w∈W

pw(X)e
(wλ)(X),

for every s ∈W stabilising λ and all w ∈W, one has pws = pw.

Proof. See Theorem 10.35 in [12]. They key point is that the function τ
satisfies the differential equation

γ(Z)τ = χλ(Z)τ,

for all Z ∈ Z(gC), where γ is the Harish–Chandra homomorphism.

Remark 4.15. Every regular element g ∈ Greg is in the set (Hreg)G for pre-
cisely one Cartan subgroup H, see Theorem 5.22(d) in [12].
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Group G Max. cpt. K < G rank(G) rank(K) Discrete series?
SL(n,C) SU(n) 2n− 2 n− 1 no
SL(n,R) SO(n) n− 1 bn

2
c iff n = 2

SL(n,H) Sp∗(n) 2n− 1 n no
SU(p, q) S(U(p)×U(q)) p+ q− 1 p+ q− 1 yes
SO(n,C) SO(n) 2bn

2
c bn

2
c no

SO(p, q) S(O(p)×O(q)) bp+q
2
c bp

2
c+ bq

2
c iff pq even

O∗(2n) U(n) n n yes
Sp(n,C) Sp∗(n) 2n n no
Sp(n,R) U(n) n n yes
Sp∗(p, q) Sp∗(p)× Sp∗(q) p+ q p+ q yes

Table 1: Harish–Chandra’s criterion rank(G) = rank(K) for the existence
of discrete series representations, for the non-exceptional real Lie groups

5 Classification and characters of discrete series
representations

Let G be linear, connected and semisimple.

5.1 Classification of discrete series representations

One has the following explicit criterion for the existence of discrete series
representations.

Theorem 5.1. The group G has discrete series representations if and only if
rank(G) = rank(K), i.e. G has a compact Cartan subgroup.

Proof. See Theorem 12.20 in [12].

For the non-exceptional simple real Lie groups, this criterion leads to
Table 5.1, which was taken from [3].

Now suppose that there is a maximal torus T < K which is a Cartan
subgroup of G, so that G has discrete series representations. Let R be the
root system of (gC, tC). Let Rc denote the set of compact roots, i.e. those of
(kC, tC), and let Rn := R \ Rc be the set of noncompact roots. Fix an element
λ ∈ it∗. Suppose λ is nonsingular, in the sense that (λ, α) 6= 0 for all roots
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α ∈ R. Let R+ be the set of positive roots defined by

(5.1) R+ := {α ∈ R; (α, λ) > 0}.

Let ρ be half the sum of the roots in R+, and let ρc be half the sum of the
positive compact roots in R+

c := R+ ∩ Rc.

Theorem 5.2. If λ+ ρ is analytically integral, there is a discrete series represen-
tation πλ of G such that

1. the infinitesimal character of πλ is χλ;

2. if ν := λ+ρ−2ρc, and πKν is the irreducible representation of Kwith highest
weight ν, then the multiplicity of πKν in πλ|K is one;

3. if µ is the highest weight of an irreducible representation of K with nonzero
multiplicity in πλ|K, then there are nonnegative integers nα such that

µ = ν+
∑
α∈R+

nαα.

Two such discrete series representations πλ and πλ ′ are equivalent if and only if
there is an element w of the Weyl group of Rc such that λ ′ = wλ.

Proof. See Theorem 9.20 in [12].

In the setting of Theorem 5.2, the element λ ∈ it∗ is called the Harish–
Chandra parameter of πλ. The representation πKν is the lowest K-type of πλ,
and ν is the Blattner parameter of πλ.

Theorem 5.3. Every discrete series representation of G equals one of the repre-
sentations πλ of Theorem 5.2.

Proof. See Theorem 12.21 in [12].

Theorems 5.2 and 5.3 give a complete classification of the discrete se-
ries representations of G. Explicit realisations of these representations are
given in Section 8.
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5.2 A character formula

We still suppose thatG is linear, connected and semisimple, and that rank(G) =
rank(K). As before, let T < K be a maximal torus that is a Cartan subgroup
of G. Let λ ∈ it∗ be as in Theorem 5.2, and let Θλ be the global character
of the discrete series representation πλ. Let Wc be the Weyl group of the
compact root system Rc. For any Cartan subgroup H < G, let Θ̃λ be the
analytic function describing Θλ on (Hreg)G, and write

Θ̃λ(ghg
−1) =

τH(h)

D(h)
,

for h ∈ Hreg and g ∈ G, as in Theorem 4.14.
The general expression for Θλ given in Theorem 4.14 can now be made

more explicit.

