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1 The momentum map

We will define a notion of ‘reduction’ of a symplectic manifold by an action of
a Lie group. This procedure is called symplectic reduction, and it involves a
momentum map. This is a map from the symplectic manifold to the dual of the
Lie algebra of the group acting on it.

Historically, momentum maps and symplectic reduction appeared in many
examples from classical mechanics before they were defined in general, by Kostant
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[18] and Souriau [26] around 1965. The conserved quantities linear and angular
momentum for example are special cases of momentum maps. In classical me-
chanics, the phase space of a system is a symplectic manifold1. The dynamics
is generated by a function on the phase space, called the Hamiltonian. This
function has the physical interpretation of the total energy of the system. A
symmetry of the physical system is an action of a group on the phase space,
which leaves the symplectic form and the Hamiltonian invariant. We shall only
study the symmetry reduction of symplectic manifolds, although the reduction
of Hamiltonian functions is an interesting subject.

In this and the following sections, (M,ω) denotes a connected symplectic
manifold. We shall use the letter G to denote a general Lie group, and we will
write K for a compact connected Lie group. Their Lie algebras are denoted by
g and k, respectively. All manifolds, Lie groups and maps are assumed to be
C∞.

1.1 Definition of the momentum map

Let (M,ω) be a symplectic manifold. Suppose that G acts smoothly on M , and
let

G×M →M, (g,m) 7→ gm = a(g)m

be the map defining the action. We also consider the corresponding infinitesimal
action

g×M → TM, (X,m) 7→ Xm = A(X)m,

where by definition,

Xm :=
d

dt

∣∣∣∣
t=0

exp(tX) ·m ∈ TmM.

In this way, every element X of g defines a vector field in M , which is also
denoted by X, or sometimes by XM to avoid confusion. The map X 7→ A(X)
is an antihomomorphism from g to the Lie algebra Vect(M) of smooth vector
fields on M , just as the map g 7→ a(g) defines an antirepresentation of G in the
space of smooth functions on M .

We denote the connected component of G containing the identity element
by G0.

Lemma 1.1. The symplectic form ω is invarant under the action of G0, if and
only if the one-form Xyω is closed for all X ∈ g.

The symbol ‘y’ denotes contraction of differential forms with vector fields.

Proof. The form ω is G0-invariant if and only if the Lie derivative LXω equals
zero for all X ∈ g. By Cartan’s formula,

LXω = d(Xyω) +Xydω

= d(Xyω),

1We will deal with symplectic manifolds rather than the more general Poisson manifolds.
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because ω is closed.

Definition 1.2. Suppose thatG acts on the symplectic manifold (M,ω), leaving
ω invariant. The action is called Hamiltonian2 if there is a smooth, equivariant
map

µ : M → g∗,

such that for all X ∈ g,

dµX = −Xyω. (1)

Here the function µX is defined by

µX(m) = 〈µ(m), X〉,

for X ∈ g and m ∈M .
The map µ is called a momentum map3 of the action.

Remark 1.3. A momentum map is assumed to be equivariant with respect to
the coadjoint action Ad∗ of G on g∗:

〈Ad∗(g)ξ,X〉 = 〈ξ,Ad(g−1)X〉,

for all g ∈ G, ξ ∈ g∗ and X ∈ g. The corresponding infinitesimal action ad∗ of
g on g∗ is given by

〈ad∗(X)ξ, Y 〉 = 〈ξ,−[X,Y ]〉,

for all X,Y ∈ g and ξ ∈ g∗.

Remark 1.4 (Uniqueness of momentum maps). If µ and ν are two momentum
maps for the same action, then for all X ∈ g,

d(µX − νX) = 0.

Because M is supposed to be connected, this implies that the difference µX−νX
is a constant function, say cX , on M . By definition of momentum maps, the
constant cX depends linearly on X. So there is a an element ξ ∈ g∗ such that

µ− ν = ξ.

By equivariance of momentum maps, the element ξ is fixed by the coadjoint
action of G on g∗. In fact, given a momentum map the space of elements of
g∗ that are fixed by the coadjoint action parametrises the set of all momentum
maps for the given action.

An alternative definition of momentum maps can be given in terms of Hamil-
tonian vector fields and Poisson brackets:

2Sometimes an action is called ‘strongly Hamiltonian’ if it satisfies our definition of ‘Hamil-
tonian’. The term ‘Hamiltonian’ is then used for actions that admit a momentum map which
is not necessarily equivariant. Because we only consider equivariant momentum maps, we
omit the word ‘strongly’.

3Some authors prefer the term ‘moment map’.
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Definition 1.5. Let f ∈ C∞(M). The Hamiltonian vector field Hf ∈ Vect(M)
associated to f , is defined by the relation

df = −Hfyω.

The Poisson bracket of two functions f, g ∈ C∞(M) is defined as

{f, g} := ω(Hf , Hg) = Hf (g) = −Hg(f) ∈ C∞(M).

The Poisson bracket is a Lie bracket on C∞(M), and has the additional
derivation property that for all f, g, h ∈ C∞(M):

{f, gh} = {f, g}h+ g{f, h}. (2)

The vector space C∞(M), equipped with the Poisson bracket, is called the Pois-
son algebra C∞(M,ω) of (M,ω). A Poisson manifold is a manifold, together
with a Lie bracket {·, ·} on C∞(M) that satisfies (2). Poisson manifolds admit
a canonical foliation whose leaves are symplectic submanifolds.

The property (1) can now be rephrased as

HµX = X. (3)

It can be shown that a map µ satisfying (3) is equivariant if and only if it is an
anti-Poisson map, which in this special case means that

{µX , µY } = −µ[X,Y ].

Indeed, the implication ‘equivariant ⇒ anti-Poisson’ can be proved as follows.
If µ is equivariant, then for all X,Y ∈ g, m ∈M ,

{µX , µY }(m) = X(µY )(m) (by (3))

=
d

dt

∣∣∣∣
t=0

〈µ(exp tX ·m), Y 〉

=
d

dt

∣∣∣∣
t=0

〈Ad∗(exp tX)µ(m), Y 〉

= 〈µ(m),
d

dt

∣∣∣∣
t=0

Ad(exp−tX)Y 〉

= −µ[X,Y ](m).

�

1.2 Examples of Hamiltonian actions

Example 1.6 (Cotangent bundles). Let N be a smooth manifold, and let
M := T ∗N be its cotangent bundle, with projection map

π : T ∗N → N.
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The tautological 1-form τ on M is defined by

〈τη, v〉 = 〈η, Tηπ(v)〉,

for η ∈ T ∗N and v ∈ TηM . The one-form τ is called ‘tautological’ because for
all 1-forms α on N , we have

α∗τ = α.

Here on the left hand side, α is regarded as a map from N to M , along which
the form τ is pulled back.

Let q = (q1, . . . qd) be local coordinates on an open neighbourhood of an
element n of N . Consider the corresponding coordinates p on T ∗N in the fibre
direction, defined by

pk =
∂

∂qk
.

Then one has
τ =

∑
k

pk dqk.

The 2-form
σ := dτ =

∑
k

dpk ∧ dqk (4)

is a symplectic form on M , called the canonical symplectic form.
Suppose G acts on N . The induced action of G on M ,

g · η := (Tng
−1)∗η,

for g ∈ G, η ∈ T ∗nN , is Hamiltonian, with momentum map

µX = Xyτ,

for all X ∈ g. Explicitly:
µX(η) := 〈η,Xπ(η)〉,

for X ∈ g and η ∈ T ∗N .

Proof. First note that the tautological 1-form is invariant under the action of
G on M : for all g ∈ G, η ∈ T ∗N and v ∈ TηM , we have

(g∗τ)η = τg·η ◦ Tηg
= (g · η) ◦ Tg·ηπ ◦ Tηg
= η ◦ Tη(g−1 ◦ π ◦ g)

= η ◦ Tηπ,

because the projection map of the cotangent bundle is G-equivariant.
Hence LXτ = 0 for all X ∈ g, which by Cartan’s formula implies that

d(Xyτ) +Xydτ = 0,
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so that
d(Xyτ) = −Xyσ.

This means that
µX = Xyτ

is the X-component of a momentum map.

Example 1.7 (Complex vector spaces). LetM be the vector space Cn, equipped
with the Hermitian inner product

H(z, ζ) = 〈z, ζ〉 :=

n∑
k=1

zk ζ̄k,

for z, ζ ∈ Cn. Writing B := Re(H) and ω := Im(H), we obtain

H = B + iω,

with B a Euclidean inner product, and ω a symplectic form on the vector space
Cn. By identifying each tangent space of M with Cn, we can extend ω to a
syplectic form on the manifold M . In the coordinates q and p on M , defined by

zk = qk + ipk,

the form ω is equal to the form σ from Example 1.6, given by (4). (Note that
M ∼= T ∗Rn.)

Consider the natural action of the group

K := Un(C)

on M . Let k be the Lie algebra

k := un(C) = {X ∈Mn(C);X∗ = −X} (5)

of K. A momentum map for the action of K on M is given by

µ : M → k∗

µX(z) := iH(Xz, z)/2,
(6)

where X ∈ k and z ∈M .

Proof. Equivariance of the map µ follows from the fact that K by definition
preserves the metric H.

For all X ∈ k, z ∈M and ζ ∈ TzM = Cn, the map µ given by (6) satisfies

〈(dµX)z, ζ〉 = i (H(Xζ, z) +H(Xz, ζ)) /2. (7)

Now X ∈ k, so by (5),

H(Xζ, z) = −H(ζ,Xz)

= −H(Xz, ζ).
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Therefore, (7) equals

i
(
−H(Xz, ζ) +H(Xz, ζ)

)
/2 = i(2iω(Xz, ζ))/2

= −ω(Xz, ζ).

The vector field in M generated by an element X ∈ k is given by

Xz =
d

dt

∣∣∣∣
t=0

(etXz) =

(
d

dt

∣∣∣∣
t=0

etX
)
z = Xz,

for z ∈M . We conclude that

(dµX)z = −Xzyωz

for all X ∈ k and z ∈M , which completes the proof.

Example 1.8, as well as Example 1.13, is due to Kirillov in his 1962 thesis
[13].

Example 1.8 (Restriction to subgroups). Let H < G be a Lie subgroup, with
Lie algebra h. Let

i : h ↪→ g

be the inclusion map, and let

p := i∗ : g∗ → h∗

be the corresponding dual projection.
Suppose that G acts on M in a Hamiltonian way, with momentum map

µ : M → g∗.

Then the restricted action of H on M is also Hamiltonian. A momentum map
is the composition

M
µ−→ g∗

p−→ h∗.

Proof. Let X ∈ h ↪→ g. Then

d ((p ◦ µ)X) = d(µi(X))

= −i(X)yω

= −Xyω.

Remark 1.9. An interpretation of Example 1.8 is that the momentum map is
functorial with respect to symmetry breaking. For example, consider a phys-
ical system of N particles in R3 (Example 1.15). If we add a function to the
Hamiltonian which is invariant under orthogonal transformations, but not un-
der translations, then the Hamiltonian is no longer invariant under the action
of the Euclidean motion group G. However, it is still preserved by the subgroup
O(3) of G. In other words, the G-symmetry of the system is broken into an
O(3)-symmetry. By Example 1.8, angular momentum still defines a momentum
map, so that it is still a conserved quantity.
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Example 1.10 (Unitary representations). Example 1.7 may be generalised to
arbitrary finite-dimensional unitary representations of compact Lie groups.

Let V be a finite-dimensional complex vector space, with a Hermitian in-
ner product H. Consider the manifold M := V , with the symplectic form
ω := Im(H).

Let K be a compact Lie group, and let

ρ : K → U(V,H)

be a unitary representation of K in V . This action of K on M is Hamiltonian,
with momentum map

µX(v) = iH(ρ(X)v, v)/2,

for X ∈ k and v ∈ V .

Proof. Consider Example 1.7, and apply Example 1.8 to the subgroup ρ(K) of
U(V,H).

Example 1.11 (Invariant submanifolds). Let (M,ω) be a symplectic manifold,
equipped with a Hamiltonian action of G, with momentum map

µ : M → g∗.

Let N ⊂M be a submanifold, with inclusion map

i : N ↪→M.

Assume that the restricted form i∗ω is a symplectic form on N (i.e. that it is
nondegenerate). Suppose that N is invariant under the action of G. Then the
action of G on N is Hamiltonian. A momentum map is the composition

N
i
↪→M

µ−→ g∗.

Proof. Let X ∈ g. Then (µ ◦ i)X = µX ◦ i, so

d(µ ◦ i)X = d(µX ◦ i)
= dµX ◦ Ti, (8)

where Ti : TN ↪→ TM is the tangent map of i. By definition of µ, (8) equals

−(Xyω) ◦ Ti = −Xy(i∗ω).

The following example is a preparation for the study of a class of Hamiltonian
actions on holomorphic submanifolds of projective space in Section 1.4.
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Example 1.12 (Invariant submanifolds of complex vector spaces). Let V be an
n-dimensional complex vector space, with a Hermitian inner product H. Then
as before, ω := Im(H) is a symplectic form on V .

Write V × := V \ {0}. Let L× be a holomorphic submanifold of V × that is
invariant under C×.

Let K be a compact Lie group, and let

ρ : K → U(V,H)

be a unitary representation of K in V . We consider the action of K on V ×

defined by ρ. Assume that L× is invariant under this action. Then the restricted
action of K on L× is Hamiltonian, with momentum map

µX(l) := i(H(ρ(X)l, l)/2,

for X ∈ g, l ∈ L×.

Proof. Consider Example 1.10, and apply Example 1.11 to the invariant sub-
manifold L×.

Example 1.13 (Coadjoint orbits). Let G be a connected Lie group. Fix an
element ξ ∈ g∗. We define the bilinear form ωξ ∈ Hom(g⊗2,R) by

ωξ(X,Y ) := −〈ξ, [X,Y ]〉,

for all X,Y ∈ g. It is obviously antisymmetric, so it defines an element of
Hom(

∧2
g,R).

Let Gξ be the stabiliser group of ξ with respect to the coadjoint action:

Gξ := {g ∈ G; Ad∗(g)ξ = ξ}.

Let gξ denote the Lie algebra of Gξ:

gξ = {X ∈ g; ad∗(X)ξ = ξ}
= {X ∈ g;ωξ(X,Y ) = 0 for all Y ∈ g}, (9)

by definition of ωξ. By (9), the form ωξ defines a symplectic form on the quotient
g/gξ.

Let
Mξ := G/Gξ ∼= G · ξ

be the coadjoint orbit through ξ. Note that for all g ∈ G, we have a diffeomor-
phism

G/Ggξ ∼= G/Gξ,

induced by
h 7→ ghg−1, G→ G.

