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Optimal perturbation for enhanced chaotic transport
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Abstract

The issue of determining the best perturbation which results in optimal chaotic flux across a separatrix is addressed, using
the Melnikov function and lobe dynamics. This theoretical analysis is motivated mainly through micro-fluidic devices for which
this problem has become important recently. Both two- and three-dimensional flows are analysed. Utilising a Fourier transform
representation, the nature of the perturbation which maximises this flux for each frequency value is obtained. The resulting
optimally attainable flux is computed. A concise bound on this flux is presented in terms of the supremum norm of the normal
component of the perturbing velocity, and the size of the heteroclinic manifold. In this instance where the spatial part of the
perturbation is permitted to be chosen based on the frequency, it is shown that greater flux is achievable for smaller frequencies.
The theory is illustrated through two examples.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

There are many engineering, biological, chemical, and combustion applications in which efficiency of an appa-
ratus improves when solutions are well-mixed. In other applications, a well-mixed solution may be a goal in and
of itself. A diverse collection of applications of such mixing characterisation appear in[1–9]. Of specific recent
interest is the development of microfluidic devices which are of importance in a variety of applications such as
drug delivery, diagnostic devices, chemical synthesis, printing, “lab-on-a-chip”, protein analysis, gene expression
profiling, cell culture, and chemical testing[10–18]. Enhancing or controlling fluid mixing is often a primary design
aspect of the microfluidic device. Since turbulence is suppressed in the low Reynolds number scales associated with
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microfluidic devices, and since diffusion by itself is not an effective mixing mechanism[19,11,16,17], focus has
been moving towards exploiting chaotic advection for such mixing[16,20,21,18,22]. Characterising chaotic mixing
has of course been extensively studied even within the context of macro-scale fluids (see for example[23–33,8,9,34]
for a variety of applications).

Given the recent interest in enhancing mixing in micro-mixers, an important issue could be the determination
of how best to perturb a laminar flow in order to achieve optimal mixing. Two obvious questions arise. What is the
best frequency at which to perturb the system? What spatial form should the perturbation take?

In analysing this problem, an initial consideration is describing and, in particular,quantifying, the mixing present
in a given flow. Statistical methods have been used for this purpose for quite some time. Alternative techniques to
quantify the chaotic flux are related to Lyapunov exponents, ergodic theory, variational principles, partial separa-
trices, Markov models for transitions between regions, escape rates, effective diffusivities, minimal flux surfaces,
and inter-material contact surfaces (for a recent selection of such ideas, see[35–39,24,40,7,41,34]). Many of these
techniques provide diagnostics of chaotic flux. One method which provides a more direct assessment, however, is
the lobe dynamics approach utilising Melnikov’s method[42–46,25]. This usually has the disadvantage of requiring
near-integrability, with the deviation from integrability possessing periodic time-dependence. In a two-dimensional
setting the areas of lobes which are transferred are known to be related to an integral, with appropriate limits, of an
entity called the Melnikov function[42–44]. This function, originally developed in[47], measures the signed dis-
tance between the perturbed manifolds which form the boundary of lobes (see also[48,49,44]). Higher-dimensional
Melnikov methods exist[50,51], and indeed have been used to understand the geometry of lobes generated through
perturbations[52,33] in three-dimensions. In spite of these advances,quantifyingthe flux using this technique is
difficult, and has only been done numerically in a few instances[45,46].

With micro-mixers in mind, a natural idea would be to attempt tooptimisethe chaotic flux. Very few studies
[25,1] have made any mathematical progress on this topic. The article[25] is particularly related to the current
topic; it utilises a simplex algorithm to optimise the flux in a corner vortex flow. The authors discover that the
optimum flux as a function of the frequency is monotonically decreasing, and decreases to a non-zero value at
high frequencies[25]. This apparently contradicts the non-monotonic and decaying to zero behaviour expected
from non-optimisedstudies[45,53,43]; more discussion on this issue will appear in Section2.4. The current paper
addresses the optimisation problem from a theoretical perspective, and proves that the behaviour in[25] for the
optimal flux function is to be expected generically (although the flux definition used here is different). It moreover is
able to provide considerable insight into the nature of the perturbation which optimises the flux. The present results
differ from [25] in that they are not confined to particular equations, or to numerical algorithms.