Theorem 5.4. The global character Θλ of πλ has the following properties.

1. On the compact Cartan subgroup T , one has

τT = (−1)
1
2

dim(G/K)
∑
w∈Wc

det(w)ξwλ.

2. On every Cartan subgroup H, the function τH is bounded.

Furthermore, Θλ is the only invariant eigendistribution with these properties and
the additional one that for all Z ∈ Z(gC), one has ZΘλ = χλ(Z)Θλ. (It has this
last property by Lemma 4.7 and the first part of Theorem 5.2.)

Proof. See Theorem 12.7 in [12].

By Theorem 12.6 in [12], the fact that the function τH is bounded for
every Cartan subgroupH implies that it is determined by its values on the
compact Cartan subgroup T .

6 Example: SL(2,R)
For any n ∈ N, consider the semisimple Lie group G = SL(n,R). Then
K = SO(n) is a maximal subgroup of G. Write n = 2k if n is even, and
n = 2k+ 1 if n is odd. Then a maximal torus in SO(n) is isomorphic to

SO(2)× · · · × SO(2)︸ ︷︷ ︸
k factors

.

16



Hence K has rank k. A Cartan subalgebra of the complexified Lie algebra
sl(n,C) is formed by the diagonal elements, and has complex dimension
n − 1. Hence rank(G) = n − 1. By Theorem 5.1, SL(n,R) therefore has
discrete series representations if and only if

• n = 2k is even, and k = n− 1; or

• n = 2k+ 1 is odd, and k = n− 1.

In other words, SL(n,R) has discrete series representations precisely ifn =
2.

For the rest of this section, we consider the group SL(2,R).

6.1 Cartan subgroups

The Lie algebra sl(2,R) has two conjugacy classes of Cartan subalgebras.
One is represented by t = RX, where

X :=

(
0 −1
1 0

)
.

The other is represented by h = RY, where

Y :=

(
1 0

0 −1

)
.

The corresponding Cartan subgroups are the compact group

T := SO(2),

and the noncompact group

A :=

{(
r 0

0 r−1

)
; r > 0

}
.

Since we are going to construct discrete series representations of SL(2,R),
we focus on the compact Cartan subgroup T .

The corresponding root space decomposition is

sl(2,C) = CX⊕ CEα + CE−α,
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where

Eα :=
1

2

(
1 −i
−i −1

)
; E−α :=

1

2

(
1 i

i −1

)
.

One can compute that
[X, E±α] = ±2iE±α.

Hence the root system of (sl(2,C), tC) is {±α}, with α determined by

α(X) = 2i.

There are no compact roots, i.e. Rc = ∅.

6.2 Discrete series representations

Let a nonzero element λ ∈ it∗ be given. Write λ = lα, for an l ∈ R. The
choice of positve roots determined by λ is R+ = {α} if l > 0, and R+ = {−α}
if l < 0. Hence

ρ = sign(l)
1

2
α; ρc = 0.

For any a ∈ R, one has

exp(aX) =
(

cosa − sina
sina cosa

)
.

Hence ker exp = 2πZX. Since ρ(2πX) = sign(l)2πi, we see that ρ is analyt-
ically integral. Hence λ+ρ is analytically integral if and only if λ is, which
is the case precisely if λ(2πX) = 4πil ∈ 2πiZ, i.e. if

λ = λn :=
n

2
α,

for a nonzero integer n. The discrete series representations of SL(2,R) are
precisely the representations πλ given in Theorem 5.2, for these values of
λ. Write πn := πλn . No two of these are equivalent, since the Weyl group
of the compact roots is trivial.

6.3 Characters

For every nonzero integer n, let let Θn be the global character of the dis-
crete series representation πn. In this example, we have
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• dim(G/K) = 2;

• Wc = {e};

• T reg = T \ {I}.