Hence the definition of Mξ does not depend on the choice of the element ξ in
its coadjoint orbit.
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The tangent space
TξMξ

∼= g/gξ

carries the symplectic form ωξ. This form can be extended G-invariantly to a
symplectic form ω on the whole manifold Mξ. The form ω is closed, because it
is G-invariant, and G acts transitively on Mξ. This symplectic form is called
the canonical symplectic form on the coadjoint orbit Mξ.

4

The coadjoint action of G on Mξ is Hamiltonian. A momentum map is the
inclusion

µ : G · ξ ↪→ g∗.

Proof. For all X ∈ g and g ∈ G, we have

µX(g · ξ) = 〈g · ξ,X〉.

Because the action of G on Mξ is transitive, the tangent space at the point
g · ξ ∈Mξ is spanned by the values Ygξ of the vector fields induced by elements
Y ∈ g. For all such Y , we have

〈(dµX)gξ, Ygξ〉 =
d

dt

∣∣∣∣
t=0

µX (exp(tY ) · (g · ξ))

=
d

dt

∣∣∣∣
t=0

〈g · ξ,Ad (exp(−tY ))X〉

= 〈g · ξ, [X,Y ]〉
= −ωg·ξ(Xg·ξ, Yg·ξ).

Hence
(dµX)g·ξ = −(Xyω)g·ξ.

The following example plays a role in Example 1.15, and in the ‘shifting
trick’ (Remark 1.22).

Example 1.14 (Cartesian products). Let (M1, ω1) and (M2, ω2) be symplectic
manifolds. Suppose that there is a Hamiltonian action of a group G on both
symplectic manifolds, with momentum maps µ1 and µ2. The Cartesian product
manifold M1 ×M2 carries the symplectic form ω1 × ω2, which is defined as

ω1 × ω2 := π∗1ω1 + π∗2ω2,

where πi : M1 ×M2 →Mi denotes the projection map.
Consider the diagonal action of G on M1 ×M2,

g · (m1,m2) = (g ·m1, g ·m2),

4In terms of Poisson geometry, coadjoint orbits are the symplectic leaves of the Poisson
manifold g∗ (see the remarks below Definition 1.5).
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for g ∈ G and mi ∈ Mi. It is easy to show that it is Hamiltonian, with
momentum map

µ1 × µ2 : M1 ×M2 → g∗,

(µ1 × µ2) (m1,m2) = µ1(m1) + µ2(m2),

for mi ∈Mi.

Example 1.15 (N particles in R3). To motivate the term ‘momentum map’,
we give one example from classical mechanics. It is based on Example 1.6 about
cotangent bundles, and Example 1.14 about Cartesian products.

Consider a physical system of N particles moving in R3. The corresponding
phase space is the manifold

M :=
(
T ∗R3

)N ∼= R6N .

Let (qi, pi) be the coordinates on the ith copy of T ∗R3 ∼= R6 in M . We will
write

qi = (qi1, q
i
2, q

i
3),

pi = (pi1, p
i
2, p

i
3),

and
(q, p) =

(
(q1, p1), . . . , (qN , pN )

)
∈M.

Using Examples 1.6 and 1.14, we equip the manifold M with the symplectic
form

ω :=

N∑
i=1

dpi1 ∧ dqi1 + dpi2 ∧ dqi2 + dpi3 ∧ dqi3.

The Hamiltonian of the system is a function h on M , which assigns to
each point in the phase space the total energy of the system in that state. It
determines the dynamics of the system as follows. A physical observable is a
smooth function f on M . This function determines a smooth function F on
M × R, by

∂F

∂t
(m, t) = {h, F (·, t)}(m) (10)

and
F (m, 0) = f(m)

for all m ∈ M and t ∈ R. The value F (m, t) of F is interpreted as the value
of the observable f after time t, if the system was in state m at time 0. The
condition (10) is often written as

ḟ = {h, f}.

Let G be the Euclidean motion group of R3:

G := R3 oO(3),
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whose elements are

G := {(v,A); v ∈ R3, A ∈ O(3)},

with multiplication defined by

(v,A)(w,B) = (v +Aw,AB),

for all elements (v,A) and (w,B) of G. It acts on R3 by

(v,A) · x = Ax+ v,

for (v,A) ∈ G, x ∈ R3.
Consider the induced action of G on M . The physically relevant actions

are those that preserve the Hamiltonian. In this example, if the Hamiltonian
is preserved by G then the dynamics does not depend on the position or the
orientation of the N particle system as a whole. In other words, no external
forces act on the system.

By Examples 1.6 and 1.14, the action of G on M is Hamiltonian. As we will
show below, the momentum map can be written in the form

µ(q, p) =

N∑
i=1

(pi, qi × pi) ∈
(
R3
)∗ o o(3)∗ = g∗.

Note that the Lie algebra o(3) is isomorphic to R3, equipped with the exterior
product ×. We identify R3 with its dual (and hence with o(3)∗) via the standard
inner product.

The quantity
N∑
i=1

pi

is the total linear momentum of the system, and

N∑
i=1

qi × pi

is the total angular momentum. By Noether’s theorem, the momentum map is
time-independent if the group action preserves the Hamiltonian. This formula-
tion of Noether’s theorem has an easy proof:

µ̇X = {h, µX}
= −HµX (h)

= −X(h)

= 0,

by (3). In this example, this implies that the total linear and angular momentum
of the system are conserved quantities.
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Proof that µ is the momentum map from Examples 1.6 and 1.14. Let

ν : M → g∗

be the momentum map obtained using Examples 1.6 and 1.14. That is,

νX(q, p) =

N∑
i=1

pi ·Xqi ,

for all X ∈ g and (q, p) ∈M . Here · denotes the standard inner product on R3,
by which we identify T ∗M with TM .

Let Y,Z ∈ R3, and consider the element

X = (Y,Z) ∈ R3 × R3 ∼= g.

Then
Xqi = Y + Z × qi ∈ R3 ∼= TqiR3 ↪→ TqiM.

Therefore,

µX(q, p) =

N∑
i=1

(pi, qi × pi) · (Y,Z)

=

N∑
i=1

pi · Y + (qi × pi) · Z.

Using the fact that
(qi × pi) · Z = pi · (Z × qi),

we conclude that

µX(q, p) =

N∑
i=1

pi · Y + pi · (Z × qi)

=

N∑
i=1

pi ·Xqi

= νX(q, p).

�

1.3 Symplectic reduction

Suppose (M,ω) is a connected symplectic manifold, equipped with a Hamilto-
nian G-action, with momentum map

µ : M → g∗.
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Definition 1.16. A point m ∈ M is called a regular point of µ if the tangent
map

Tmµ : TmM → g∗

is surjective. The set of regular points of µ is denoted by Mreg. We will write
µreg for the restriction of µ to Mreg.

An element ξ ∈ g∗ is called a regular value of µ if all points in the inverse
image µ−1(ξ) are regular.

By the implicit function theorem, the subset

µ−1
reg(ξ) ⊂M

is a smooth submanifold, for all ξ ∈ g∗. Because the map µ is equivariant, the
submanifold µ−1

reg(ξ) is invariant under the action of the stabiliser group Gξ of
ξ.

Proposition 1.17. The defining relation

dµX = −Xyω,

for all X ∈ g, has the following consequences.

1. A point m ∈M is a regular point of µ if and only if the Lie algebra of the
stabiliser group Gm is zero. Hence the action of Gξ on µ−1

reg(ξ) is locally
free.

2. For all ξ ∈ g∗ and m ∈ µ−1
reg(ξ), the tangent space Tm

(
µ−1

reg(ξ)
)

is equal to
the orthogonal complement with respect to ωm of the space

{Xm;X ∈ g} = Tm (G ·m) .

3. The kernel of ωm on the space Tm
(
µ−1

reg(ξ)
)

equals

Tm
(
µ−1

reg(ξ)
)
∩
(
Tm
(
µ−1

reg(ξ)
))⊥

= {Xm ∈ TmM ;X ∈ gξ}.

As before, gξ denotes the stabiliser of ξ ∈ g, i.e. the subalgebra of elements
X ∈ g such that ad∗(X)ξ = ξ.

Proof. 1. Let m ∈ M be given. We claim that m is a regular point of µ if and
only if the linear map

ϕ : g→ TmM
X 7→ Xm

is injective. Because the Lie algebra of the stabiliser group Gm equals

Lie(Gm) = ker(ϕ),

it equals zero precisely if ϕ is injective.
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Let X ∈ g. We will show that the implication

Xm = 0 =⇒ X = 0 (11)

holds if and only if the tangent map Tmµ is surjective. Indeed, because the form
ω is nondegenerate, we have

Xm = 0

if and only if
ωm(Xm, v) = 0

for all v ∈ TmM . By the defining property of µ, this is equivalent to

(dµX)m = 0.

Consider the linear map
iX : g∗ → R,

defined by pairing with X:
iX(η) := 〈η,X〉.

Being a linear map, iX is its own tangent map. Therefore,

(dµX)m = (d(iX ◦ µ))m
= iX ◦ Tmµ.

Hence (dµX)m = 0 if and only if iX is zero on the image of Tmµ. Therefore,
the implication (11) holds for all X ∈ g if and only if Tmµ is surjective.

2. Note that

Tm
(
µ−1

reg(ξ)
)

= ker (Tmµreg : TmM → g∗)

= {v ∈ TmM ; 〈(dµX)m , v〉 = 0, ∀X ∈ g}
= {v ∈ TmM ;ωm(Xm, v) = 0, ∀X ∈ g},

by the defining property of µ.
3. Let v be an element of the intersection

Tm
(
µ−1

reg(ξ)
)
∩ Tm

(
µ−1

reg(ξ)
)
. (12)

Then by the second part of the proposition, there is an X ∈ g, such that

v = Xm,

and
Tmµreg(Xm) = 0.

Because µ is equivariant, we have

Tmµreg(Xm) =
d

dt

∣∣∣∣
t=0

µreg (exp(tX) ·m)

=
d

dt

∣∣∣∣
t=0

Ad∗(exp(tX))ξ

= Xξ.
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Hence v is in (12) if and only if there is a X ∈ g, for which

v = Xm

and
Xξ = 0.

The stabiliser of ξ in g equals

gξ = {X ∈ g|Xξ = 0},

which completes the argument.

Corollary 1.18. Let ξ ∈ g∗, and consider the inclusion map

i : µ−1
reg(ξ) ↪→M.

Then the leaves of the null foliation of the form i∗ω are the orbits of the con-
nected group G0

ξ on µ−1
reg(ξ).

Proof. The tangent space to a G0
ξ-orbit at a point m is equal to

Tm
(
G0
ξ ·m

)
= {Xm ∈ TmM ;X ∈ Lie(G0

ξ) = gξ}.

By the third part of Proposition 1.17, this implies the statement.

Theorem 1.19 (Marsden & Weinstein 1974 [20]). Suppose (M,ω) is a con-
nected symplectic manifold, equipped with a Hamiltonian action of G. Let ξ ∈ g∗

be a regular value of the momentum map µ : M → g∗. Suppose that the sta-
biliser Gξ of ξ acts properly and freely on the submanifold µ−1(ξ) of M , so that
the orbit space

Mξ := µ−1(ξ)/Gξ

is a smooth manifold.
Then there is a unique symplectic form ωξ on Mξ such that

p∗ωξ = i∗ω.

Here p and i are the quotient and inclusion maps

µ−1(ξ) �
� i //

p
����

M

µ−1(ξ)/Gξ = Mξ.

(Note that p defines a principal Gξ-bundle.)

16



Definition 1.20. The symplectic manifold (Mξ, ωξ) from Theorem 1.19 is
called the symplectic reduction or reduced phase space of the Hamiltonian action
of G on M , at the regular value ξ of µ. If we do not specify at which value we
take the symplectic reduction, we will mean the symplectic reduction at 0 ∈ g∗.
Because the stabiliser of 0 is the whole group G, we have

M0 = µ−1(0)/G.

Remark 1.21. Suppose that ξ ∈ g∗ is not necessarily a regular value. Assume
that µ−1

reg(ξ) is dense and µ−1(ξ), and that the action of G on µ−1(ξ) is proper,
and free on µ−1

reg(ξ). Then we have the diagram

µ−1
reg(ξ) �

� //

����

µ−1(ξ)

����

� � // M

Mξ
reg := µ−1

reg(ξ)/Gξ
� � // Mξ.

Here Mξ
reg is a smooth symplectic manifold, equipped with the symplectic form

ωξ. The orbit space Mξ is a Hausdorff topological space. If the momentum
map µ is proper, then µ−1(ξ) and hence Mξ is compact. Because Mreg is dense
in M , this implies that Mξ is a compactification of Mξ

reg.
If we do not assume that Gξ acts freely on µ−1

reg(ξ), it still acts locally freely
by the first part of Proposition 1.17. If the component group Gξ/G

0
ξ is fi-

nite, then Gξ acts on µ−1
reg(ξ) with finite stabilisers, so that Mξ

reg is an orbifold.

Equipped with the symplectic form ωξ, it is a symplectic orbifold. The orbifold
singularities of Mξ are relatively mild. The worst singular behaviour occurs at
Mξ \Mξ

reg.

Remark 1.22 (The shifting trick). The symplectic reduction of a Hamiltonian
group action of G on (M,ω) at any regular value ξ ∈ g∗ of the momentum map
can be obtained as a symplectic reduction at 0 of a certain symplectic manifold
containing M by an action of G.

Indeed, let Mξ := G/Gξ = G · ξ be the coadjoint orbit of G through ξ (see
Example 1.13). There is a diffeomorphism

Mξ = µ−1(ξ)/Gξ ∼= µ−1(Mξ)/G,

induced by the inclusion
µ−1(ξ) ↪→ µ−1(Mξ).

Next, consider the two symplectic manifolds

(M1, ω1) := (M−ξ, ω−ξ)
(M2, ω2) := (M,ω).

On these symplectic manifolds, we have Hamiltonian G-actions, with momen-
tum maps

µ1 : M1 = G · (−ξ) ↪→ g∗

µ2 = µ : M2 = M → g∗.

17



Consider the Hamiltonian action ofG on the Cartesian product (M1 ×M2, ω1 × ω2)
(see Example 1.14). As we saw, a momentum map for this action is

µ1 × µ2 : M1 ×M2 → g∗,

(µ1 × µ2) (m1,m2) := µ1(m1) + µ2(m2),

for mj ∈ Mj . The symplectic reduction of the action of G on M1 ×M2 at the
value 0 is equal to the symplectic reduction of M at ξ:

(µ1 × µ2)
−1

(0)/G = {(g · (−ξ),m) ∈M−ξ ×M ; g · (−ξ) + µ(m) = 0}/G
= µ−1(Mξ)/G

∼= µ−1(ξ)/Gξ

= Mξ.

This exhibits Mξ as the symplectic reduction at zero of a Hamiltonian action.