Let us state the problem in more mathematical terms. Start with the unperturbed dynamical system

ẋ = f (x) (1)

wherex ∈ � ⊂ R
n (n = 2 or 3), andf : � → R

n is volume-preserving and as smooth as required. Suppose this
flows possesses a heteroclinic manifold which forms a separatrix in�. Therefore, there is no transport across this
separatrix. The intention is to now perturb the flow, and consider the chaotic flux resulting across the separatrix.
Perturbations to be considered will take the form

ẋ = f (x) + ε g(x) cos[ω(t − β)], (2)

where 0< ε � 1,ω ∈ (0,∞) is the frequency of the perturbation, andβ ∈ [0,2π) is a phase constant. The choice
of the functiong : � → R

n in order to optimise the flux is the main focus of the subsequent analysis. Here,gwill be
permitted to depend onω—a significant extension of available results[45,46,54]. This is a natural approach from
the perspective of obtaining the best flux for a given frequency. Clearly, a “large” functiongwould generate more
chaotic flux, and hence, a C0-norm bound forgwill be imposed in the form

||g|| := sup
x∈�

|g(x)| ≤ G.
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(The notation|| · || will be used consistently to mean the C0 or supremum norm in this paper.) In terms ofG, can
onequantifythe chaotic transport occurring across the separatrix? Secondly, how cang be chosen subject to this
given C0-norm bound, such that the flux is maximised?

The development for the two- and three-dimensional settings will be given separately in Sections2 and 3,
respectively. Examples for each of these cases, related to models of Rayleigh–Bénard convection and Hill’s spherical
vortex, will be presented in Section4.

2. Two-dimensions

2.1. Set-up

In two dimensions, volume-preservation implies that the unperturbed flow is Hamiltonian. The velocity fieldf
in (1) then takes the form

f (x) = J ∇H(x),

wherex ∈ � ⊂ R
2,

J =
(

0 −1

1 0

)
and ∇H =

(
∂H
∂x1
∂H
∂x2

)
.

It shall be assumed thatH : � → R is as smooth as needed. Suppose(1) possesses two hyperbolic fixed pointsa
andb, each with one-dimensional stable and unstable manifolds. Suppose moreover that a branch ofWu

a coincides
with a branch ofWs

b to form a one-dimensional heteroclinic manifold�. In this instance, this would be defined
through one heteroclinic trajectory ¯x(t) which decays toa andb exponentially in backwards and forwards time,
respectively. There is a freedom in the time parametrisation of this heteroclinic trajectory; as shall be shown later,
the particular time parametrisation chosen has no relevance in what follows. Notice also that� is representable as
a level curve ofH, connecting two points (a andb) at which∇H = 0. The manifold� can be parametrised with
t ∈ R by associating with the point ¯x(−t) (cf. the heteroclinic coordinates as described in[44]). It moreover is a
flow separatrix, forming an impermeable barrier to phase space flux transport in the unperturbed flow(1).

This inclusion of a perturbation as in(2), where nowg : � → R
2, destroys this separatrix in general. It is well-

known that heteroclinic tangles generically result from time-harmonic perturbations. The signed distance between
the manifoldsWu

a (ε) andWs
b(ε), as measured in the direction of∇H at each pointt on� is given by

d(t, ε) = ε
M(t)

|∇H(x̄(−t))| +O(ε2)

whereM(t) is the Melnikov function, to be defined below[48,49,44]. Simple zeroes ofM correspond to transverse
intersection betweenWu

a (ε) andWs
b(ε) near the point on� parametrised byt.

For the perturbation as in(2), the Melnikov function is expressible as

M(t) =
∫ ∞

−∞
∇H(x̄(τ)) · g(x̄(τ)) cos[ω(t + τ − β)]dτ.
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(See[48,49] for details.) A useful reformulation (see also[46,54]) is now presented. Define the function

λ(t) := ∇H(x̄(−t)) · g(x̄(−t)).

Adopt the Fourier transform definition

�(ω) := F{λ(t)}(ω) := 1√
2π

∫ ∞

−∞
λ(t) exp(−iωt)dt.