Hence Theorem 5.4 implies that for all a 6∈ 2πZ,

Θn(exp(aX)) = (−1)
1
2

dim(G/K)

∑
w∈Wc det(w)ξwλn(exp(aX))

ξρ(exp(aX))
∏

α∈R+(1− ξα(exp(aX))−1)

= −
eλn(aX)

eρ(aX)
(
1− e−α(aX)

)
= −

eina

esign(n)ia(1− e−2 sign(n)ia)

= − sign(n)
eina

eia − e−ia
.

(To do: there is a shift n 7→ n− 1 compared to Proposition 10.14 in [12]?)

6.4 Explicit realisations

Let n be a positive integer. Let H ⊂ C be the upper half plane. For func-
tions f1, f2 on H for which the integral converges, set

(6.1) (f1, f2)n :=

∫
H
f1(x+ iy)f2(x+ iy)y

n−1 dxdy.

Let ‖ · ‖n be the associated norm. Consider the Hilbert space

Hn :=
{
f : H→ C analytic; ‖f‖n <∞},

equipped with the inner product defined by (6.1). Consider the action by

SL(2,R) on Hn defined as follows. For g =

(
a b

c d

)
∈ SL(2,R), f ∈ Hn,

and x+ iy ∈ H, set

(6.2) (g · f)(z) = (−bz+ d)−n+1f

(
az− c

−bz+ d

)
.
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It is shown in Subsection II.5 of [12] that this representation is unitary and
irreducible. In Proposition 10.14 in [12], it is shown that the global charac-
ter of this representation is Θn (on the compact Cartan subgroup T , hence
everywhere by the comment after Theorem 5.4.) Hence this realises the
discrete series representation πn.

For negative integers n, let

Hn := {f̄; f ∈ H−n},

equipped with the same inner product as H−n. The action by SL(2,R) on
Hn given by (6.2) is again irreducible and unitary. In Proposition 10.14 in
[12], it is shown that the global character of this representation is Θn.

7 Relevance to representation theory

Suppose G is linear, connected and semisimple1 The relevance of discrete
series representations is that (almost) every irreducible tempered repre-
sentation of G can be obtained using induction from parabolic subgroups
S < G of relatively simple classes of representations parametrised by dis-
crete series representations of a reductive subgroupM < S. In this section,
we will make this statement precise.

7.1 The Cartan decomposition

Proposition 7.1. There is a Cartan involution θ of g such that the bilinear form

−B(−, θ −)

on g is positive definite, where B is the Killing form. All Cartan involutions are
conjugate via the adjoint representation.

Proof. See Corollaries 6.18 and 6.19 in [13].

Fix a Cartan involution θ.
Let g = k⊕ p be the decomposition of g into the +1 and −1 eigenspaces

of θ. The is the Cartan decomposition of g. The potential clash of notation

1Much of the material in this section is true for more general reductive groups, such
as groups in the Harish–Chandra class (which contains the linear, connected semisimple
ones).
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with the Lie algebra k of a maximal compact subgroup is resolved by the
following result.

Theorem 7.2. Let K be the analytic subgroup of G with Lie algbera k. Then K is
a maximal compact subgroup of G, and the map K× p→ G given by

(k, X) 7→ k exp(X)

for k ∈ K and X ∈ p, is a diffeomorphism onto G.

Proof. See Theorem 6.31(c),(g) in [13]. (The centre of G is finite since G is
linear.)

We will use the maximal compact subgroup K associated to the Cartan
involution θ from now on.

7.2 The Iwasawa decomposition

Let a ⊂ p be a maximal abelian subalgebra. For α ∈ a∗, write

gα := {X ∈ g;∀Y ∈ a, [Y, X] = α(Y)X}.

If gα 6= {0} and α 6= 0, then α is called a restricted root of (g, a). Let Σ be the
set of restricted roots. Write m := Zk(a).

Proposition 7.3. One has the decomposition

g = (m⊕ a)⊕
⊕
α∈Σ

gα.

Proof. See Proposition 6.40(a) in [13].