In the situation of Example 1.6 about cotangent bundles, taking the sym-
plectic reduction is a very natural procedure:

Theorem 1.23. Consider Example 1.6. Suppose that the action of G on N is
proper and free. Let T ∗(N/G) be the cotangent bundle of the (smooth) quotient
N/G, equipped with the canonical symplectic form σG = dτG. The symplectic
reduction of (T ∗N, σ) by the action of G is symplectomorphic to (T ∗(N/G), σG):(

(T ∗N)0, σ0
) ∼= (T ∗(N/G), σG) .

Proof. The inverse image of 0 ∈ g∗ of the momentum map

µ : T ∗N → g∗

is
µ−1(0) = {η ∈ T ∗N ; for all X ∈ g, 〈η,Xπ(η)〉 = 0}. (13)

Because the action of G on N is free, µ−1(0) is a sub-bundle of T ∗N . And again
because the action is free, the quotient µ−1(0)/G defines a vector bundle

µ−1(0)/G→ N/G.

We claim that this vector bundle is isomorphic to the cotangent bundle

T ∗(N/G)
πG−−→ N/G.

Let
q : N → N/G

be the quotient map. The transpose of the tangent map of q is a vector bundle
homomorphism

Tq∗ : T ∗(N/G)→ T ∗N.
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It follows from (13) that the image of Tq∗ is contained in µ−1(0). Thus we
obtain the diagram

T ∗(N/G)
Tq∗ // µ−1(0) �

� i //

p
����

T ∗N

µ−1(0)/G.

We claim that the composition p ◦ Tq∗ is the desired isomorphism. In-
deed, it is obviously a homomorphism of vector bundles. And it is injective: if
ξ ∈ T ∗(N/G) and

p (Tq∗ξ) = 0,

then there is a g ∈ G such that

g · Tq∗ξ = 0.

But g is invertible (it is actually the identity element if the action is free), so
Tq∗ξ = 0. And Tq∗ is injective, so ξ = 0.

The rank of the vector bundle T ∗(N/G) equals

rankT ∗(N/G) = dimN − dimG.

The rank of µ−1(0)/G→ N/G equals the rank of µ−1(0)→ N , which is

rankµ−1(0) = dimN − dimG = rankT ∗(N/G).

Hence p ◦ Tq∗ is a homomorphism of vector bundles which is a fibre-wise iso-
morphism. So the bundles T ∗(N/G) and µ−1(0)/G over N/G are isomorphic.
In particular, the manifolds T ∗(N/G) and µ−1(0)/G are diffeomorphic.

It remains to prove that

(p ◦ Tq∗)∗ σ0 = σG. (14)

By definition of σ0, we have
p∗σ0 = i∗σ.

So (14) is equivalent with
(i ◦ Tq∗)∗ σ = σG.

Now σG = dτG, and

(i ◦ Tq∗)∗ σ = (i ◦ Tq∗)∗ dτ
= d

(
(i ◦ Tq∗)∗ τ

)
.

We shall prove that
(i ◦ Tq∗)∗ τ = τG,

which implies (14) by the above argument.
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Let ξ ∈ T ∗(N/G), and v ∈ Tξ (T ∗(N/G)). Then〈(
(i ◦ Tq∗)∗ τ

)
ξ
, v
〉

= 〈τTq∗(ξ), Tξ(Tq∗)v〉

= 〈Tq∗(ξ), TTq∗(ξ)π (Tξ(Tq
∗)v)〉

= 〈ξ, T q (Tξ(π ◦ Tq∗)v)〉
= 〈ξ, T (q ◦ π ◦ Tq∗)v〉
= 〈ξ, TξπGv〉
= 〈(τG)ξ , v〉,

because
πG = q ◦ π ◦ Tq∗.

Remark 1.24. In Theorem 1.23 it is assumed that the action of G on N is
proper and free. If the action is only proper, consider the open subset

Ñ ⊂ N

that consists of the points in N with trivial stabilisers in G. The action of G on
Ñ is still proper, so that Theorem 1.23 applies:(

T ∗Ñ
)0 ∼= T ∗(Ñ/G).

Let T̃ ∗N be the open subset of T ∗N of points with trivial stabilisers in G.
Then

T ∗Ñ ⊂ T̃ ∗N ⊂ T ∗N. (15)

Example 1.25 (N particles in R3 revisited). In Example 1.15, we considered a
classical mechanical system of N particles moving in R3. We will now describe

the symplectic reduction of the phase space M =
(
T ∗R3

)N
of this system by

the action of the Euclidean motion group G = R3 oO(3).
First, consider the action on M of the translation subgroup R3 of G. By

Example 1.8, the total linear momentum of the system defines a momentum map
for this action. By Theorem 1.23,5 the reduced phase space for this restricted
action is

M0 =
(
T ∗R3N

)0
= T ∗(R3N/R3).

Let V be the (3N − 3)-dimensional vector space R3N/R3. As coordinates on V ,
one can take the difference vectors

qi − qj , i < j.

5The action is not proper, but it is free, and the quotient space is smooth. Theorem 1.23
actually applies in this slightly more general setting.
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These coordinates satisfy the relations

(qi − qj) + (qj − qk) = qi − qk, i < j < k.

Other possible coordinates are

q̄i := qi −
N∑
j=1

cjq
j , i = 1, . . . N,

for any set of coefficients {cj} with sum 1. The coordinates then satisfy the
single relation

N∑
i=1

ciq̄
i = 0.

A physically natural choice for the cj is

cj :=
mj∑N
k=1mk

,

where mj is the mass of particle j. The coordinates q̄i are then related by

n∑
i=1

miq̄
i = 0.

Thus, the reduced phase space may be interpreted as the space of states of the
N particle system in which the centre of mass is at rest in the origin.

Next, we consider the action onM of the connected componentG0 = R3 o SO(3)
of G. The action of G0 on M is not free, and the momentum map µ has singular
points. Indeed, a point m = (q, p) in M is singular if and only if its stabiliser
group G0

m has dimension at least 1 (see the first part of Proposition 1.17). Note
that G0

m is the group of elements (v,A) ∈ R3 o SO(3) such that

Aq + v = q (16)

Ap = p. (17)

The group of elements (v,A) for which condition (16) holds is at least one-
dimensional if and only if the vectors

q1, . . . , qN ∈ R3

are collinear, i.e. they lie on a single line l in R3. This line does not have to
pass through the origin, and some points qi may coincide. Given such a q, the
group of A ∈ SO(3) for which (17) holds is at least one-dimensional if and only
if all vectors pi lie on the line through the origin, parallel to l. In other words,
the set Msing of singular points in M is the set of (q, p) ∈ R3N ×R3N , for which
there exist vectors b, v ∈ R3, and sets of coefficients {αi} and {βi}, such that

qi = b+ αiv (18)

pi = βiv. (19)
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The set of singular values of µ in g∗ is the image µ(Msing). By (18) and (19),
this set equals

µ(Msing) =

{(( N∑
i=1

βi
)
v,
( N∑
i=1

βi
)
b× v

)
;βi ∈ R, b, v ∈ R3

}
= {(P,L) ∈ R3 × R3;P ⊥ L}.

In particular, (0, 0) is a singular value.
We now turn to the action of the whole group G. A point m = (q, p) has

nontrivial stabiliser in G if and only if the qi are coplanar (i.e. they lie in a
plane W in R3) and the pi lie in the plane W0 through the origin, parallel to
W . Indeed, if R ∈ O(3) is reflection in W0, then

(q1−Rq1, R) ∈ Gm.

Note that q1 may be replaced by any point in W , and that R 6∈ SO(3).

Referring to Remark 1.24, we define M̃ ⊂ M to be the open dense sub-
manifold of points with trivial stabiliser in G. That is, M̃ is the set of points
(q, p) ∈ M such that there is no plane W0 in R3 containing the origin, and no
vector b ∈ R3, such that for all i,

qi ∈W := W0 + b

pi ∈W0.

The set of points q in R3N on which G acts with trivial stabiliser is the set

R̃3N = {q ∈ R3N ; There is no plane in R3 containing all qi.}

So in this example, (15) becomes

T ∗R̃3N  T̃ ∗R3N  T ∗R3N .

Now by Theorem 1.23,(
T ∗R̃3N

)0

= T ∗
(
R̃3N/G

)
= T ∗

(
Ṽ /O(3)

)
.

Here Ṽ := R̃3N/R3. The coordinates qi − qj that we used on V reduce to the
coordinates

‖qi − qj‖2, i < j. (20)

on Ṽ /O(3). There are
(
N
2

)
of these coordinates, and the dimension of Ṽ /O(3)

is 3N −6. So if N ≥ 5 (so that
(
N
2

)
> 3N − 6), then there are relations between

the coordinates (20). In any case, it is clear that a function (observable) on the

reduced phase space
(
T ∗R̃3N

)0

corresponds to a function on T ∗R̃3N that only

depends on the relative distances between the particles.

22



1.4 Smooth projective varieties

By using symplectic reduction, we will now show that a certain class of group
actions on submanifolds of projective space are Hamiltonian. We prepared for
this in Example 1.12.

Let V be a finite-dimensional complex vector space, with a Hermitian form
H = B + iω. Consider the natural action of the unitary group U(V,H) on V .
As we saw in Example 1.7, this action is Hamiltonian, with momentum map
µ : V → u(V,H)∗ given by

µX(v) = iH(Xv, v)/2, (21)

for X ∈ u(V,H) and v ∈ V .

Proposition 1.26. Consider the action of the circle group U(1) on V defined
by scalar multiplication. We consider the circle group U(1) as a subgroup of the
unitary group U(V,H) by noting that

U(1) ∼= {zIV ∈ U(V,H); z ∈ C, |z| = 1}.

The Lie algebra of U(1) is u(1) = 2πiR. Let 1∗ ∈ u(1)∗ be the element defined
by

〈1∗, 2πi〉 = 1.

Then the symplectic reduction of V by U(1) at the regular value −1∗ of µ yields
the projective space P(V ), with symplectic form equal the the imaginary part of
the Fubini-Study metric on P(V ).

Note that we consider the symplectic reduction at the value −1∗ instead of
the symplectic reduction at 1∗, because the latter is empty.

Proof. By Examples 1.7 and 1.8, the action of U(1) on V is Hamiltonian, with
momentum map given by (21), for X ∈ u(1) = 2πiR.

Note that

µ−1(−1∗) = {v ∈ V ;µ2πi(v) = 1}
= {v ∈ V ;−πH(v, v) = −1}

= {v ∈ V ; ‖v‖2 =
1

π
}. (22)

Here ‖ · ‖ denotes the norm on V coming from H. We conclude that the sym-
plectic reduction of V by U(1) at −1∗ equals the space of U(1)-orbits in the
sphere (22), which in turn equals P(V ).

Definition 1.27. The standard symplectic form on P(V ) is minus the symplec-
tic form obtained using Proposition 1.26. It is denoted by ω.
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Proposition 1.28. The standard symplectic form on P(V ) has the property
that ∫

P(L)

ω = 1

for any two-dimensional complex linear subspace L of V , so that [ω] is a gener-
ator of the integral cohomology group H2(P(V );Z).

Symplectic forms whose integral over every two-dimensional submanifold
is an integer play an important role in prequantisation (see Theorem 3.3 and
Section 3.2).

Proof. We may assume that V is two-dimensional, and L = V .
Let αn be the (n− 1)-dimensional volume of the unit (n− 1)-sphere in Rn.

It is given by

αn =
2(
√
π)n

Γ(n2 )
.

In particular,

α2 = 2π

α4 = 2π2.

As we saw in (22), µ−1(−1∗) is the 3-sphere in C2 of radius 1√
π

. The volume of

a sphere of radius r does not depend on the metric used to define the sphere,
as long as one uses the volume form associated to the metric. Therefore, the
Euclidean volume of µ−1(−1∗) is

vol3
(
µ−1(−1∗)

)
= α4

(
1√
π

)3

=
2π2

(
√
π)

3 .

The orbits of the action of U(1) on µ−1(−1∗) are great circles, so their 1-
dimensional volume is

vol1(U(1)-orbit) = α2
1√
π

=
2π√
π
.

Hence

vol2
(
µ−1(−1∗)/U(1)

)
=

2π2/(
√
π)3

2π/
√
π

= 1.

Using the fact that the volume form defined by the Riemannian part B =
Re(H) of H is equal to the (Liouville) volume form defined by its symplectic
part ω = Im(H), one can show that the volume of P(L) with respect to ω equals
the Euclidean volume of µ−1(−1∗)/U(1).

To study actions on P(V ) induced by unitary representations in V , we con-
sider the following situation. Let G be a Lie group, and let H, H̃ < G be
closed subgroups. Suppose G acts properly on a symplectic manifold (M,ω),
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and assume that the action is Hamiltonian, with momentum map µ : M → g∗.
Suppose that the restricted actions of H and H̃ on M commute.

By Example 1.8, the action of H̃ on M is Hamiltonian, with momentum
map

µ̃ : M
µ−→ g∗

ĩ∗−→ h̃∗,

where ĩ : h̃ ↪→ g is the inclusion map. Consider the symplectic reduction M̃ξ of
the action of H̃ on M , at the regular value ξ ∈ h̃∗ of µ̃. Because the actions of
H and H̃ on M commute, the action of H on M induces an action of H on the
symplectic reduction M̃ξ.

Proposition 1.29 (Commuting actions). The action of H on M̃ξ is Hamilto-
nian, with momentum map µ′ : M̃ξ → h∗ induced by the composition

µ̃−1(ξ)
ι
↪→M

µ−→ g∗
i∗−→ h∗,

where ι : µ̃−1(ξ)→M and i : h→ g are the inclusion maps.

Proof. We may assume that H = G, for otherwise we can apply Example 1.8.
Our claim is that for all X ∈ g,

d(µ′X) = −XM̃ξyω̃.

Here the symplectic form ω̃ is determined by

ι∗ω = π∗ω̃.

The maps ι and π are the inclusion and quotient maps in

µ̃−1(ξ)
� � ι //

π
����

M

µ̃−1(ξ)/H̃ξ

(see Theorem 1.19). Because the linear map

π∗ : Ω(M̃ξ)→ Ω(µ̃−1(ξ))

is injective, it is enough to prove that

π∗ (d(µ′X)) = −π∗ (XM̃ξyω̃) . (23)

Note that

π∗ (d(µ′X)) = d (π∗µ′X)

= d (µX ◦ ι)
= ι∗dµX

= ι∗ (−XMyω)

= −Xµ−1(ξ)yι
∗ω

= −Xµ−1(ξ)yπ
∗ω̃

= −π∗ (XM̃ξyω̃) ,

which proves (23).
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Theorem 1.30. Let K be a compact Lie group, and let

ρ : K → U(V,H)

be a unitary representation of K in V . Write V × := V \ {0}, and let L× ⊂ V ×
be a C×-invariant, K-invariant holomorphic submanifold of V ×. Consider the
principal C×-bundle

L× →M := L×/C× ⊂ P(V ).

The action of K on M induced by the action of K on L× is Hamiltonian, with
momentum map

µX(m) =
H(ρ(X)l, l)

2πiH(l, l)
, (24)

for X ∈ k, l ∈ L, and m := C× · l.