Simple trigonometric manipulations yield

M(t) =
∫ ∞

−∞
λ(−τ){cos[ω(t − β)] cosωτ − sin[ω(t − β)] sin ωτ}dτ

=
√

2π{cos[ω(t − β)]Re(�(ω)) − sin[ω(t − β)]Im(�(ω))}
=

√
2π|�(ω)| cos[Arg(�(ω)) + ω(t − β)]. (3)

2.2. Flux computation

The Melnikov function(3)has infinitely many equally spaced transverse zeroes, occurring everyω/π. Fig. 1gives
a schematic of this behaviour; the description which follows is available from any standard textbook[48,49,44].
Fig. 1should be thought of as a picture of the Poincaré map which samples the flow at time intervals of 2π/ω. The
pointsa andb are perturbed versions of the initial fixed points, but are now fixed points of the Poincaré map. These
each possess manifolds with respect to this Poincaré map. To visualise a separatrix in the perturbed setting, identify
any one of the primary intersection points (p.i.p.s),p, between the manifolds. Now define a pseudo-separatrix as
being formed by the part of theWu

a betweena andp, joined with the part ofWs
b betweenb andp (cf. [44]). This

pseudo-separatrix is indicated in heavy curves inFig. 1. Now, apart from the two lobesL1 andL2 adjacent top,
all other lobes remain on the same side of the pseudo-separatrix upon iteration of the Poincaré map (this is since
they retain their relative position with respect to each manifold). However, lobeL1 maps toL3, which is on the
oppositeside of the pseudo-separatrix. Similarly,L4 maps toL2. All flux transported across the pseudo-separatrix
must travel across thisturnstileconsisting of the four lobesL1,L2,L3 andL4. In particular, note that the fluid that
is exchangedacross the pseudo-separatrix in one iteration of the Poincaré map is simply the area ofL1 orL2; these
two fluid areas simply exchange places.

The flux interchange that occurs across the separatrix per iteration of the map is therefore related to determining
lobe areas. The area of a lobe is given by

Fig. 1. Lobe dynamics and the pseudo-separatrix (in bold).
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Area=
∫ t2

t=t1
|d(t, ε)| dl+O(ε2),

where dl is the differential arclength element along the manifold�, andt1 andt2 are the time-values which charac-
terise the ends of the lobe, sayL1. Since dl = |J ∇H(x̄(−t))|dt = |∇H(x̄(−t))|dt, the required lobe area is

Area=
∫ t2

t1

|d(t, ε)||∇H(x̄(−t))| dt +O(ε2)

=
∫ t2

t1

ε
|M(t)|

|∇H(x̄(−t))| |∇H(x̄(−t))| dt +O(ε2)

= ε

∫ t2

t1

|M(t)| dt +O(ε2).

The above connection between the Melnikov function and the area was first established in[43]. Define the leading-
order (turnstile) lobe area by

A :=
∫ t2

t1

|M(t)| dt.

By (3) the Melnikov function is simply a shifted sinusoidal with equally spaced zeroes, and hence the lobe areasL1
andL2 must be the same. SinceA is the amount of phase space ‘volume’ which transfers across the heteroclinic
manifold in 2π/ω time units, theleading-order flux(transported ‘volume’ of fluid per unit time) would be reasonably
defined by[45,53,46]

s(ω) := ω

2π
A = ω

2π

∫ t2

t1

|M(t)| dt.

Substituting from(3),

s(ω) = ω

2π

√
2π|�(ω)|

∫ t2

t1

| cos[Arg(�(ω)) + ω(t − β)]| dt.

Sincet1 andt2 are adjacent zeroes of(3), they are adjacent zeroes of the integrand above. The quantity Arg(�(ω)) −
ωβ is a simple phase shift; one may replace the integral above with the integral of| cosωt| between any two adjacent
zeroes. Hence,

s(ω) = ω√
2π

|�(ω)|2
∫ π/(2ω)

0
cos(ωt)dt =

√
2

π
|�(ω)|.

Thus, the flux corresponding to a perturbation of frequencyω, therefore, has a direct relationship to a Fourier
transform:

s(ω) =
√

2

π
|F{∇H(x̄(t)) · g(x̄(t))}(ω)|. (4)

The formula(4) is valid for any perturbation of the form(2). The current issue is to determine the form ofg to
maximise this leading-order flux.
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2.3. Choosing g to optimise flux

Let the Fourier transform of [∇H · g](x̄(t)) have polar representationR(ω) exp[iθ(ω)]. The phaseθ(ω) has no
effect on the fluxs(ω) by (4). Now, for any realα,

F{(∇H · g)(x̄(t − α))}(ω) = eiωαF{(∇H · g)(x̄(t))}(ω) = R(ω)ei[ωα+θ(ω)] .