Example 7.4. (This is Example 1 on p. 313 of [13].) Let G = SL(n,R) or
G = SL(n,C). Then one kan take k to be the subalgebra of anti-Hermitian
matrices, and p the subspace of Hermitian matrices. The space a of real
diagonal matrices with trace zero is a maximal abelian subspace of p. For
j = 1, . . . , n, let fj ∈ a∗ be evaluation at the j’th diagonal element. Then the
restricted roots are

Σ = {fj − fk; j 6= k}.
The restricted root space gfj−fk is the space of matrices with the only nonzero
entry in place (j, k). The real dimension of gfj−fk is 1 for SL(n,R) and 2 for
SL(n,C).
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The subalgebra m consists of all anti-Hermitian diagonal matrices. This
is zero for SL(2,R), and the algebra of imaginary diagonal matrices with
trace zero for SL(2,C)

Now fix a set of positive restricted roots Σ+ ⊂ Σ and write

n :=
⊕
α∈Σ+

gα.

Then the Iwasawa decomposition of g is the following statement.

Theorem 7.5. One has
g = k⊕ a⊕ n.

Proof. See Proposition 6.43 in [13].

At the group level, one has the following decomposition.

Theorem 7.6. Let A and N be the analytic subgroups of G with Lie algebras a
and n, respectively. Then the multiplication map

K×A×N→ G

is a diffeomorphism onto G.

Proof. See Theorem 6.46 in [13].

As an aside, we mention that an Iwasawa decomposition of g allows
one to find an explicit Cartan subalgebra.

Theorem 7.7. If t ⊂ m is a maximal abelian subalgebra, then t ⊕ a is a Cartan
subalgebra of g. For this Cartan subalgebra, all roots are real on a and imaginary
on t.

Proof. See Proposition 6.47 and Corollary 6.49 in [13].

7.3 Parabolic subalgebras

We change notation now, and write m0, a0 and n0 for the subalgebras
m, a, n ⊂ g of Subsection 7.2.

Definition 7.8. A parabolic subalgebra of g is a subalgebra containing a con-
jugate of m0 ⊕ a0 ⊕ n0.
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We will focus on parabolic subalgebras containing m0⊕a0⊕n0; all others
can be obtained via conjugation.

To classify the parabolic subalgebras of g, let Σ0 ⊂ Σ+ be a set of simple
restricted roots. For a subset ∆ ⊂ Σ0, set

Σ∆ := Σ+ ∪ {α ∈ Σ;α ∈ span(∆)}.

Then
s∆ := m0 ⊕ a0 ⊕

⊕
α∈Σ∆

gα

is a parabolic subalgebra of g containing m0 ⊕ a0 ⊕ n0.

Proposition 7.9. All parabolic subalgebra of g containing m0⊕a0⊕n0 are of the
form s∆ as above.

Proof. See Proposition 7.76 in [13].

Every parabolic subalgebra admits a decomposition called the Lang-
lands decomposition. Let s = s∆ ⊂ g be a parabolic subalgebra as in Propo-
sition 7.9. Set

• a :=
⋂
α∈Σ∆∩−Σ∆ kerα ⊂ a0;

• aM := a⊥ ⊂ a0;

• m := aM ⊕m0 ⊕
⊕

α∈Σ∆∩−Σ∆ gα;

• n :=
⊕

α∈Σ∆\(−Σ∆) gα.

Theorem 7.10. The subspaces m, a and n of g have the following properties.

1. m, a and n are Lie subalgebras of s; n is an ideal.

2. s decomposes as
s = m⊕ a⊕ n.

3. a is abelian, n is nilpotent.

4. m⊕ a is the centraliser of a in g.

Proof. See Proposition 7.78 in [13].

The decomposition s = m⊕ a⊕ n is the Langlands decomposition of s.
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Example 7.11. (This is Example 1 on p. 413 of [13].) Let g = sl(n,R) or
g = sl(n,C). Then a minimal parabolic subalgebra m0 ⊕ a0 ⊕ n0 is the
subalgebra of upper-triangular matrices. The other parabolic subalgebras
are the block-upper triangular subalgebras.

7.4 Parabolic subgroups

Fix a parabolic subalgebra s containing m0 ⊕ a0 ⊕ n0, and let s = m ⊕
a ⊕ n be the Langlands decomposition of s. Let A and N be the analytic
subgroups of G with Lie algebras a and n, respectively. Let M0 be the
analytic subgroup of Gwith Lie algebra m, and set2 M := ZK(a)M0. Set

S :=MAN.

Theorem 7.12. 1. The subgroupM is reductive, and has Lie algebra m.