Proof. Suppose that K = U(V,H) and that L = V . Otherwise, apply Examples
1.8 and 1.11. Note that complex submanifolds of complex symplectic manifolds
are always symplectic (see Example 3.17).

We apply Proposition 1.29 about commuting actions with G = H = U(V,H)
and H̃ = U(1). The proposition then yields that the action of U(V,H) on
P(V ) = µ̃−1(−1∗)/U(1) is Hamiltonian, with momentum map

µ′X (U(1) · v) = µX(v)

= iH(X · v, v)/2, (25)

for all X ∈ u(V,H) and v ∈ V with ‖v‖2 = 1
π .

Now note that for all v ∈ V with ‖v‖2 = 1
π , (25) equals

H(X · v, v)

2πiH(v, v)
, (26)

and that (26) does not depend in the length of v. Hence (24) is a well-defined
momentum map.

Remark 1.31. Let (M,ω) be a symplectic manifold, equipped with a sym-
plectic action of a compact Lie group K. Suppose that there is a principal
C×-bundle L× → M , and that there is an action of K on L× compatible with
the action of K on M . Suppose that L× can be embedded as a holomorphic
submanifold of a complex vector space V (avoiding 0 ∈ V ). This induces an
embedding of M into P(V ). Assume that there is a Hermitian form H on V
that induces the symplectic form ω on M by the construction we gave above.
Suppose that there is a unitary representayion ρ of K in V , such that the action
of K on L× is the restriction of ρ to L×. This is called a linearisation of the
action of K on (M,ω), using the C×-bundle L×. If a linearisation exists, then
Theorem 1.30 applies, but formula (24) for the momentum map depends on the
choices made.

Suppose that ω1 and ω2 are symplectic forms on M , and that K acts on M ,
preserving both forms. Assume that the K-action on (M,ωi) can be linearised,
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using C×-bundles L×i , for i = 1, 2, and denote the resulting momentum maps
by µ1 and µ2, respectively. Then the action of K on the symplectic manifold
(M,ω1 +ω2) can be linearised using the C×-bundle L1⊗L2 →M , with momen-
tum map µ1 +µ2. Likewise, the action of K on the symplectic manifold (M,nω)
can be linearised, using the C×-bundle L⊗n, with momentum map µn := n · µ,
for all n ∈ N.

2 Convexity theorems

In the case of a Hamiltonian action of a compact Lie group on a symplectic
manifold (both assumed to be connected), the image of a momentum map has a
very nice description. A Weyl chamber in the dual of an infinitesimal maximal
torus is a fundamental domain for the coadjoint action of the compact Lie group
on the dual of its Lie algebra. Therefore, the intersection of the momentum map
image with a Weyl chamber determines this image completely, because the image
of a momentum map is invariant under the coadjoint action. The intersection
of the momentum map image with a Weyl chamber turns out te be a convex
polyhedron (Theorem 2.27).

The proof of Theorem 2.27 makes heavy use of Morse theory, which we
review in Subsection 2.1.

2.1 Morse theory

Let M be a compact manifold, and let f ∈ C∞(M) be a real valued smooth
function on M .

Definition 2.1. A point c ∈ M is a critical point of f if (df)c = 0 in T ∗cM .
The critical locus of f is the set Crit(f) of critical points of f .

Let c ∈ M be a critical point of f . The Hessian of f at c is the symmetric
bilinear form

Hessc(f) : TcM × TcM → R,

defined by
Hessc(f)(Xc, Yc) := X (Y (f)) (c),

for vector fields X,Y on M . It can be proved that at critical points, the Hessian
is indeed well-defined and symmetric.

A critical point c of f is said to be nondegenerate if the Hessian of f at c is
a nondegenerate symmetric bilinear form.

A function f ∈ C∞(M) is called a Morse function if the critical locus Crit(f)
of f is discrete in M , and all critical points of f are nondegenerate.

Note that if f is a Morse function, the critical locus of f is a closed discrete
subset of the compact manifold M , so that f has only finitely many critical
points.
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Pick a Riemannian metric B onM , and let c be a critical point of f . Then, by
abuse of notation, the nondegenerate bilinear form Hessc(f) defines an invertible
linear endomorphism Hessc(f) of TcM by

Bc(Hessc(f)v, w) = Hessc(f)(v, w),

for all v, w ∈ TcM . Because Hessc(f) is a symmetric bilinear form, the corre-
sponding endomorphism of TcM is symmetric with respect to Bc.

Let pc be the number of positive eigenvalues of Hessc(f) ∈ End(TcM), and
let qc be the number of negative eigenvalues, counted with multiplicity. Then by
nondegeneracy, pc+qc = dim(M). The pair (pc, qc) is the signature of Hessc(f).

Let Ft be the flow of the vector field grad(f), which is defined by

〈df,X〉 = B(grad(f), X) ∈ C∞(M),

for all vector fields X on M .

Definition 2.2. For c ∈ Crit(f), the stable manifold Sc of grad(f) at c is
defined as

Sc := {m ∈M ; lim
t→−∞

Ft(m) = c}.

Lemma 2.3. The dimension of Sc equals pc.

Proof. Let x = (x1, . . . , xn) be a system of local coordinates around c, such that
x(c) = 0. Because grad(f)(c) = 0, the gradient of f can be expressed in these
coordinates as

grad(f)(x) =

(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)

=


∂2f
∂x2

1
· · · ∂2f

∂xn∂x1

...
...

∂2f
∂x1∂xn

· · · ∂2f
∂x2
n

 (0) · x+O(‖x‖2)

= Hess0(f) · x+O(‖x‖2),

by Taylor’s theorem. By the Morse lemma (Milnor [22], Lemma 2.2), the coor-
dinates x can be chosen so that

grad(f)(x) = Hess0(f) · x.

Then, in the coordinates x, the flow Ft of grad(f) is given by

Ft(x) =
(
etHess0(f)

)
· x.

The eigenvalues of the matrix etHess0(f) are precisely etλ, where λ is an
eigenvalue of Hess0(f). Let x ∈ Rn be an eigenvector of etHess0(f), corresponding
to the eigenvalue etλ. Then

lim
t→−∞

Ft(x) = lim
t→−∞

etλx = 0
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if and only if λ > 0. This shows that locally around x, Sc is a submanifold of
dimension pc. But since the flow Ft is a diffeomorphism for fixed t, any point
in Sc has a neighbourhood which is diffeomorphic to an open subset of Rpc .

Theorem 2.4 (Morse). Let f be a Morse function on M . Then the manifold
M decomposes as

M =
∐

c∈Crit(f)

Sc. (27)

See Milnor [22]. Here Sc is a cell of dimension pc, by Lemma 2.3.

Definition 2.5. The decomposition of Theorem 2.4 is called the Morse decom-
position of M .

Remark 2.6. Suppose we are in the ideal situation that pc is even, for all critical
points c of f . Then all boundary maps in the cellular complex corresponding
to the Morse decomposition of M are zero. For k ∈ {0, 1, 2, . . . }, we define the
number

bk := #{c ∈ Crit(f); pc = k}.

By assumption, bk = 0 for all odd k. And because all boundary maps in the
cellular complex (27) are zero, the dimensions of the cohomology spaces of M
are given by

dimHk(M) = bk.

For compact and connected M , we have b0 = dim(H0(M)) = 1 and bn =
dim(Hn(M)) = 1. In other words, f has a unique local maximum and a unique
local minimum.

Example 2.7. Let M be the two-sphere

M = {(x, y, z) ∈ R3;x2 + y2 + z2 = 1}.

Let f ∈ C∞(M) be the height function

f(x, y, z) = z.

The critical points of f are (0, 0, 1) and (0, 0,−1). The point (0, 0, 1) is a local
maximum, so that p(0,0,1) = 0 and q(0,0,1) = 2. Its antipode (0, 0,−1) is a local
minimum, so p(0,0,−1) = 2 and q(0,0,−1) = 0. Here we are in the ideal situation
referred to in Remark 2.6.

Example 2.8. Let M be the two-torus

M =

{
(x, y, z) ∈ R3;

∥∥∥∥(x, y, z)− (2x, 2y, 0)

(x2 + y2)1/2

∥∥∥∥ = 1

}
.

The central circle of M is the circle of radius 2 around the origin of the (x, y)-
plane, and M consists of all points in R3 at distance 1 to this circle.
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Let f1 ∈ C∞(M) be the height function along the first coordinate:

f1(x, y, z) = x.

The critical points of f1 are

point (p, q) nature of crit. pnt.
(3, 0, 0) p=0,q=2 local maximum
(1, 0, 0) p=q=1 saddle point
(-1, 0, 0) p=q=1 saddle point
(-3, 0, 0) p=2,q=0 local minimum.

Let f2 ∈ C∞(M) be the height function along the third coordinate:

f2(x, y, z) = z.

The critical locus of f2 consists of two circles:

Crit(f2) = {(x, y, x) ∈ R3;x2 + y2 = 4 and z = ±1}.

Hence f2 is not a Morse function, because its critical locus is not discrete.
However, f2 is a Morse-Bott function:

Definition 2.9. Let M be a compact manifold, and let f be a smooth function
on M . Then f is a Morse-Bott function if

1. Crit(f) is a smooth submanifold of M

2. For all c ∈ Crit(f), the Hessian Hessc(f) induces a nondegenerate bilinear
form on the quotient space TcM/Tc Crit(f).

Let f be a Morse-Bott function, and let C be a connected component of
Crit(f). For each c ∈ C, we define the integer pc as the number of positive
eigenvalues of the invertible endomorphism of TcM/TcC defined by the Hessian
of f at c. The number qc is defined as the number of negative eigenvalues of this
endomorphism. Then pc + qc is the dimension of the quotient space TcM/TcC,
which implies that

pc + qc + dimC = dimM.

By Lemma 2.10 below, the numbers pc and qc do not depend on the choice of
c ∈ C. Hence we can write pC := pc and qC := qc, and we define the signature
of Hess(f) at the connected component C as the pair (pC , qC).

Lemma 2.10. Let X be the space of invertible symmetric real n× n matrices.
Let

A : [0, 1]→ X (28)

A 7→ At (29)

be a continuous curve in X. Then the number of positive eigenvalues of At does
not depend on t. The same holds for the number of negative eigenvalues of At.
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Proof. The eigenvalues of At are real, and the set of eigenvalues of At depends
continuously on t. The eigenvalue zero does not occur for any t, so the numbers
of positive and negative eigenvalues are independent of t.

Definition 2.11. Let f ∈ C∞ be a Morse-Bott function, and let C be a con-
nected component of its critical locus. The stable manifold SC of grad(f) at C
is defined as

SC := {m ∈M | lim
t→−∞

Ft(m) ⊂ C}.

The limit in the definition above should be interpreted in the following way.
For ε > 0, and x ∈M , we write

Bε(x) := {y ∈M ; d(x, y) ≤ ε},

where d denotes the geodesic distance. If I ⊂ R and m ∈M , then we define

FI(m) := {Ft(m); t ∈ I}.

Now the subset limt→−∞ Ft(m) of M is defined as

lim
t→−∞

Ft(m) := {x ∈M ;∀ε > 0,∀A ∈ R, Bε(x) ∩ F(−∞,A] 6= ∅}.

It has been proved by Duistermaat that limt→−∞ Ft(m) actually consists of
a single point if f = ‖µ‖2, where µ is the momentum map of a Hamiltonian
action (see Lerman [19]).

The following generalisation of Theorem 2.4 was proved by Bott in [4].

Theorem 2.12 (Morse-Bott). Let f ∈ C∞(M) be a Morse-Bott function, and
let C be the set of connected components of its critical locus. Then

M =
∐
C∈C

SC .

Remark 2.13. In Morse-Bott theory, the ideal situation is the case where the
number dimSC is even, for all connected components C of Crit(f). If M is
connected, then f attains a local minimum at a unique component C.

Indeed, if C is a connected component of Crit(f), then f has a local minimum
at C if and only if qC = 0. The dimension of the stratum SC is then equal to

dimSC = dimC + pC = dimM.

The first equality is an analogue of Lemma 2.3, and the second follows because
qC = 0.

If there are two or more strata SC of maximal dimension, then they must be
joined by a stratum of codimension 1. If all strata are even-dimensional, this is
impossible. Hence the function f has a local minimum at only one component
C of Crit(f).
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In [15], Kirwan developed a generalisation of Morse-Bott theory. This gen-
eralisation makes it possible to deal with functions whose critical loci are not
necessarily smooth.

Definition 2.14. A smooth function f on a compact manifold M is called a
Morse-Kirwan function6 if it has the following properties.

1. The critical locus of f is the disjoint union of finitely many closed subsets
C ⊂ Crit(f), on each of which f is constant. (For functions with well-
behaved critical loci, one can take the subsets C to be the connected
components of Crit(f).)

2. For every such C, there is a submanifold ΣC of M containing C, with
orientable normal bundle in M , such that

(a) the restriction of f to ΣC takes its minimal value on C,

(b) for all m ∈ ΣC , the Hessian Hessm(f) is positive semidefinite on
TmΣC ⊂ TmM , and there is no subspace of TmM strictly containing
TmΣC , on which Hessm(f) is positive semidefinite.

A submanifold ΣC as above, is called a minimising submanifold for f along C.

If f is a Morse-Bott function, then it has the properties of a Morse-Kirwan
function, with ΣC = SC .

We set
qC := dim (TmM/TmΣC) ,

for a m ∈ C. Note that qC is precisely the number of negative eigenvalues of
Hess(f) on C.

Kirwan’s analogue of the Morse-Bott stratification is the following (see Kir-
wan [15], Theorem 10.4).

Theorem 2.15. Let M be a compact Riemannian manifold, and let f ∈ C∞(M)
be a Morse-Kirwan function. Suppose that the gradient of f is tangent to the
minimising manifolds ΣC .

Then
M =

∐
C

SC ,

where as before, the stable manifolds SC are defined by

SC := {m ∈M | lim
t→−∞

Ft(m) ⊂ C},

with Ft the flow of grad f . The strata SC are smooth, and the minimising
manifolds ΣC are open neighbourhoods of C in SC .

If the number dimSC is even for all C, then f has a local minimum along a
unique set C. (This is a generalisation of Remark 2.13.)

6This is not standard terminology. Kirwan herself used the term ‘minimally degenerate
function’.
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2.2 The Abelian convexity theorem

Let (M,ω) be a connected, compact symplectic manifold. Let T be a connected,
compact, Abelian Lie group. Then T ∼= t/Λ, where Λ := ker exp is the unit
lattice of T . Let T ×M → M be a Hamiltonian action, with momentum map
µ : M → t∗.

Definition 2.16. A convex polytope P in a vector space V is a compact subset
of V which is given as the intersection of a finite number of closed half spaces.
A polytope P in V is a finite union of convex polytopes. We will sometimes use
the word polyhedron instead of the word polytope.