Choosingα corresponds to picking a time parametrisation along�. For the choiceα = (−θ(ω) + 2mπ)/ω for any
integerm, the Fourier transform is real. Sinceθ(ω) is unknown, the precise value of this time shift is unclear; yet
there is a time parametrisation for which this works. Applying(4) for this purely real Fourier transform,

s(ω) = 1

π

∣∣∣∣
∫ ∞

−∞
(∇H · g)(x̄(t)) cosωt dt

∣∣∣∣ .
Now cosωt is negative in alternating bands oft of widthπ/ω. To maximises, it would help if∇H · g were positive
whenever cosωt was, and negative if else. To effect this, define the set

T =
⋃
n∈Z

[
(4n− 1)π

2ω
,

(4n+ 1)π

2ω

)
,

whereZ is the set of integers. Partition the heteroclinic manifold� into two alternating portions

�+ := {x̄(t) : t ∈ T} and �− := � \ �+.

Fig. 2displays these sets. Each comprises countably many segments, diminishing in length as the endpointsa and
b are approached. Now define on� the function

ḡ(x) := G
∇H(x)

|∇H(x)| [I�+ (x) − I�− (x)],

whereI is the indicator function. While ¯g is not smooth, one can obtain smooth functionsgwhich are arbitrarily close
to ḡ in the C0-norm, by suitably connecting the piecewise segments with C∞-bump functions. Any such function
can then be extended smoothly to�. The upper bound for the flux̄s(ω), which can be approached as closely as
required, is therefore

s̄(ω) = G

π

∫ ∞

−∞
|∇H(x̄(t))|| cosωt|dt.

This expression was derived assuming that a time parametrisation for� resulting in a real Fourier transform was
made. If a phase shift ofπ/2 were instead present, the Fourier transform would be purely imaginary, necessitating
the replacement of the cosine above by a sine (the definitions forT, �+ and�− need to be appropriately modified).
In practice, it is difficult to know whether the chosen parametrisation relates to these two extremes, or to something
intermediate. Hence, in order to handleall possible time parametrisations, the general formula for the maximum
flux obtainable through a perturbation of frequencyω is

s̄(ω) = G

π
sup

ψ∈[0,π)

∫ ∞

−∞
|∇H(x̄(t))|| cos(ωt + ψ)|dt. (5)
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Fig. 2. The subsets�+ and�− of �.

This automatically compensates for the original phase angleβ as well. Realising that it is only the normal component
g⊥ to the manifold�which truly contributes to this flux, the implication of(5)for general (unoptimised) perturbations
is

s(ω) <
1

π
sup
x∈�

|g⊥(x)| sup
ψ∈[0,π)

∫ ∞

−∞
|∇H(x̄(t))|| cos(ωt + ψ)|dt, (6)

with equality being approached asg → ḡ. Note also from Section2.2that|∇H |dt = dl. Let t = t̄(l) be the function
expressing the monotonic relationship between the timet and arclengthl parametrisation along�. Then,(5) has the
alternative representation

s̄(ω) = G

π
sup

ψ∈[0,π)

∫
�

| cos(ωt̄(l) + ψ)|dl. (7)

2.4. Optimal flux discussion

The time-periodic switching ofg predicted through this analysis is no surprise. The effect ofg being in a normal
direction to� would be to push a manifold in that direction; in the next segment (in which the manifolds have
exchanged relative positions), this same manifold would benefit from being pushed in the opposite direction. This
would increase the lobe areas, thereby increasing chaotic flux.

The Eq.(5) answers the question as to the maximum flux possible for perturbations of the form given in(2), for a
givenω (note that the entitiesT,�+ and�− are eachω-dependent). Since the flow on the unperturbed heteroclinic is
exponentially slow near the critical pointsaandb,gmust switch back and forth in very small regions of phase-space
near these points in order to achieve the best chaotic mixing. However, the quantitative effect of this on(5) is quite
small, given the exponential damping on|∇H | that occurs. The main contributions arise from switchbacks occurring
in regions far removed from the critical points. Ifgwerenotpermitted to be chosen depending onω, the results will
be different (indeed, there would be no optimisation problem, as in[45,46]). However, the current question is more
natural—it gives a limiting value of the flux achievable for norm-limited perturbations of any given frequency.