2. The set S equals
S = NG(m⊕ a⊕ n)

and is hence a closed subgroup of G. Its Lie algebra is s.

3. The multiplication map

M×A×N→ S

is a diffeomorphism onto S.

Proof. See Propositions 7.82(a) and 7.83(b),(c),(d) in [13].

Definition 7.13. The closed subgroup S = MAN < G is the parabolic sub-
group associated to the parabolic subalgebra s.

Example 7.14. (This is the example on p. 421 of [13].) LetG = SL(3,R). Let
a0 < g be the diagonal subalgebra. In the notation of Exampe 7.4, consider
the set of positive restricted roots

Σ+ := {f1 − f2, f2 − f3, f1 − f3}.

If one takes ∆ := {f1 − f2}, then the associated parabolic subgroup S is
the subgroup of block-upper triangular matrices with block sizes 2 and 1.
Now a consists of the diagonal matrices with diagonal entries (r, r,−2r),
for real r.

2Another definition ofM is used in [13], this one is from [12], p. 133.
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7.5 Induced representations

Let S =MAN < G be a parabolic subgroup of G. Let

σ :M→ U(H)

be a unitary irreducible representation. Let ν ∈ a∗C. Write

ρN :=
1

2

∑
α∈Σ∆\(−Σ∆)

α.

Definition 7.15. The (normalised or unitary) induced representation IndGS (σ⊗
eν⊗ 1) is the representation of G defined as follows. Consider the space of
continuous functions f : G→ H such that for all g ∈ G, m ∈M, X ∈ a and
n ∈ N,

f(gm exp(X)n) = e−(ν+ρN)(X)σ(m)−1f(g).

Let HS,σ,ν be the completion of this space in the norm defined by

‖f‖ := ‖f|K‖L2(K).

Then IndGS (σ⊗ eν ⊗ 1) is the representation of G on HS,σ,ν given by

(g · f)(g ′) = f(g−1g ′),

for g, g ′ ∈ G.

7.6 The classification of tempered representations

The statement about relevance of discrete series representations to the gen-
eral representation theory ofGmade at the start of this section can now be
made more precise. A parabolic subgroup S =MAN < G is called cuspidal
ifM has discrete series representations.

Theorem 7.16. Every irreducible tempered representation π ofG can be obtained
by induction from a cuspidal parabolic subgroup S =MAN < G as

π = IndGS (σ⊗ eiν ⊗ 1),

where ν ∈ a∗, and σ is a discrete series representation ofM, or a limit of discrete
series representations ofM.

25



Proof. See Theorem 14.76 in [12].

Knapp and Zuckerman also determined which P, σ and ν occur in The-
orem 7.16, completing the classification of tempered representations. See
Theorem 14.2 in [15].

The definition of limits of the discrete series is given in Section XII.7 of
[12]. However, even if one needs a limit of the discrete series in the setting
of Theorem 7.16, then π is still contained in a representation induced from
a discrete series representation ofM.

Theorem 7.17. If S =MAN is a cuspidal parabolic subgroup, ν ∈ ia∗, and σ is
a limit of discrete series representations ofM, then there are a parabolic subgroup
S ′ = M ′A ′N ′ ⊂ G, a discrete series representation σ ′ of M ′ and a ν ′ ∈ ia ′∗,
such that π := IndGS (σ ⊗ eiν ⊗ 1) is contained in π ′ := IndGS ′(σ ′ ⊗ eν

′ ⊗ 1), in
the sense that the global character of π equals the sum of the global character of π ′

plus another global character.

Proof. See Corollary 14.72 in [12].

Combining Theorems 7.16 and 7.17, see also Corollary 8.8 in [14], we
obtain the following result.

Corollary 7.18. Every tempered representation of G is contained in a repre-
sentation of the form IndGS (σ ⊗ eiν ⊗ 1N) for a cuspidal parabolic subgroup
S =MAN < G, a discrete series representation σ ofM and ν ∈ a∗.

8 Explicit realisations of the discrete series

The constructions of discrete series representations given in the proof of
Theorem 5.2 in [12] are not very explicit. There are more concrete realisa-
tions, just like the Borel–Weil(–Bott) theorem gives explicit realisations of
irreducible representations of compact groups.