Theorem 2.17 (Abelian convexity theorem, Atiyah 1982 [1], Guillemin &
Sternberg 1982 [6]). The image µ(M) of M in t∗ is a convex polytope, with
vertices contained in the set µ(MT ). Here MT is the fixed point set of the
action of T on M .

Example 2.18. The real vector space Herm(n) of Hermitian n × n matrices
carries a representation of U(n), defined by conjugation. Let

π : Herm(n)→ Diag(n) ∼= Rn

be the projection onto the diagonal part:

π
(
(aij)

n
i,j=1

)
= (aii)

n
i=1.

Then we have:

Theorem 2.19 (Horn 1954 [12]). Let D ∈ Herm(n) be a diagonal matrix, and
let M := U(n) ·D be its conjugation orbit. Then the projection π(M) is equal
to the convex hull of the finite set

{σ(D) := σDσ−1|σ ∈ Sn permutation matrix}.

This theorem fits in the situation of the Abelian convexity theorem. Indeed,
note that

Lie (U(n)) = u(n) = iHerm(n) ∼= u(n)∗,

and that the coadjoint action of U(n) on u(n) corresponds to conjugation in
iHerm(n). Hence the conjugation orbit M corresponds to a coadjoint orbit in
u(n). By Example 1.13 it is a symplectic manifold, and the action of U(n) is
Hamiltonian. By Example 1.8, this action restricts to a Hamiltonian action of
the subgroup of diagonal matrices in U(n). The projection π is the transpose
of the inclusion of the diagonal unitary matrices into the unitary matrices, so π
is a momentum map.

The proof of the Abelian convexity theorem is based on Lemmas 2.20 – 2.22.

Lemma 2.20. Let m ∈M , and let tm be the stabiliser algebra of m. The image
of the tangent map Tmµ : TmM → t∗ is

im(Tmµ) = t⊥m := {ξ ∈ t∗; 〈ξ,X〉 = 0 if X ∈ tm}.
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Proof. For all m ∈ M , v ∈ TmM and X ∈ t, the defining relation of the
momentum map µ implies that

〈Tmµ(v), X〉 = 〈(dµX)m , v〉 = −ω(Xm, v).

Therefore, X ∈ im(Tmµ)⊥ if and only if Xm = 0, which is to say that
X ∈ tm. So we have

im(Tmµ)⊥ = tm ⊂ t.

Taking the annihilators of both sides in t∗, we obtain the desired result.

Lemma 2.21. There are only finitely many subalgebras of t that occur as the
stabiliser algebra of a point in M .

Proof. We shall prove that every point m ∈ M has a neighbourhood on which
only a finite number of stabiliser groups (and hence stabiliser algebras) occur.
Compactness of M then completes the argument.

Let m ∈ M be given. Let Tm be the stabiliser group of m. Let U be an
open neighbourhood of m such that all points in U are fixed by Tm.

The action of Tm on M can be linearised around m, in the sense that there
exists a representation ρ of Tm in a finite-dimensional vector space V , and a
diffeomorphism

φ : U ′ → V ′,

from a Tm-invariant open neighbourhood U ′ of m onto an open neighbourhood
V ′ of 0 in V , such that φ intertwines ρ and the action of Tm on U ′. The
symplectic form ωm on TmM induces a symplectic form on V through the linear
isomorphism Tmφ : TmM → V . Thus the space V can be given the structure of
a complex vector space.

Let U ′′ be an open neighbourhood of m, such that U ′′ is Tm-invariant, and
U ′′ ⊂ U ∩ U ′. Identify the torus Tm with the torus

Tk := {(e2πiα1 , . . . , e2πiαk);αj ∈ R}.

Let {λ1, . . . , λn ∈ Zk} be the set of weights of ρ. That is to say,

V =

n⊕
l=1

Cλl ,

where Tk acts on Cλl by

(e2πiα1 , . . . , e2πiαk) · z = e2πiλl·α · z,

where z ∈ Cλl , and

λl · α :=

k∑
p=1

λpl αp.
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Let u ∈ U ′′ be given. Write v := φ(u), and

v =

n∑
l=1

vl,

with vl ∈ Cλl . Then an element (e2πiα1 , . . . , e2πiαk) ∈ Tk stabilises v if and only
if for all l ∈ {1, . . . n}:

λl · α ∈ Z or vl = 0.

Hence the stabiliser of v is determined if we know which vl are zero. This implies
that only 2n subgroups of Tm can occur as the stabiliser of a point u ∈ U ′′.

Lemma 2.22. For every X ∈ t, the function µX ∈ C∞(M) is a Morse-Bott
function, with even signatures along critical loci.

Proof. Note that the critical points of µX are precisely the fixed points in M of
the subgroup TX := exp(R ·X) of T :

(dµX)m = 0 ⇔ (−Xyω)m = 0 ⇔ Xm = 0.

Let m be a critical point of µX . As in the proof of Lemma 2.21, we consider
a linearisation ρ : TX → GL(V ) of the action of TX around m. Because the
fixed point set of TX in V is a linear subspace, the diffeomorphism φ defines a
chart of M around m that locally exhibits the critical locus of µX as a smooth
submanifold of M .

It remains to prove that the Hessian of µX is nondegenerate, transversally
to Crit(µX). As in the proof of Lemma 2.21, we transfer the symplectic form
ωm on TmM to V . Furthermore, we equip V with the structure of a complex
vector space, and with a Hermitian form H such that the symplectic form on
V is the imaginary part of H. By the Darboux-Weinstein theorem (Guillemin
& Sternberg [10], Section 22), the diffeomorphism

φ : U ′ → V ′ ⊂ V

can be chosen so that it preserves the symplectic forms on the spaces in question.
Because TX is a torus, the representation ρ is automatically unitary with

respect to H. By Example 1.10, a momentum map of the action of TX on V is
given by

µ̃X(v) = iH(ρ(X)v, v)/2,

v ∈ V . The momentum map µ̃ corresponds to the momentum map µ up to
addition of an element of (g∗)

G
(see Remark 1.4). So the Hessian of µ̃X has the

same eigenvalues as the Hessian of µX .
Note that the sesquilinear form

HX := H(ρ(X)·, ·)

is anti-Hermitian, because ρ(X) ∈ u(V,H) is anti-Hermitian. So the eigenvalues
of HX are imaginary. Let (v1, . . . , vn) be a C-basis of V such that

HX(vj , vk) = −iλjδjk,
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where λj ∈ R, and δjk is the Kronecker delta. Let z = (z1, . . . , zn) be the
complex coordinates on V defined by

v =

n∑
j=1

zjvj ,

for all v ∈ V . Then

µ̃X(z) =
1

2

∑
j

λj |zj |2. (30)

Hence in the real coordinates (x, y) defined by z = x + iy, the matrix of
Hess(µX) is given by

Hess(µX) =


λ1

λ1 ∅
. . .

∅ λn
λn

 . (31)

Each eigenvalue λj occurs twice, because |zj |2 = x2
j + y2

j .
We conclude that

vj ∈ ker Hess(µ̃X)

if and only if λj = 0, which is equivalent to

vj ∈ ker dµX ,

by (30).
So Hess(µ̃X) is zero on Crit(µ̃X), and nondegenerate transversally to Crit(µ̃X).
The signatures of Hess(µ̃X) are even because every λj appears twice in (31).

Proof of the Abelian convexity theorem. Without loss of generality, we may
assume that the action of T on M is locally free, i.e. Mreg is dense in M . For
if the action is not locally free, then we replace T by the quotient group T/TM ,
where TM is the subgroup of T that stabilises all points in M . If the action is
locally free, then µ(M) has nonempty interior, because µ(Mreg) ⊂ µ(M)int.

We first claim that the boundary ∂ (µ(M)) contains an open dense subset
that consists of a finite number of open subsets of affine subspaces of t. This
explains the polyhedral nature of µ(M).

Let m ∈ M be such that µ(m) ∈ ∂ (µ(M)), and that ∂ (µ(M)) is smooth
around µ(m). (Note that µ(M) is compact, hence closed, so that ∂ (µ(M)) ⊂ µ(M).)
Then

Tµ(m)∂ (µ(M)) = Im(Tmµ) = t⊥m,

by Lemma 2.20. By Lemma 2.21, there are only finitely many subspaces of t that
occur as stabilisers of points in M . So there are only finitely many subspaces of
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t that occur as tangent spaces to ∂ (µ(M)). This shows that ∂ (µ(M)) is locally
affine.

To prove convexity of µ(M), we use the fact that µX is a Morse-Bott func-
tion, by Lemma 2.22. If µ(M) is not convex, then there is a direction X ∈ t such
that the subset of M where the height function µX has a local minimum, is not
connected (see Figure 1). But this contradicts the fact that µX is a Morse-Bott

convexity3-eps-converted-to.pdf

Figure 1: The function µX has local minima on two separate sets.

function with even signatures (see Remark 2.13).
The claim about the vertices of µ(M) follows from Lemma 2.20. Indeed, the

vertices of µ(M) are the points that lie on the intersection of a maximal number
of hyperplanes that define µ(M). By Lemma 2.20, this implies that if m ∈ M
is a point that is mapped to a vertex, then tm = t, hence m is fixed by T . �

2.3 The nonabelian convexity theorem

Example 2.23. Let U be a compact, connected Lie group, and let K < U be
a closed subgroup. Let k ⊂ u be their Lie algebras. Let T < K be a maximal
torus, with Lie algebra t. We identify t∗ with the subspace of k∗ consisting of
the elements that are fixed by the coadjoint action of T on k∗. Let t∗+ ⊂ t∗ be a
closed Weyl chamber. Then t∗+ is a strict fundamental domain for the coadjoint
action of K on k∗: Ad∗(K)(t∗+) = k∗, and for all ξ ∈ k∗, there is at most one
k ∈ K such that Ad∗(k)ξ ∈ t∗++, with t∗++ the interior of t∗+.

LetM be a coadjoint orbit of U in u∗, equipped with the canonical symplectic
form (see Example 1.13). Then the restricted coadjoint action of K on M is
Hamiltonian, with momentum map

µ : M ↪→ u∗ → k∗

(see Examples 1.13 and 1.8).

Theorem 2.24 (Heckman 1982 [11]). The intersection µ(M) ∩ t∗+ is a convex
polyhedron.

This result was found on the basis of an ample supply of branching rule
computations. The proof went by a classical limit of Kähler quantisation, i.e. by
asymptotic behaviour of multiplicities of representations of compact Lie groups.

Guillemin and Sternberg found a more natural, and more general setting for
this theorem to hold.
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Theorem 2.25 (Guillemin & Sternberg 1984 [7]). Let V be a finite-dimensional
complex vector space, equipped with a Hermitian metric H. Let K be a compact
Lie group, with maximal torus T . Let

ρ : K → U(V )

be a unitary representation of K in V .
Let L× ⊂ V × be a holomorphic submanifold, invariant under the actions of

C× and K. Let M := L×/C× ⊂ P(V ) be the corresponding projective variety.
By Theorem 1.30, the action of K on M induced by ρ is Hamiltonian, with
momentum map µ : M → k∗,

µX(m) =
H(ρ(X)l, l)

2πiH(l, l)

for all X ∈ k and m = C× · l ∈M .
Suppose that M is connected. Then µ(M) ∩ t∗+ is a convex polyhedron, for

all closed Weyl chambers t∗+ in t∗.

Remark 2.26. Using Theorem 2.25, one can determine the whole image µ(M)
of µ by noting that the Weyl chamber t∗+ is a fundamental domain for the
coadjoint action of K on k∗, so that

µ(M) = Ad∗(K)
(
µ(M) ∩ t∗+

)
.

We shall restrict ourselves to the case where the set Mreg of regular points
of µ is dense in M . That is to say, the action is locally faithful.

The idea of Guillemin and Sternberg was the following.
Let M++ := µ−1(t∗++). Then M++ is a smooth, connected submanifold of

M , invariant under T . It turns out that M++ is actually a symplectic subman-
ifold. By Examples 1.8 and 1.11, the action of T on M++ is Hamiltonian, with
momentum map

µ++ : M++
µ−→ t∗++ ⊂ t∗,

where µ++ := µ|M++ .
Hence to determine µ(M++), is is sufficient to consider the action of T

on M++. This brings us back to the Abelian case. If M++ is compact (i.e.
µ(M) ⊂ Ad∗(K)t∗++), then we can apply the Abelian convexity theorem to
deduce the desired result.

In general, the same arguments as those used in the proof of the Abelian
convexity theorem can be used to show that

µ++(M++) = µ(M) ∩ t∗+

is a polyhedron. Indeed, the arguments about the polyhedral nature of µ(M)
in the proof of the Abelian convexity theorem are purely local. Because the
momentum map µ is proper (M is compact), it locally restricts to a map between
compact sets.
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It then remains to prove that µ(M)∩ t∗+ is convex. Guillemin and Sternberg
proved this convexity by using Kähler quantisation and representation theory
of compact groups (see Remark 3.23).

A more general nonabelian convexity theorem was proved by Kirwan.

Theorem 2.27 (Kirwan 1984 [15]). Let M be a compact, connected symplectic
manifold, K a compact Lie group, and K×M →M a Hamiltonian action with
momentum map µ : M → k∗. Let t∗+ ⊂ t∗ be a closed Weyl chamber.

Then µ(M) ∩ t∗+ is a convex polyhedron.

Definition 2.28. The convex polyhedron µ(M) ∩ t∗+ is called the momentum
polytope of µ.

Guillemin and Sternberg’s arguments for the polyhedral nature of µ(M)
apply in this more general setting. Their argument for the convexity of µ(M)
no longer applies, since Kirwan’s theorem is a differential geometric statement,
whereas Guillemin and Sternberg’s theorem is complex geometric.

Kirwan’s differential geometric proof of convexity of µ(M) is based on the
following key lemma.

Lemma 2.29. Let (·, ·) be an Ad∗(K)-invariant inner product on k∗, and let
‖ · ‖ be the corresponding norm. Then the set Min

(
‖µ‖2

)
of points in M on

which the function ‖µ‖2 takes its minimal value is connected.

Sketch of proof. The proof is based on the observation that the function
‖µ‖2 is a Morse-Kirwan function, for which the strata SC are symplectic sub-
manifolds of M . (Kirwan [15], pp. 44–68.) Hence the numbers dimSC are even,
which implies that the function ‖µ‖2 takes its minimal value on a unique set C0

(Remark 2.13).
It turns out that the sets C may be chosen to be the connected components

of the critical locus of ‖µ‖2. (Lerman [19], Theorem 2.1.) In particular, the set
C0 on which ‖µ‖2 is minimal, is connected. �

Corollary 2.30. Let ξ ∈ t∗+. Consider the function

ψ : m 7→ ‖µ(m)− ξ‖2,

which assigns to a point m ∈ M the distance squared from µ(m) to ξ. It takes
its minimal value on a connected subset Min(ψ) of M .