While s̄will in reality never be achievable for smooth perturbations, arbitrarily closeness is possible. For example,
the normal could be modulated with a cosine term so thatg has the form

g(x) = G
∇H(x)

|∇H(x)| cos[ω t̄(x)]

for x ∈ �. Using many Fourier modes (terms involving cos[2ωt̄(x)], cos[3ωt̄(x)], etc.) could make this approach ¯g

as closely as required. This is analogous to the approximation of a discontinuous wave with a Fourier series.
The formulæ(5) and (7)provide the optimal flux for a given (fixed) frequencyω. A natural question would be

whether the flux can be optimised overall ω. In other words, is there a limit on the flux achievable through any sort
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of sinusoidal perturbation? Notice from(7) that

s̄(ω) ≤ s̄m := G

π

∫
�

dl = G length(�)

π
, (8)

which could be more transparently written as

s̄(ω) ≤ length(�)

π
sup
x∈�

|g⊥(x)|. (9)

Is the upper bound achievable? Observe from(7) that

s̄(0+) = G

π
sup

ψ∈[0,π)

∫
�

| cosψ| dl = s̄m.

Here,ω = 0+ is the adiabatic limit corresponding to vanishingly small frequency, or alternatively, infinitely large
periodicity. By choosingω smaller and smaller, the upper limit in(8) can be approached as closely as required.
This is qualitatively consistent with the numerically obtained optimal flux for a corner vortex in[25]. However, as
pointed out in[45,53], there is an inconsistency in taking theω → 0+ limit in the Melnikov setting, which explicitly
presupposes smallε but non-smallω. The difficulty arises in usings(ω) to approximate the flux, which is actually
of the formεs(ω) +O(ε2). Asω → 0+, its smallness competes with that ofε, and theO(ε2) terms in the flux may
acquire importance. Presumably there is a function ¯ω(ε) such thats(ω) ands̄(ω) are only legitimate representations
for the leading-order flux ifω > ω̄(ε). Characterising ¯ω(ε) is non-trivial, as is the singular limitω → 0 in the current
context.

For valid (non-infinitesimal)ω, it will now be shown that̄s(ω) is monotonically decreasing. For each fixedψ
andω, define a partition of� with respect to its arclength parametrisation as follows. Let

Ln(ω) := [L−
n (ω),L+

n (ω))

whereL±
n (ω) are the length parametrisationsl of � corresponding to the times

t±n = 1

ω

[
(2n± 1)π

2
− ψ

]
.

Then,� can be represented as the countable union of the setsLn for n ∈ Z. Asω varies this partition changes, yet
remains denumerable. The arclength intervalsLn have a strong connection to the alternating segments of�+ and
�− of Section2.3, with a possible time shifting ofψ additionally included. Now, from(7),

s̄(ω) = G

π
sup

ψ∈[0,π)

⋃
n∈Z

∫
Ln(ω)

| cos(ωt̄(l) + ψ)| dl

As ω is increased, the length of the segmentLn decreases, since the time difference between the endpointsL−
n

andL−
n decreases. Now, the integral is of a cosine curve over one-half its period, subject to nonlinear modulations

through the monotonic function̄t(l). With the increase inω, this curve gets squashed horizontally as the length of
the interval diminishes. Thus, each integral overLn will decrease with the increase ofω, the end result being that
the total integral decreases. Therefore, it has been argued thats̄(ω) is a decreasing function ofω. The underlying
principle is that smaller frequencies can generate larger optimal chaotic fluxes.

There is an apparent contradiction with the results of[45,53,43], whose flux functions are non-monotonic in
ω. However, the monotonicity has been argued here for the optimal flux functions̄(ω) (in which g was chosen
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depending onω), and nots(ω). An optimising problem has been solved here, unlike in[45,53,43]in whichgwas
ω-independent.