Let G be linear, connected and semisimple, and let K < G be maximal
compact. Suppose that there is a maximal torus T < K which is a Cartan
subgroup of G, i.e. that G has discrete series representations.
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8.1 Dolbeault cohomology

In [18], Schmid proved a conjecture of Langlands about realising discrete
series representation in the L2-Dolbeault cohomology of G/T . The invari-
ant complex structures on this manifold correspond to choices of positive
roots of (gC, tC).

Theorem 8.1. For every choice of positive roots R+ of (gC, tC), there is precisely
one G-invariant complex structure on G/T such that, under the identification

TeT(G/T)C = (g/t)C =
⊕
α∈R

(gC)α,

the subspace T 0,1eT (G/T) corresponds to⊕
α∈R+

(gC)α.

Fix a set R+ of positive roots and corresponding G-invariant complex
structure on G/T . Let R+

c and R+
n be the sets of compact and noncompact

positive roots, respectively.
Let λ ∈ it∗, and suppose λ+ ρ is analytically integral. Then so is λ− ρ.

Consider the line bundle

Lλ−ρ := G×T Cλ−ρ → G/T,

where T acts on Cλ−ρ via ξλ−ρ. It has the structure of a holomorphic G-line
bundle.

Let Hp(G/T ;Lλ−ρ) be the p’th L2-Dolbeault cohomology group of G/T
with coefficients in Lλ−ρ.

Theorem 8.2. If λ is singular, then Hp(G/T ;Lλ−ρ) = 0 for all p. If λ is nonsin-
gular, set3

k := #{α ∈ R+
c ; (λ, α) < 0}+ #{α ∈ R+

n ; (λ, α) > 0}.

ThenHp(G/T ;Lλ−ρ) = 0 if p 6= k, while the representation ofG inHk(G/T ;Lλ−ρ)
is irreducible, and is equivalent to the discrete series representation πλ of Theorem
5.2.

Proof. See Theorem 1.5 in [18].
3Note that in this setting, the set R+ of positive roots is fixed, whereas in Theorem 5.2

it depended on λ.
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8.2 Dirac operators

Another realisation of discrete series representations was given by Parthasarathy
[17] and Atiyah and Schmid [1]. They realised these representations in L2-
kernels of Spin-Dirac operators onG/K. Parthasarathy needed a condition
that Atiyah and Schmid were able to omit. In addition, Atiyah and Schmid
actually reproved the classification of discrete series representation given
in Theorem 5.2 and the character formula in Theorem 5.4.

For a given irreducible representation V of K, the Dirac operator DV

used by Parthasarathy and Atiyah–Schmid is defined as follows. Consider
the inner product on p given by the restriction of the Killing form. The
adjoint representation

Ad : K→ GL(p)

ofK on p takes values in SO(p), because the Killing form is Ad(K)-invariant,
and K is connected. We suppose that it has a lift Ãd to the double cover
Spin(p) of SO(p). It may be necessary to replace G and K by double covers
for this lift to exist. Then the homogeneous spaceG/K has aG-equivariant
Spin-structure

PG/K := G×K Spin(p)→ G/K.

Here G×K Spin(p) is the quotient of G×Spin(p) by the action of K defined
by

k(g, a) = (gk−1, Ãd(k)a),

for k ∈ K, g ∈ G and a ∈ Spin(p).
Set d := dim(p) = dim(G/K). Note that d equals the number of non-

compact roots, which is twice the number of positive noncompact roots,
and hence even. Fix an orthonormal basis {X1, . . . , Xd} of p. Using this ba-
sis, we identify Spin(p) ∼= Spin(d). Let∆d be the canonical 2

d
2 -dimensional

representation of Spin(d). Because p is even-dimensional, ∆d splits into
two irreducible subrepresentations ∆+

d and ∆−
d . Consider the G-vector

bundles
E±V := G×K (∆±d ⊗ V)→ G/K.

Note that

(8.1) Γ∞(G/K, E±V )
∼=
(
C∞(G)⊗ ∆±d ⊗ V

)K
,

where K acts on C∞(G)⊗ ∆±d ⊗ V by

(8.2) k · (f⊗ δ⊗ v) = (f ◦ lk−1 ⊗ Ãd(k)δ⊗ k · v)
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for all k ∈ K, f ∈ C∞(G), δ ∈ ∆d and v ∈ V . Here lk−1 denotes left
multiplication by k−1.