Proof. We use the shifting trick (Remark 1.22). Let (M−ξ, ω−ξ) be the co-
adjoint orbit of K through −ξ, equipped with its standard symplectic form (see
Example 1.13). Consider the symplectic manifold

(M̃, ω̃) := (M−ξ ×M,ω−ξ × ω).

The action of K on M̃ is Hamiltonian, with momentum map

µ̃ (ζ,m) = µ(m) + ζ
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(see Example 1.14).
Let ψ̃ be the function on M̃ given by ψ̃(ζ,m) = ‖µ̃(ζ,m)‖2. By Kirwan’s key

lemma (Lemma 2.29), it takes its minimal value on a connected subset Min(ψ̃)
of M̃ .

Let X ⊂ M̃ be the subset

X := ({−ξ} ×M) ∩Min(ψ̃).

We claim that
{−ξ} ×Min(ψ) = X. (32)

Indeed, note that by K-invariance of the norm ‖ · ‖, and by K-equivariance
of µ,

ψ̃(−Ad∗(k)ξ, n) = ‖µ(n)−Ad∗(k)ξ‖2 = ‖µ(k−1n)− ξ‖2,

for all n ∈M and k ∈ K. Hence if m ∈ Min(ψ), then for all n and k:

ψ̃(−Ad∗(k)ξ, n) ≥ ψ̃(−ξ,m),

so that (−ξ,m) ∈ Min(ψ̃).
Conversely, if (−ξ,m) ∈ Min(ψ̃), then for all n ∈ N :

ψ(n) = ψ̃(ξ, n) ≥ ψ̃(−ξ,m) = ψ(m),

which completes the proof of (32).
It remains to show that the subset X of M̃ is connected. Let (−ξ,m0) and

(−ξ,m1) be two elements of X. Because Min(ψ̃) is connected, there is a curve

γ : [0, 1]→ Min(ψ̃),

such that γ(0) = (−ξ,m0) and γ(1) = (−ξ,m1). We write

γ(t) = (ζt,mt).

Then ζ0 = ζ1 = −ξ.
Because the principal fibre bundle

K →M−ξ

is locally trivial, there is a curve kt, t ∈ [0, 1], such that for all t:

ζt = −Ad∗(kt)ξ,

and k0 = e.
Consider the curve

δ : [0, 1]→ X,

defined by
δ(t) = (−ξ, k−1

t mt).
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Its image indeed lies in X, because for all t we have

ψ̃(δ(t)) = ‖µ(k−1
t mt)− ξ‖2 = ‖µ(mt) + ζt‖2 = ψ̃(ζt,mt),

and by definition of γ, (ζt,mt) ∈ Min(ψ̃).
The curve δ satisfies

δ(0) = (−ξ,m0);

δ(1) = (−ξ, k−1
1 m1).

Note that k1 is an element of K−ξ, the stabiliser of ξ, which is connected.
Therefore, the curve δ can be extended to a curve in X connecting (−ξ,m0) to
(−ξ,m1).

Proof of the nonabelian convexity theorem. We have already seen that
µ(M) ∩ t∗+ is a polyhedron, and it remains to prove that it is convex.

Suppose it is not. Then there is a point ξ ∈ t∗+ and a radius r, such that the
sphere around ξ of radius r is tangent to the boundary of µ(M) ∩ t∗+ in more
than one point (see Figure 2).

convexity4-eps-converted-to.pdf

Figure 2: The sphere of radius r around ξ touches µ(M+) in two points.

For this ξ, the function

m 7→ ‖µ(m)− ξ‖2

attains its minimal value in two or more disctinct points. This is in contradiction
with Corollary 2.30. �

Remark 2.31. Let ξ ∈ µ(M) be such that ‖ξ‖2 is the minimal value of the
function ‖µ‖2. It follows from Lemma 2.29 that for such ξ, the set

µ−1(ξ) = Min(‖µ‖2)

is connected. One can prove that µ−1(ξ) is in fact connected for arbitrary ξ ∈ k∗.
This implies that Mξ = µ−1(ξ)/Kξ is also connected.

Remark 2.32. The convexity theorem remains valid if we replace the assump-
tion that M is compact by the assumption that µ : M → k∗ is proper (but M
is still supposed to be connected). An important example is the following. Let
G be a connected, real, linear, semisimple Lie group, and let K < G be a max-
imal compact subgroup. The inclusion map k ↪→ g transposes to the projection
g∗ → k∗.
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Let ξ ∈ g∗, and let M := G · ξ be the coadjoint orbit through ξ. Then by
Examples 1.13 and 1.8, the coadjoint action of K on M is Hamiltonian, with
momentum map

µ : M ↪→ g∗ → k∗.

One can show that if the orbit M is a closed subset of g∗, then µ is proper.
Hence if M is closed, then µ(M)∩C is a convex polyhedral region, which of

course no longer needs to be compact.

3 Geometric quantisation

Geometric quantisation is a procedure that assigns a quantum mechanical phase
space (Hilbert space) to a classical mechanical phase space (symplectic mani-
fold). If the symplectic manifold is equipped with a suitable Hamiltonian group
action, then the corresponding Hilbert space carries a representation of the
group in question. The ‘quantisation commutes with reduction’ priciple (of-
ten abbreviated as ‘[Q,R] = 0’) states that the geometric quantisation of the
symplectic reduction of a symplectic manifold by a Hamiltonian group action
is isomorphic to the space of invariant vectors in the geometric quantisation of
the original manifold.

The geometric quantisation of a symplectic manifold will be realised as a
space of sections of a certain line bundle. Later, geometric quantisation will be
defined as the index of an elliptic differential operator. In special cases, this
will reduce to the first definition. Note that the index of an operator is only a
virtual Hilbert space (i.e. the formal difference of two Hilbert spaces).

3.1 Differential geometry of line bundles

Let M be a smooth manifold, and let L→M be a smooth complex line bundle
over M . The space of smooth sections of L is denoted by Γ∞(M,L). The space
of smooth differential forms on M of degree k, with coefficients in L, is the space

Ωk(M ;L) := Γ∞(M,
∧k

T ∗M ⊗ L).

Definition 3.1. A connection on L is a linear map

∇ : Γ∞(M,L)→ Ω1(M ;L)

such that for all f ∈ C∞(M) and s ∈ Γ∞(M,L),

∇(fs) = df ⊗ s+ f∇s. (33)

The property (33) is called the Leibniz rule for ∇.
If 〈·, ·〉 is a Hermitian metric on L, then a connection ∇ on L is called unitary

if for all s, t ∈ Γ∞(M,L),

d〈s, t〉 = 〈∇s, t〉+ 〈s,∇t〉 ∈ Ω1(M).
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If X is a vector field on M , and ∇ a connection on L, their contraction is
the covariant derivative ∇X , defined by

∇X : Γ∞(M,L)→ Γ∞(M,L), (34)

∇Xs := Xy∇s, (35)

for all sections s ∈ Γ∞(M,L).
A connection ∇ on L can be extended uniquely to a linear map

∇ : Ωk(M ;L)→ Ωk+1(M ;L),

such that for all α ∈ Ωk(M) and β ∈ Ω(M ;L), the following generalised Leibniz
rule holds:

∇(α ∧ β) = α ∧∇β + (−1)kdα ∧ β.

A consequence of this Leibniz rule is that the square of ∇,

∇2 : Ωk(M ;L)→ Ωk+2(M ;L),

is a C∞(M)-linear mapping. Hence it is given by multiplication by a certain
two-form.

Definition 3.2. The curvature (form) of a connection ∇ on L is the two-form

ω ∈ Ω2
C(M) := Γ∞(M,

∧2
T ∗M ⊗ C)

such that for all s ∈ Γ∞(M,L),

∇2s = 2πiω ⊗ s. (36)

An equivalent formulation of (36) is that for all vector fields X and Y on
M , the C∞(M)-linear map

[∇X ,∇Y ]−∇[X,Y ] : Γ∞(M,L)→ Γ∞(M,L) (37)

is multiplication by the function 2πiω(X,Y ).
It turns out that ω is real, closed (the Bianchi identity), and that the coho-

mology class
[ω] ∈ H2

dR(M)

is integral. That is, for all compact, two-dimensional submanifolds S ⊂M ,∫
S

ω ∈ Z.

Conversely, we have the following theorem. For a proof, see Woodhouse [25].

Theorem 3.3 (Weil). Let M be a smooth manifold, ω a real, closed two-form
on M , with integral cohomology class [ω] ∈ H2

dR(M).
Then there is a line bundle L → M , with a Hermitian metric 〈·, ·〉, and a

unitary connection ∇ whose curvature form is ω.
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Remark 3.4. Consider the Lie algebra Vect(M) of vector fields on M . By
formula (37), the map

X → ∇X ,
Vect(M)→ End (Γ∞(M,L)) ,

defines a representation of Vect(M) on Γ∞(M,L) if and only if the curvature
of ∇ vanishes.

Suppose M is oriented, and let ν be a volume form on M that is positive
with respect to the given orientation. For X ∈ Vect(M), the divergence of X is
defined as the function div(X) on M for which

LX(ν) = div(X)ν.

The divergence-free vector fields on M form a Lie subalgebra Vect0(M) of
Vect(M).

Consider the pre-Hilbert space Γ∞c (M,L) of compactly supported smooth
sections of L, with the inner product

(s, t) :=

∫
M

〈s(m), t(m)〉ν,

for s, t ∈ Γ∞c (M,L). If the curvature of∇ is zero, then the map X 7→ ∇X defines
a representation of Vect0(M) on Γ∞c (M,L). This representation is formally
unitary, in the sense that for all X ∈ Vect0(M),

∇∗X = −∇X .

Proof. Let X ∈ Vect0(M). Then by definition,

LXν = 0.

Let s, t ∈ Γ∞c (M,L). Because the connection ∇ is unitary, we have

LX〈s, t〉 = X(〈s, t〉)
= 〈∇Xs, t〉+ 〈s,∇Xt〉.

Since 〈s, t〉ν is a volume form, its Lie derivative LX (〈s, t〉ν) is exact, so that
its integral vanishes. Therefore,

0 =

∫
M

LX (〈s, t〉ν)

=

∫
M

(〈∇Xs, t〉+ 〈s,∇Xt〉) ν +

∫
M

〈s, t〉LXν

= (∇Xs, t) + (s,∇Xt).
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3.2 Prequantisation

Let (M,ω) be a symplectic manifold. Recall Definition 1.5 of Hamiltonian vector
fields and Poisson brackets. The map

f 7→ Hf

is a Lie algebra homomorphism from the Poisson algebra C∞(M,ω) of (M,ω)
to the Lie algebra Vect(M) of vector fields on M :

Lemma 3.5. For all f, g ∈ C∞(M),

[Hf , Hg] = H{f,g}.

Sketch of proof. In local Darboux coordinates (q, p), we have

ω =
∑
k

dpk ∧ dqk.

From the relation

−Hfyω = df =
∑
k

∂f

∂qk
dqk +

∂f

∂pk
dpk

one deduces that

Hf =
∑
k

∂f

∂pk

∂

∂qk
− ∂f

∂qk

∂

∂pk
.

Therefore,

{f, g} =
∑
k

∂f

∂pk

∂g

∂qk
− ∂f

∂qk

∂g

∂pk
.

The lemma now follws by a direct computation. �

The kernel of the map f 7→ Hf is the space of locally constant functions,
which is isomorphic to R if M is connected. Its image is by definition the Lie
subalgebra Ham(M,ω) of Hamiltonian vector fields on M .

Example 3.6. Suppose dimM = 2, and consider the local functions

f(q, p) = p2/2

g(q, p) = q2/2.

Then
{f, g}(q, p) = pq,

so that

H{f,g}(p, q) = q
∂

∂q
− p ∂

∂p
.
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On the other hand,

Hf (q, p) = p
∂

∂q
,

Hg(q, p) = −q ∂
∂p
,

so that

[Hf , Hg](p, q) = −p ∂
∂p

+ q
∂

∂q
.

From now on, assume that the cohomology class [ω] ∈ H2
dR(M) is integral.

By Theorem 3.3, there is a complex line bundle L → M , with a Hermitian
metric 〈·, ·〉, and a unitary connection ∇, such that

∇2 = 2πiω.

Definition 3.7. The triple (L, 〈·, ·〉, ∇) is called a prequantum line bundle for
(M,ω).

Definition 3.8. Let (L, 〈·, ·〉, ∇) be a prequantum line bundle for (M,ω). Let
f ∈ C∞(M), and consider the linear operator P (f) on Γ∞(M,L), defined by

P (f) := ∇Hf − 2πif. (38)

It is called the prequantisation operator of the function f .
The linear map

P : C∞(M)→ End (Γ∞(M,L))

defined by (38), is called prequantisation.

Theorem 3.9 (Kostant & Souriau, 1970). Prequantisation defines a Lie algebra
representation of the Poisson algebra C∞(M,ω) on the vector space Γ∞(M,L).

Proof. The claim is that for all f, g ∈ C∞(M),

[P (f), P (g)] = P ({f, g}).

This follows by a straightforward computation:

P (f)P (g) = ∇Hf∇Hg − 2πif∇Hg − 2πig∇Hf − 2πiHf (g)− 4π2fg
P (g)P (f) = ∇Hg∇Hf − 2πig∇Hf − 2πif∇Hg − 2πiHg(f)− 4π2gf −

[P (f), P (g)] = [∇Hf ,∇Hg ]− 2πiHf (g) + 2πiHg(f)
= ∇[Hf ,Hg] + 2πiω(Hf , Hg)− 2πiHf (g) + 2πiHg(f),

because 2πiω is the curvature of ∇,

= ∇H{f,g} − 2πi{f, g},

by Lemma 3.5 and the definition of the Poisson bracket,

= P ({f, g}).
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Remark 3.10. The representation of C∞(M,ω) on Γ∞c (M,L) is formally uni-
tary, with respect to the inner product given by

(s, t) :=

∫
M

〈s, t〉ω
n

n!
, (39)

where s, t ∈ Γ∞c (M,L), and n = dimM/2. The form ωn

n! is called the Liouville
volume form on (M,ω).

More precisely, for f ∈ C∞(M) we define the function f∗ ∈ C∞(M) by

f∗(m) = −f(m).

For A ∈ End (Γ∞c (M,L)), we define A∗ to be the adjoint of A with respect to
the inner product (39). Then a computation shows that for all f ∈ C∞(M),

P (f∗) = P (f)∗.

This notion of unitarity corresponds to the one in Remark 3.4 via the Lie algebra
homomorphism f 7→ Hf from C∞(M,ω) to Vect(M).

Remark 3.11 (Equivariant prequantum line bundles). Let G ×M → M be
a smooth action of a Lie group G on M . A linearisation of this action is a
G-equivariant line bundle L → M . That is, a line bundle L → M , equipped
with an action of G, such that for all m ∈M , l ∈ Lm and x ∈ G,

1. x · l ∈ Lx·m,

2. x : Lm → Lx·m is multiplication by a scalar.