The decreasing function̄s(ω) is bounded from below, and therefore, must have a limit asω → ∞. In this limit
| cos(ωt + ψ)| oscillates so rapidly that its contribution to the integral in(5) is effectively just its average value, 2/π.
Thus

lim
ω→∞ s̄(ω) = 2

π

G

π
sup

ψ∈[0,π)

∫ ∞

−∞
|∇H(x̄(t))| dt = 2G length(�)

π2
= 2

π
s̄m.

Hence,s̄(ω) reduces monotonically from a value ofs̄m whenω = 0, to (2/π)s̄m asω → ∞. The flux function
in [45,53,43,54]was shown to go to zero asω → ∞; the current result again does not contradict this since an
optimisation approach has been followed. The interesting implication is that, for large frequencies, there is only
marginal change in the optimum flux propensity asω is varied.

The behaviour of the optimal flux function as described above, is completely consistent with the optimising
approach of[25]. They numerically solve an optimisation problem for a more heuristic flux definition than used in
this paper, and for a specific corner vortex problem. Nevertheless, they argue that the optimal flux function increases
asω decreases (Appendix B), and decreases to a non-zero value asω → ∞ (Appendix C). Their numerical results
also bear this out. The current theoretical study displays that their results are generically to be expected in such
settings, though the technique (unlike in[25]) is confined to time-harmonic perturbations. An extension of the theory
to more general time-periodicity (as possible in the numerical algorithm in[25]) seems possible through the usage
of the ideas in[46]. However, an important observation that emerges is the distinction between theoptimal flux
function as discussed in[25] and the present article, and the non-optimised flux function of[45,53,43].

The lack of continuity of ¯g also leads to the question as to whether the derived theory is applicable in realistic
fluid mechanical settings in which incompressibility is also enforced (at this point no such condition has been used
for g). Let gT andgN represent the tangential and normal components (to�) of g, respectively. Incompressibility
would mean satisfying

∂gT (x)

∂T
+ ∂gN (x)

∂N
= 0, (10)

for all x. Now, the limiting function ¯g hasḡT = 0 on�, but has ¯gN undefined at countably many points, and therefore,
cannot satisfy this differential form of incompressibility. However, there is no bar to ¯g satisfying theintegral form
of incompressibility. One can construct ¯g locally (near�) by setting up “streams” of constant speedG crossing� in
opposite directions, and then proceeding out into� such that these streams always remain adjacent, non-intersecting,
and have constant cross-section. While this contrived situation may be volume-preserving, it violates other fluid
mechanical conditions (it has infinite rate-of-strain and vorticity at the stream interfaces).

On the other hand, there is no difficulty for a “nearby” smooth functiong to satisfy the incompressibility condition
above. Note that we only need to specifygN on�, such that it has a value sufficiently close to ¯g. This leaves the
freedom to definegT on �, and also to specifyg just off �. The only restriction in either of these endeavours is
that |gN |2 + |gT |2 ≤ G2. Suppose on� we chosegT (smoothly) which satisfies this. Then∂gT /∂T may be not be
zero—but we can extendgN off � to ensure that the incompressibility condition(10) is satisfied on�.

A possible practical attempt to makeg as close as possible to ¯g would be to try to set up “streams” of speed
G in opposite directions across� as described above. Presumably, the flow will adjust along the stream interfaces
to provide a smooth transition, thereby generating a physically viableg which is close to (but not equal to) ¯g.
The locations of these interfaces of reversing direction is given by the transition points of�±, which correspond
to t differences ofπ/ω along the heteroclinic. However, these locations are impossible to determine generally,
because of lack of knowledge of the phase shiftψ (occurring in(5), (6) or (7)). It may be thatψ could be varied
experimentally in the domain [0, π), or in some cases where full information on the unperturbed flow is available,
determined analytically (as is possible in the examples in Section4). Given also that the exponential damping
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present in(5) makes the contributions to the flux from the reversals near the critical points small, a finite number
of such reversals may give a flux which is nears̄. It should be once again emphasised that thisg is not ḡ because
of the inevitable adjustment that must occur along the stream interfaces to prevent violations of fluid laws. This
form of g is reminiscent of cross-channel micro-mixers[20,21,1,55]. However, it provides additional information;
for example it suggests that the spatial widths of the cross-stream channels should not be the same (but be given by
constant time parametrisation changes ofπ/ω).