Using the basis {X1, . . . , Xd} of p and the isomorphism (8.1), define the
differential operator

(8.3) DV : Γ∞(E+V)→ Γ∞(E−V)

by the formula

(8.4) DV :=

d∑
j=1

Xj ⊗ c(Xj)⊗ 1V .

Here in the first factor, Xj is viewed as a left invariant vector field onG, and
in the second factor, c : p → End(∆d) is the Clifford action. This action is
odd with respect to the grading on ∆d. The operator (8.3) is the Spin-Dirac
operator on G/K (see e.g. [17], Proposition 1.1.

Let λ ∈ it∗ and suppose λ + ρ is analytically integral, ρ is half the sum
of a choice4 of positive roots having nonnegative inner products with λ.
Let V be the irreducible representation of Kwith highest weight λ− ρc.

Theorem 8.3. If λ is singular, then the L2-kernel ofDV is zero. If λ is nonsingu-
lar, then the representation ofG in the L2-kernel ofDV is equivalent to the discrete
series representation πλ of Theorem 5.2.

Proof. See Theorem 9.3 in [1].

9 K-theory of group C∗-algebras

This section is a modified version of Subsection 1.4 in [11].
For any locally compact topological group G, the reduced group C∗-

algebra C∗rG of G is the completion of the convolution algebra Cc(G) in
the norm ‖ · ‖C∗rG, defined by

‖ϕ‖C∗rG := ‖ϕ∗ − ‖B(L2(G)),

the operator norm of convolution by ϕ ∈ Cc(G). A class in the even K-
theory K0(A) of a C∗-algebra A (e.g. A = C∗rG) is defined by a projection
matrix p ∈Mn(A) for some n. I.e. p2 = p and p∗ = p.

4If λ is singular, this does not determine the positive root system uniquely.
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In [16], V. Lafforgue reproves some classical results about discrete se-
ries representations by Harish-Chandra [9, 10], analogous to the results by
Atiyah and Schmid [1] and Parthasarathy [17], using group C∗-algebras,
K-homology, K-theory and the analytic assembly map that features in the
Baum–Connes conjecture.

9.1 Dirac induction

Let V be an irreducible representation of K. Lafforgue (see also Wasser-
mann [19]) uses the Dirac operator DV defined in (8.4) to define a Dirac
induction map

(9.1) D-IndGK : R(K)→ K0(C
∗
r(G))

by

(9.2) D-IndGK [V ] :=
[(
C∗r(G)⊗ ∆d ⊗ V

)K
, b
(
DV
)]
,

where b : R → R is a normalising function, e.g. b(x) = x√
1+x2

. The ex-
pression on the right hand side defines a class in Kasparov’s KK-group
KK0(C, C∗r(G)), which is isomorphic to the K-theory group K0(C∗r(G)). In
[19], Wassermann proves the Connes–Kasparov conjecture, which states
that this Dirac induction map is a bijection, for linear reductive groups.
The case for general almost connected Lie groups is proved in [2].

9.2 Reduction at discrete series representations

The relation between the Dirac induction map and the work of Atiyah and
Schmid and of Parthasarathy can be seen by embedding the discrete series
of G into K0(C∗r(G)) via the map

H 7→ [H] := [dHcH],

where H is a Hilbert space with inner product (−,−)H, equipped with a
discrete series representation of G, cH ∈ C(G) is the function

cH(g) = (v, g · v)H,
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for a fixed v ∈ H of norm 1, and dH is the inverse of the L2-norm of cH
(so that the function dHcH has L2-norm 1). Because dHcH is a projection in
C∗r(G), it indeed defines a class in K0(C∗r(G)).

Next, Lafforgue defines a map5

(9.3) RH
G : K0(C

∗
r(G))→ Z

that amounts to taking the multiplicity of the irreducible discrete series
representation H, as follows. Consider the map

C∗r(G)→ K(H)

(the C∗-algebra of compact operators on H), given on Cc(G) ⊂ C∗r(G) by

(9.4) f 7→ π(f) :=

∫
G

f(g)π(g)dg.