Given such a linearisation, we define the permutation representation P of G
in Γ∞(M,L) by

(P (x)s) (m) := x · s(x−1m),

for x ∈ G, s ∈ Γ∞(M,L) andm ∈M . It is easy to check that P (xy) = P (x)P (y)
for all x, y ∈ G so that P is indeed a representation. The associated infinitesimal
Lie algebra representation is given by

P : g→ End (Γ∞(M,L)) (40)

(P (X)s) (m) =
d

dt

∣∣∣∣
t=0

(P (exp tX)s) (m). (41)

Note that P (X) is a first order differential operator on Γ∞(M,L).
Now suppose that (M,ω) is a symplectic manifold, [ω] is an integral co-

homology class, and (L, 〈·, ·〉, ∇) is a prequantum line bundle. Suppose that
G×M →M is a Hamiltonian action, with momentum map µ.

Then the prequantum bundle (L, 〈·, ·〉, ∇) is called equivariant if there exists
a linearisation G× L→ L of the action, such that

d

dt

∣∣∣∣
t=0

P (exp tX) =: P (X)︸ ︷︷ ︸
permutation representation

= P (−µX) := −∇HµX + 2πiµX︸ ︷︷ ︸
prequantisation representation

(42)

There is a minus sign in front of µX because the map g→ Vect(M) defined
by X 7→ XM , is an antihomomorphism of Lie algebras.
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3.3 Prequantisation and reduction

Let (M,ω) be a symplectic manifold, and let G ×M → M be a Hamiltonian
action, with momentum map µ. Suppose that 0 ∈ g∗ is a regular value of µ,
and that the action of G on µ−1(0) is proper and free. Recall the construction
of the symplectic reduction M0 as in Theorem 1.19:

µ−1(0) �
� i //

p
����

M

M0 := µ−1(0)/G.

The symplectic form ω0 on M0 is defined by

p∗ω0 = i∗ω.

Suppose that [ω] is an integral cohomology class, and that there is an equiv-
ariant prequantum line bundle (L, 〈·, ·〉, ∇). Consider the restriction L|µ−1(0)

of L to the submanifold µ−1(0) of M . Let L0 → M0 be the line bundle such
that

p∗L0 = L|µ−1(0).

The Hermitian metric and connection on L induce a Hermitian metric 〈·, ·〉 and
a connection ∇0 on L0, such that (L0, 〈·, ·〉,∇0) is a prequantum line bundle
over the symplectic manifold (M0, ω0).

We then have the diagram

Γ∞(µ−1(0), L|µ−1(0))
G Γ∞(M,L)G

i∗oo

uu
Γ∞(M0, L0)

∼= p∗

OO
. (43)

If we call the space Γ∞(M,L)G the (quantum) reduction of the prequantisation
of (M,ω), symbolically

RP (M,ω) := Γ∞(M,L)G,

and Γ∞(M0, L0) the prequantisation of the (classical) reduction of (M,ω), sym-
bolically

PR(M,ω) := Γ∞(M0, L0),

then diagram (43) yields the following relation.

Corollary 3.12. There is a natural linear map

Γ∞(M,L)G → Γ∞(M0, L0).

Or symbolically,
RP → PR. (44)
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Remark 3.13. If the Lie group G is compact, one can prove that the map
RP → PR is surjective. But since it is defined by restriction of G-invariant
sections of L to µ−1(0), it is never injective (if µ is not the zero map). In other
words, prequantisation does not commute with reduction. In the next section,
we will define a notion of quantisation which does commute with reduction,
in the case of compact Lie groups. This is the ‘quantisation commutes with
reduction’ theorem of Guillemin and Sternberg (Theorem 3.20).

3.4 Quantisation

Definition 3.14. Let (V, ω) be a symplectic vector space of dimension 2n. The
symplectic form ω extends complex-linearly to the complexification V ⊗ C. A
polarisation of V ⊗ C is a complex Lagrangian subspace P of V ⊗ C. That is,
P⊥ = P , where P⊥ is the subspace of V ⊗C orthogonal to P with respect to ω.

The Hermitian form
〈X,Y 〉 := −iω(X, Ȳ ),

X, Y ∈ P , has kernel P ∩P̄ . Let (r, s) be the signature of the induced Hermitian
form on P/

(
P ∩ P̄

)
. The polarisation P is called real if P = P̄ , so that P is

the complexification of a real Lagrangian subspace of V . The polarisation P is
called Dolbeault if r + s = n, i.e. P ∩ P̄ = 0. If r = n and s = 0, then P is
called a Kähler polarisation.

Definition 3.15. Let (M,ω) be a symplectic manifold, and let P be a smooth
subbundle of the complexified tangent bundle TM ⊗ C. Then P is called a
polarisation of (M,ω) if it has the following properties.

1. The subspace Pm ⊂ TmM ⊗ C is a polarisation of (TmM ⊗ C, ωm) for all
m ∈M .

2. The signatures (rm, sm) are locally constant on M .

3. The subbundle P of TM ⊗ C in integrable. That is, the space of sections
of P is closed under the Lie bracket of vector fields.

Example 3.16. Let N be a manifold, and let M be the cotangent bundle
T ∗N , equipped with the standard symplectic form σ = dτ from Example 1.6.
Let P ⊂ TM ⊗ C be the subbundle

P := kerTCπ,

where π : T ∗N → N denotes the cotangent bundle projection. Then P is a
polarisation of (M,σ), called the vertical polarisation. Note that

P ∼= TN ⊗ C ↪→ TM ⊗ C.

Example 3.17 (Kähler polarisation). Let M be a complex manifold, and let
H be a Hermitian metric on TM . Let B and ω be the real and inaginary parts
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of H, respectively. The pair (M,H) is called a Kähler manifold if dω = 0. In
that case (M,ω) is a symplectic manifold.

Let J : TM → TM be the complex structure on M . Then

B(·, ·) = ω(J ·, ·)

is a Riemannian metric on M . Because B and H are determined by ω and J , we
may also denote the Kähler manifold (M,H) by (M,ω, J), or (M,ω) by abuse
of notation.

The 2-form ω has degree (1, 1) with respect to J , because the Hermitian
metric H is complex linear in the first variable and antilinear in the second.

The Kähler polarisation of (M,ω) is the−i eigenspace of J acting on TM⊗C:

P := {JX − iX;X ∈ TM}.

A function f ∈ C∞(M) is holomorphic if and only if Z(f) = 0 for all Z ∈ Γ∞(M,P ).

Definition 3.18 (Quantisation I). Let (M,ω) be a compact Kähler manifold,
such that [ω] is an integral cohomology class. Let P be the Kähler polarisation
of M , and let (L, 〈·, ·〉,∇) be a prequantum line bundle. Then the geometric
quantisation of (M,ω) is the finite-dimensional vector space

Q(M,ω) := {s ∈ Γ∞(M,L);∇Zs = 0 for all Z ∈ Γ∞(M,P )}.

Note that if a group G acts on the manifold M , and if the prequantum line
bundle is equivariant, then the space Q(M,ω) carries a representation of G.

Remark 3.19. We can give the line bundle L the structure of a holomorphic
line bundle, by saying that its space of holomorphic sections is Q(M,ω).

Consider the Dolbeault complex on M with coefficients in L:

0 //Ω0,0(M ;L)
∂̄⊗1L //Ω0,1(M ;L)

∂̄⊗1L // . . .
∂̄⊗1L //Ω0,n(M ;L) //0 .

Here n is the complex dimension ofM . The zeroth cohomology spaceH0,0(M ;L)
is the space of holomorphic sections of L, which we defined to beQ(M,ω). Hence
Q(M,ω) is not the zero space if the line bundle L is sufficiently positive.

Indeed, if L⊗
∧0,n

TM is a positive line bundle, then by Kodaira’s vanishing
theorem all Dolbeault cohomology spaces H0,k(M ;L) vanish for k > 0. Then
the Hirzebruch-Riemann-Roch theorem expresses the number

n∑
k=0

(−1)k dimH0,k(M ;L) = dimH0,0(M ;L)

as the integral over M of a certain differential form. If L is positive enough,
this number turns out to be nonzero.
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3.5 Quantisation commutes with reduction

Let K be a compact Lie group, (M,ω) a Kähler manifold, and K ×M → M
a holomorphic Hamiltonian action. Suppose that 0 is a regular value of the
momentum map µ, and that K acts freely on the level set µ−1(0).

Let G be the complexification of K. (As a manifold, G ∼= T ∗K = K × k∗,
and on the Lie algebra level g = k⊗ C.) The group G is a complex reductive
algebraic group. The action of K on M extends to a holomorphic action of G
on M , which however need no longer be Hamiltonian.

Suppose that there is a K-equivariant prequantum line bundle (L, 〈·, ·〉,∇)
on M . Then the action of G on M lifts to a holomorphic action of G on L.

The following beautiful theorem of Guillemin and Sternberg expresses that
‘quantisation commutes with reduction’, or ‘[Q,R] = 0’.

Theorem 3.20 (Guillemin & Sternberg 1982 [9]). Let Q(M,ω)K be the sub-
space of Q(M,ω) consisting of the K-invariant sections. Let (M0, ω0) be the
symplectic reduction of M by the action of K (see Theorem 1.19). Then

Q(M,ω)K ∼= Q(M0, ω0).

Taking the subspace of K-fixed vectors of a representation space of K may
be interpreted as quantummechanical reduction. So Guillemin & Sternberg’s
theorem indeed states that ‘quantum reduction after geometric quantisation
equals geometric quantisation after symplectic reduction’. This can be visualised
as follows:

(M,ω) � Q //
_

R

��

Q(M,ω)
_

R

��
(M0, ω0)

� Q // Q(M0, ω0) ∼= Q(M,ω)K

.

Proof. The space of sections of the line bundle L0 →M0 satisfies

p∗Γ∞(M0, L0) = Γ∞(µ−1(0), L|µ−1(0))
K ,

where
p : µ−1(0) // //µ−1(0)/K

is the quotient map. Let

i∗ : Γ∞(M,L)K // //Γ∞(µ−1(0), L|µ−1(0))
K

be restriction of K-invariant sections of L to µ−1(0). Consider the linear map

(p∗)
−1 ◦ i∗ : Γ∞(M,L)K → Γ∞(M0, L0). (45)

It follows from the definition of the connection ∇0 on L0 that (p∗)
−1 ◦ i∗ maps

Q(M,ω)K into Q(M0, ω0). It therefore makes sense to define the linear map

ψ : Q(M,ω)K → Q(M0, ω0)
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as the restriction of (45). We claim that this is the desired isomorphism.
Injectivity of ψ. Let an Ad∗(K)-invariant inner product on k be given, and

consider the function ‖µ‖2 on M . The level set µ−1(0) is a connected component
of the critical locus of ‖µ‖2. Let Sµ−1(0) be its stable manifold. Since ‖µ‖2 is a
Morse-Kirwan function with even-dimensional strata (Kirwan [15], pp. 44–68),
and has a local minimum at µ−1(0), the stratum Sµ−1(0) is an open dense subset
of M (see Remark 2.13).

We claim that G · µ−1(0) is an open dense subset of M . We will prove this
claim by showing that the open dense stratum Sµ−1(0) is contained in G ·µ−1(0).

By Lemma 3.21, we have

gradµX = JX,

for all X ∈ k. Let {Xi} be an orthonormal basis of k. Then

grad ‖µ‖2 = grad
∑
i

µ2
Xi

=
∑
i

2µXi gradµXi

=
∑
i

2µXiJXi.

Therefore, at every point m ∈M there is an X ∈ g = k + ik such that

grad ‖µ‖2(m) = Xm.

We conclude that the stable manifold Sµ−1(0) is indeed contained in G · µ−1(0).

If two sections s, t ∈ Q(M,ω)K are mapped to the same section inQ(M0, ω0),

then by injectivity of (p∗)
−1

, we must have

i∗s = i∗t.

In other words, the restrictions of s and t to µ−1(0) coincide. Because s and t
are K-invariant, they are also G-invariant, so that they coincide on the dense
subset G · µ−1(0) of M . So s = t.

Surjectivity of ψ. Let σ ∈ Q(M0, ω0) be given. Consider the section

s := p∗σ ∈ Γ∞(µ−1(0), L|µ−1(0))
K .

We claim that s extends to a K-invariant section of L, defined on the whole
manifold M . Then i∗s = p∗σ, which is to say that ψ(s) = σ.

To show that s extends to all of M , we first note that it extends G-invariantly
to a holomorphic section defined on the open dense subset G · µ−1(0) of M . It
is therefore enough to prove that s is bounded on G · µ−1(0).

To prove boundedness, we use Lemma 3.22: for all X ∈ k, we have

JX
(
‖s‖2

)
= −4πµX‖s‖2. (46)
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This implies that the norm function ‖s‖2 on G·µ−1(0) is maximal on µ−1(0). In-
deed, the function µX is increasing in the direction JX, because JX = gradµX
(Lemma 3.21). So the right hand side of (46) is a nonpositive function on
G · µ−1(0), from which we deduce that the function ‖s‖2 decreases away from
µ−1(0). We conclude that s is indeed a bounded section.

Lemma 3.21. For all X ∈ k, we have the following equality of vector fields on
M :

JX = gradµX .

Proof. Let X ∈ k, and let Y be a vector field on M . Then by definition of the
Riemannian metric

B(·, ·) = ω(J ·, ·)

and the defining property of the momentum map µ, we have

B(JX, Y ) = ω(J2X,Y )

= 〈−Xyω, Y 〉
= 〈dµX , Y 〉
= B(gradµX , Y ).

Lemma 3.22. Let U ⊂M be an open, K-invariant subset. Let s ∈ Γ∞(U,L|U )
be a K-invariant local section of L, such that for all Z ∈ Γ∞(U,P |U ),

∇Zs = 0.

(One might say that s is a local section in Q(M,ω)K .)
Let X ∈ k. Then

JX
(
‖s‖2

)
= −4πµX‖s‖2.

Proof. Let s and X be as above. Because the connection ∇ is unitary, we have

JX
(
‖s‖2

)
= 〈∇JXs, s〉+ 〈s,∇JXs〉. (47)

And since s is holomorphic:

∇(JX−iX)s = 0,

we see that (47) equals
−2 Im (〈∇Xs, s〉) . (48)

Next, note that s is K-invariant, so that

P (X)s = 0,

where P denotes the infinitesimal permutation representation of k in Γ∞(M,L).
By definition of equivariant prequantum line bundles (42), this implies that

(−∇X + 2πiµX) s = 0.
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Therefore, (48) equals

−2 Im (2πiµX)〈s, s〉) = −4πµX‖s‖2.

Remark 3.23 (Quantisation commutes with reduction and convexity theo-
rems). Let K be a compact Lie group acting symplectically on a compact Kähler
manifold (M,ω). Suppose that the action is Hamiltonian, free, and that it ad-
mits an equivariant prequantum line bundle L. Suppose that L is positive, so
that the induced line bundles Lξ over the reduced phase spaces Mξ are also
positive (see Guillemin & Sternberg [9]).