3. Three dimensions

3.1. Set up

The ideas in two dimensions can be extended to three dimensions in some cases. Once again the unperturbed
flow is as given in(1), where nowx ∈ � ⊂ R

3, andf : � → R
3 is as smooth as required. It will be necessary to

make the following hypotheses.

(H1) The vector field of(1) is volume-preserving, i.e., divf = 0.
(H2) The flow of(1) is axisymmetric, and has no swirl around the axis of symmetry.
(H3) The system(1) possesses two hyperbolic critical pointsa andb on the axis of symmetry such thatWu

a and
Ws
b are two-dimensional.

(H4) A branch ofWu
a coincides with a branch ofWs

b to form a two-dimensional heteroclinic manifold�.

The prototypical example that should be kept in mind is that of Hill’s spherical vortex[56] from fluid mechanics;
more details on this appear in Section4.2. The volume-preservation and axisymmetry assumptions together give
the presence of aStokes streamfunctionH(x) [56]. It is convenient to orient the axis of symmetry in the Cartesian
z-direction, and employ spherical polar coordinates (r, θ, φ). The system(1) is expressible in terms of the Stokes
streamfunction as

ur = 1

r2 sin θ

∂H

∂θ
, uθ = − 1

r sin θ

∂H

∂r
, uφ = 0,

wheref = urr̂ + uθθ̂ + uφφ̂ is the spherical polar representation of the vector field in(1) (cf. [56]).
The basic geometry is shown inFig. 3. The heteroclinic manifold� is topologically a sphere punctured at the

poles, and composed of a collection of heteroclinic trajectories which can be indexed byφ. SinceH is conserved
by the flow[56], H(a) = H(b), and since these are the endpoints of any of the heteroclinic trajectories, this also
means thatH = constant on�. Moreover, given the dimensions of the stable and unstable manifolds ata andb, it
is clear that∇H is zero at botha andb. Along any heteroclinic trajectoryxφ, however,∇H is nonzero (though
approaching zero ast → ±∞) and orientation preserving (consistently points either into or out of�). One can
parametrise� with (t, φ) by identification with the point ¯xφ(−t); φ chooses a particular heteroclinic trajectory ¯xφ,
andt the reverse time along it. Here,φ ∈ [0,2π) andt ∈ R, and as before, there is ambiguity in this parametrisation
related to choosing time-zero.

Consider now(2) as the perturbed flow. Here, conditions such as volume-preservation, axisymmetry, no-swirl,
etc, arenot in general assumed for the perturbed flow (though certain special cases will be considered later). Upon
perturbation,Wu

a andWs
b need no longer coincide, and split apart. A higher-dimensional Melnikov method exists

for exactly this situation[50,51]. The splitting between the manifolds is representable through a signed distance
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Fig. 3. The heteroclinic manifold�, with a couple of heteroclinic trajectories. Notice that the azimuthal coordinateφ can be used to index the
heteroclinics ¯xφ.

functiond(t, φ, ε), which measures their separation along a transversal∇H(x̄φ(−t)) at the point (t, φ) on�. In fact,

d(t, φ, ε) = ε
M(t, φ)

|∇H(x̄φ(−t))| +O(ε2), (11)

whereM(t, φ) is the Melnikov function. Not surprisingly, this is defined by

M(t, φ) =
∫ ∞

−∞
∇H(x̄φ(τ)) · g(x̄φ(τ)) cos[w(t + τ − β)]dτ. (12)

(See[52,33,39,24]for Melnikov transport applications in three dimensions, in addition to the initial theoretical
Melnikov developments[50,51].) Through the definition of

λφ(t) := ∇H(x̄φ(−t)) · g(x̄φ(−t))

and its Fourier transform�φ(ω) exactly as in in Section2.1, the Melnikov function is expressible in the form

M(t, φ) =
√

2π|�φ(ω)| cos[Arg(�φ(ω)) + ω(t − β)]. (13)

In proceeding with the phase space structure determination, the trivial case in whichg is itself axisymmetric will
be considered first. This will help in extending the flux formula to general separable non-axisymmetry.
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3.2. Axisymmetric perturbation

If g is axisymmetric,λφ(t) and�φ(ω) have no dependence onφ. The Melnikov function is then independent
of the longitude chosen. It is sufficient to picture the topological intersection betweenWu

a andWs
b along one

such longitude. As before,M has periodic zeroes, resulting in the heteroclinic tangle illustrated inFig. 4. This is
topologically equivalent toFig. 1from the two-dimensional analysis.