Here π is the representation ofG in H. For all f ∈ C∞
c (G), the operator π(f)

is trace class, and hence compact, by Theorem 4.2. Since K0(K(H)) ∼= Z,
this map induces a map K0(C∗r(G)) → Z on K-theory, which by definition
is (9.3).

The map RH
G has the property that for all irreducible discrete series rep-

resentations H and H ′ of G, one has

RH
G ([H

′]) =

{
1 if H ∼= H ′

0 if H 6∼= H ′.

Hence it can indeed be interpreted as a multiplicity function. For compact
groups, it follows from Schur orthogonality that this is indeed the usual
multiplicity.

9.3 Reduction and Dirac induction

Dirac induction links the reduction map RH
G to multiplicities of irreducible

representation of K in the following way.
Let R be the root system of (gC, tC), let Rc ⊂ R be the subset of compact

roots, and let Rn := R \ Rc be the set of noncompact roots. Let R+
c ⊂ Rc

be a choice of positive compact roots, and let Λk
+ be the set of dominant

integral weights of (k, t) with respect to R+
c .

5In Lafforgues’s notation, RHG (x) = 〈H, x〉.

31



Let H be a discrete series representation of G. Let λ be the Harish–
Chandra parameter of H such that (α, λ) > 0 for all α ∈ R+

c . Let R+ ⊂ R be
the positive root system defined by (5.1). Then R+

c ⊂ R+, and we denote
by R+

n := R+ \ R+
c the set of noncompact positive roots. We will write

ρ := 1
2

∑
α∈R+ α and ρc := 1

2

∑
α∈R+c α. We will use the fact that λ − ρc lies

on the dominant weight lattice Λk
+, since λ ∈ Λk

+ + ρ. As before, we set
d := dim(G/K).

Lemma 9.1. Let µ ∈ Λk
+ be given. Let Vµ be the irreducible representation of K

with highest weight µ. We have

(9.5) RH
G

(
D-IndGK [Vµ]

)
=

{
(−1)d/2 if µ = λ− ρc
0 otherwise.

Proof. According to Lafforgue [16], Lemma 2.1.1, we have

RH
G

(
D-IndGK [Vµ]

)
= dim

(
V∗µ ⊗ ∆∗d ⊗H

)K
=
[
∆∗d ⊗H|K : Vµ

]
,(9.6)

the multiplicity of Vµ in ∆∗d ⊗H|K. Let us compute this multiplicity.
By Theorem 5.4, the character Θλ of H satisfies

Θλ|T reg = (−1)d/2
∑

w∈Wc det(w)ewλ∏
α∈R+

(
eα/2 − e−α/2

)
.

The character χ∆d of the representation

(9.7) K
Ãd
−→ Spin(p)→ GL(∆d),

on the other hand, is given by (Parthasarathy [17], Remark 2.2)

χ∆d |T reg :=
(
χ∆+

d
− χ∆−

d

)
|T reg =

∏
α∈R+n

(
eα/2 − e−α/2

)
.

It follows from this formula that for all t ∈ T reg,

χ∆∗d(t) = χ∆d(t
−1) = χ∆d(t),

and hence (
Θλχ∆∗d

)
|T reg = (−1)d/2

∑
w∈W(k,t) ε(w)e

wλ∏
α∈R+c

(
eα/2 − e−α/2

)
= (−1)d/2χKλ−ρc ,
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by Weyl’s character formula. Here χKλ−ρc is the character of the irreducible
representation of Kwith highest weight λ− ρc.

Therefore, by (9.6),

RH
G

(
D-IndGK [Vµ]

)
=
[
∆∗d ⊗H|K : Vµ

]
= (−1)d/2[Vλ−ρc : Vµ]

=

{
(−1)d/2 if µ = λ− ρc
0 otherwise.

Corollary 9.2. Let H be a Hilbert space carrying a discrete series representation
of G, with Harish–Chandra parameter λ. Let V be the irreducible representation
of K with highest weight µ− ρc. Then the class in K0(C∗rG) defined by H equals

[H] = (−1)d/2 D-IndGK [V]

Proof. The comment below Lemma 2.2.1 in [16] implies that the class [H]
is of the form

[H] = ±D-IndGK [V]

for an irreducible representation V of K. Given this relation, Lemma 9.1
yields the more explicit expression

[H] = (−1)d/2 D-IndGK [V],

where V has highest weight λ− ρc.
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