Let Q(M,ω) be the geometric quantisation of (M,ω) as in Definition 3.18.
ThenQ(M,ω) is a finite-dimensional representation of the compact Lie groupK.
We fix a maximal torus T of K, and a positive Weyl chamber t∗+ inside t∗. The
set of positive integral elements of 2πit∗ is denoted by P+. The representation
Q(M,ω) decomposes as

Q(M,ω) =
⊕
λ∈P+

[Q(M,ω) : πλ]πλ.

Here the [Q(M,ω) : πλ] are nonnegative integers, and πλ denotes the irreducible
representation of K with highest weight λ. The ‘product’ [Q(M,ω) : πλ]πλ is
the direct sum of [Q(M,ω) : πλ] copies of πλ.

Schur’s lemma implies that

[Q(M,ω) : πλ] = dim (HomK(Q(M,ω), πλ)) .

Fix an element λ ∈ P+, and let ξ ∈ t∗ be the element such that λ = 2πiξ. Let
(Mξ, ωξ) be the coadjoint orbit of K in k∗ through ξ, equipped with its standard
symplectic form (see Example 1.13). The Borel-Weil theorem (Duistermaat &
Kolk [3], Theorem 4.12.5) states that

Q(Mξ, ωξ) = πλ.

Now

HomK(Q(M,ω), πλ) = (Q(M,ω)⊗ π∗λ)
K

= (Q(M,ω)⊗ π−w0λ)
K

= Q(M ×M−ξ, ω × ω−ξ)K .

Here w0 ∈W is the longest Weyl group element.
By the Guillemin-Sternberg theorem (Theorem 3.20), the latter vector space

is isomorphic to
Q
(
(M ×M−ξ)0, (ω × ω−ξ)0

)
.

Applying the shifting trick (Remark 1.22), we conclude that

[Q(M,ω) : πλ] = dimQ(Mξ, ωξ). (49)
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Recall that (Mξ, ωξ) is the symplectic reduction of (M, ξ) at ξ (see Marsden &
Weinstein’s theorem 1.19).

Because the line bundle Lξ over Mξ is positive, the Hirzebruch-Riemann-
Roch theorem can be used to express the number (49) as the integral over Mξ of
a certain differential form (see Remark 3.19). Hence if [Q(M,ω) : πλ] is nonzero,
then necessarily Mξ is nonempty. In other words, µ−1(ξ) 6= ∅, or, because µ is
K-equivariant,

Mξ ⊂ µ(M).

The converse implication

Mξ ⊂ µ(M) ⇒ [Q(M,ω) : πλ] > 0 (50)

is not valid for all λ. But for ‘generic’ integral λ, it does hold.
Next, consider the decomposition

Q(M, 2ω) =
⊕
λ∈P+

[Q(M, 2ω) : πλ]πλ.

We claim that for all λ, ν ∈ P+ such that [Q(M,ω) : πλ] > 0 and [Q(M,ω) : πν ] > 0,
we have

[Q(M, 2ω) : πλ+ν ] > 0.

Indeed, let sλ and sν be elements of Q(M,ω), contained in a copy of πλ
and πν , respectively. Suppose that sλ and sν are highest weight vectors in the
respective irreducible representations. Then the section sλsν of L⊗ L, defined
by

sλsν(m) = sλ(m)⊗ sν(m),

is an element of Q(M, 2ω) (see Remark 1.31). It is nonzero, because sλ and sν
are nonzero and holomorphic, and M is connected. Furthermore, the section
sλsν is annihilated by all positive root spaces in the Lie algebra k of K, and
the maximal torus t acts on sλsν with weight λ + ν. So the representation
Q(M, 2ω) contains an irreducible subrepresentation of highest weight λ+ ν. In
other words,

[Q(M, 2ω) : πλ+ν ] > 0.

As we noted above, the condition thatMξ ⊂ µ(M) implies that [Q(M,ω) : πλ] > 0,
for ‘most’ λ ∈ P+. Let λ, ν ∈ P+ for which this implication holds be given.
Write λ = 2πiξ, ν = 2πiζ, for ξ, ζ ∈ t∗. For such λ and ν, we have found
that Mξ ⊂ µ(M) and Mζ ⊂ µ(M) implies that [Q(M, 2ω : πλ+ν)] > 0. Not-
ing that 2µ is a momentum map for the action of K on (M, 2ω), and that
1
2Mξ+ζ = M ξ+ζ

2
, we conclude that

M ξ+ζ
2
⊂ µ(M).

This statement can easily be generalised to the case where λ and ν are not
necessarily integral, but positive rational linear combinations of elements of P+.
The set of such elements for which the implication (50) holds is an open dense
subset of the set of all positive rational linear combinations of elements of P+.
This is a strong indication of the convexity of µ(M) ∩ t∗+.
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3.6 Generalisations

If the line bundle L is not sufficiently positive, then Guillemin and Sternberg’s
theorem may reduce to the equality 0 = 0. To remedy this, we redefine quanti-
sation as follows.

Definition 3.24 (Quantisation II). Let (M,ω) be a compact Kähler manifold,
suppose that [ω] is an integral cohomology class, and let (L, 〈·, ·〉,∇) be a pre-
quantum line bundle. We define the geometric quantisation of (M,ω) as the
virtual vector space

Q(M,ω) :=

n∑
k=0

(−1)kH0,k(M ;L),

the alternating sum of the Dolbeault cohomology spaces of M with coeffiecients
in L.

If the line bundle L is positive enough, then the definition of quantisation
agrees with the previous one (see Remark 3.19).

Definition 3.24 may be reformulated in a way that makes sense even when
the manifold M is not Kähler.

Definition 3.25 (Quantisation III). Let (M,ω) be a compact symplectic ma-
nifold. Suppose that [ω] is an integral cohomology class, and let (L, 〈·, ·〉,∇)
be a prequantum line bundle. Let J be an almost complex structure on TM
such that ω(J ·, ·) is a Riemannian metric on M . Such a J always exists (see for
example Guillemin, Ginzburg & Karshon [5], pp. 111-112).

As we noted before, the connection ∇ on L defines a differential operator

∇ : Ωk(M ;L)→ Ωk+1(M ;L),

such that for all α ∈ Ωk(M) and s ∈ Γ∞(M,L),

∇(α⊗ s) = dα⊗ s+ (−1)kα ∧∇s.

Consider the projection

π0,∗ : Ω∗C(M ;L)→ Ω0,∗(M ;L).

Define the differential operator

∂̄L : Ω0,q(M ;L)→ Ω0,q+1(M ;L)

by
∂̄L := π0,∗ ◦ ∇.

The Dolbeault-Dirac operator is the elliptic differential operator

∂̄L + ∂̄∗L : Ω0,∗(M ;L)→ Ω0,∗(M ;L).
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The geometric quantisation of (M,ω) is defined as the virtual vector space

Q(M,ω) := ker
((
∂̄L + ∂̄∗L

)
|Ω0,even(M ;L)

)
− ker

((
∂̄L + ∂̄∗L

)
|Ω0,odd(M ;L)

)
.

In other words, Q(M,ω) is the index of the operator

∂̄L + ∂̄∗L : Ω0,even(M ;L)→ Ω0,odd(M ;L).

Because this operator is elliptic and M is compact, the index is well-defined.

Remark 3.26 (Quantisation III for Kähler manifolds). If M is a complex
manifold, and L is a holomorphic line bundle over M , then we can define the
elliptic differential operator

(∂̄ + ∂̄∗)⊗ 1L : Ω0,∗(M ;L)→ Ω0,∗(M ;L) (51)

as follows. Locally, one has

Ω0,q(U ;L|U ) ∼= Ω0,q(U)⊗O(U) O(U,L|U ).

Here U is an open subset ofM over which L trivialises, O(U) denotes the space of
holomorphic functions on U , and O(U,L|U ) is the space of holomorphic sections
of L on U . Because (by definition) ∂̄f = 0 for holomorphic functions f , we can
locally define the differential operator

∂̄ ⊗ 1L : Ω0,q(U ;L|U )→ Ω0,q+1(U ;L|U ),

by
∂̄ ⊗ 1L(α⊗ s) = ∂̄α⊗ s,

for all α ∈ Ω0,q(U) and s ∈ O(U,L|U ). These local operators patch together to
a globally defined operator

∂̄ ⊗ 1L : Ω0,q(M ;L)→ Ω0,q+1(M ;L),

from which we can define the operator (51) by

(∂̄ + ∂̄∗)⊗ 1L := ∂̄ ⊗ 1L + (∂̄ ⊗ 1L)∗.

If (M,ω) is a compact Kähler manifold that admits a prequantum line bundle
(L, 〈·, ·〉,∇), then the Dolbeault-Dirac operator ∂̄L + ∂̄∗L turns out to have the
same principal symbol, and hence the same index, as the operator (∂̄+ ∂̄∗)⊗1L.
So for Kähler manifolds, Definition 3.25 may be rephrased as

Q(M,ω) := index
(
(∂̄ + ∂̄∗)⊗ 1L : Ω0,even(M ;L)→ Ω0,odd(M ;L)

)
.

Lemma 3.27. If (M,ω) is a Kähler manifold, then Definitions II and III of
geometric quantisation agree.
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Proof. Note that

H0,k(M ;L) = ker
(
∂̄k ⊗ 1L

)
/ im

(
∂̄k−1 ⊗ 1L

)
∼= ker

(
∂̄k ⊗ 1L

)
∩
(
im
(
∂̄k−1 ⊗ 1L

))⊥
= ker

(
∂̄k ⊗ 1L

)
∩ ker

(
∂̄k−1 ⊗ 1L

)∗
= ker

((
∂̄k +

(
∂̄k−1

)∗)⊗ 1L

)
,

because the images of ∂̄k and
(
∂k−1

)∗
lie in different spaces.

We conclude that

H0,even(M ;L) =
⊕

k even
ker
(
∂̄k +

(
∂̄k−1

)∗)⊗ 1L

= ker
((
∂̄ + ∂̄∗

)
⊗ 1L|Ω0,even(M ;L)

)
.

On the other hand, note that

H0,odd(M ;L) =
⊕
k odd

ker
(
∂̄k +

(
∂̄k−1

)∗)⊗ 1L

= ker
((
∂̄ + ∂̄∗

)
⊗ 1L|Ω0,odd(M ;L)

)
.

If K is a compact Lie group acting on (M,ω) in a Hamiltonian way, then the
space Q(M,ω)K is controlled by Atiyah, Singer and Segal’s K-equivariant index
theorem [2]. The quantisation commutes with reduction theorem ‘[Q,R] = 0’
has been proved in this generality by Meinrenken & Sjamaar in [21], using the
index theorem, together with the K-equivariant localisation theorem of Wit-
ten, Jeffrey and Kirwan. For a nice survey, see Sjamaar [24], Vergne [27] or
Guillemin, Ginzburg & Karshon [5].

In the case of noncompact symplectic manifolds we have the following result,
due to Paradan.

Theorem 3.28 (Paradan 2002 [23]). Let (M,ω) be a (possibly noncompact)
symplectic manifold. Let K ×M →M be a Hamiltonian action of the compact
Lie group K. Assume that the momentum map µ : M → k∗ is proper, and that
(M,ω) allows a K-equivariant prequantum line bundle. Suppose that the norm
squared function ‖µ‖2 (with respect to some Ad∗(K)-invariant inner product on
k∗) has a compact critical locus. Then the relation ‘[Q,R] = 0’ still holds.

References

[1] M. F. Atiyah, Convexity and commuting Hamiltonians, Bulletin of the Lon-
don Mathematical Society, 1982, pp. 1–15

[2] M. F. Atiyah & G. B. Segal, The index of elliptic operators II, Annals of
Mathematics 87, 1968, pp. 531–545

58



[3] J. J. Duistermaat & J. A. C. Kolk, Lie groups, Springer-Verlag, 1999

[4] R. Bott, Nondegenerate critical manifolds, Annals of Mathematics 60, 1954,
p. 248

[5] V. Guillemin, V. Ginzburg & Y. Karshon, Moment maps, cobordisms,
and Hamiltonian group actions, Mathematical surveys and monographs
98, American Mathematical Society, 2002

[6] V. Guillemin & S. Sternberg, Convexity properties of the moment map I,
Inventiones Mathematicae 67, 1982, pp. 491–513

[7] V. Guillemin & S. Sternberg, Convexity properties of the moment map II,
Inventiones Mathematicae 77, 1984, pp. 533–546

[8] V. Guillemin & S. Sternberg, Geometric asymptotics, Mathematical surveys
14, American Mathematical Society, 1977

[9] V. Guillemin & S. Sternberg, Geometric quantization and multiplicities of
group representations, Inventiones Mathematicae 67, 1982, pp. 515–538

[10] V. Guillemin & S. Sternberg, Symplectic techniques in physics, Cambridge
university press, 1984

[11] G. J. Heckman, Projections of orbits and asymptotic behavior of multiplici-
ties for compact connected Lie groups, Inventiones Mathematicae 67, 1982,
pp. 333–356

[12] A. A. Horn, Doubly stochastic matrices and the diagonal of a rotation ma-
trix, American Journal of Mathematics 76, 1954, pp. 620–630

[13] A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspeki Mat.
Nauk. 17, 1962, pp. 53–104

[14] A. A. Kirillov, Lectures on the orbit method, American Mathematical Soci-
ety, 2004

[15] F. C. Kirwan, Cohomology of quotients in symplectic and algebraic geome-
try, Princeton university press, 1984

[16] F. C. Kirwan, Convexity properties of the moment map III, Inventiones
Mathematicae 77, 1984, pp. 547–552

[17] F. C. Kirwan, Momentum maps and reductions in algebraic geometry Dif-
ferential geometry and applications 9, 1998

[18] B. Kostant, Quantisation and unitary representations, Lecture notes in
Mathematics, Springer-Verlag, 1970

[19] E. Lerman, Gradient flow of the norm squared of a moment map, arXiv:
math.SG/0410568, 2004

59



[20] J. Marsden & A. Weinstein, Reduction of symplectic manifolds with sym-
metry, Reports on mathematical physics 5, 1974, pp. 121–130

[21] E. Meinrenken & R. Sjamaar, Singular reduction and quantization, Topol-
ogy 38, 1999, pp. 699–762

[22] J. Milnor, Morse theory, Annals of Mathematic Studies 51, Princeton uni-
versity press, 1969

[23] P.-E. Paradan, Spinc-quantization and the K-multiplicities of the discrete
series, arXiv: math.DG/0103222, 2002

[24] R. Sjamaar, Symplectic reduction and Riemann-Roch formulas for mul-
tiplicities, Bulletin of the American Mathematical Society 33, 1996, pp.
327–338

[25] N. M. J. Woodhouse, Geometric quantization, second edition, The Claren-
don press, 1992

[26] J. M. Souriau, Structures des systèmes dynamiques, Dunod, 1970
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