However, in reality each turnstile lobe is a three-dimensional entity—it is the shaded region inFig. 4, rotated
about thez-axis to form aturnstile ring. It will be necessary to determine the volume of this ring. An apparent
complication is that the arclength element along the heteroclinic is no longer given by|∇H(x̄(−τ))| dτ as before,
since|f | �= |∇H |. The volume of the turnstile ring is

Volume=
∫ t2

t1

∫ 2π

0
|d(τ, ε)|hφ dφ|f (x̄(−τ))| dτ,

wherehφ = r sin θ is the scale factor in thêφ direction, andt1 and t2 are two adjacent zeroes of the Melnikov
function. Now,

|f | =
√(

1

r2 sin θ

∂H

∂θ

)2

+
( −1

r sin θ

∂H

∂r

)2

= 1

hφ
|∇H |,

Fig. 4. Typical intersection pattern after axisymmetric perturbations.
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and the volume is given by

Volume=
∫ t2

t1

∫ 2π

0
|d(τ, ε)| |∇H(x̄(−τ))| dφ dτ +O(ε2).

Substituting ford from (11), and keeping only theO(ε) terms gives theleading-order volume

V =
(∫ 2π

0
dφ

)(∫ t2

t1

|M(τ)| dτ

)
= 2π

∫ t2

t1

|M(τ)| dτ.

Hence theleading-order fluxis

s(ω) := ω

2π
V = ω

∫ t2

t1

|M(τ)| dτ.

Substituting from(13), and following the identical calculation as in Section2.2,

s(ω) = 2
√

2π|F{∇H(x̄(t)) · g(x̄(t))}(ω)|,

where theφ-dependence in ¯x has been suppressed since choosing any longitude gives the same result. Not surpris-
ingly, there is no qualitative difference between this formula and the two-dimensional version(4).

3.3. Non-axisymmetric modes

At the next level of complexity, assume that the non-axisymmetry ing consists only of “modes” defined through

g(r, θ, φ) = cos(kφ)h(r, θ),

wherek is a positive integer, andh takes values inR3. This incorporates a mode of wavenumberk in the azimuthal
direction. For convenience, lety ≡ (r, θ), thereby representing each unperturbed heteroclinic trajectory as ¯xφ ≡
(ȳ, φ). Since the unperturbed flow is axisymmetric,∇H(x̄φ(τ)) = ∇H(ȳ(τ)) is independent ofφ. Thus

∇H(x̄φ(τ)) · g(x̄φ(τ)) = (coskφ)∇H(ȳ(τ)) · h(ȳ(τ)),

and therefore, coskφ can be pulled out of the integral in(12). The function playing the role ofλ(t) is then seen to
be

λ̃(t) = ∇H(ȳ(−t)) · h(ȳ(−t)),

and let its Fourier transform bẽ�(ω). Following the process used to obtain(13),

M(t, φ) = coskφ
√

2π|�̃(ω)| cos[Arg(�̃(ω)) + ω(t − β)]. (14)

Fix aφ such that coskφ �= 0. Along this longitude of�, the zeroes ofM occur in exactly the same way as for the
two-dimensional case(3)and the three-dimensional axisymmetric case(13). On the other hand, each fixedt such that
the last cosine term in(14) is nonzero corresponds to a fixed latitude of� whose zeroes distribution is governed by
the term coskφ. For example, ifk = 3, there would be six zeroes atφ = π/6, π/2,5π/6,7π/6,3π/2, and 11π/6. A
schematic of the resulting intersection pattern of the perturbed manifolds is shown inFig. 5. The three-dimensional



168 S. Balasuriya / Physica D 202 (2005) 155–176

Fig. 5. Generic (exaggerated) intersection pattern in a slice of constant latitude. This picture corresponds tok = 3.

picture of manifold intersection is then a combination ofFigs. 4 and 5. As one rotatesFig. 4 (corresponding to
changingφ), the intersecting manifolds change their relative positions at eachφ value which is a zero ofM. The
end result is that the perturbed manifolds form a rippling intersection pattern in both thet and theφ directions.

To make sense of the volume of transferred fluid at each iteration of the Poincaré map, begin with the simpler
axisymmetric picture ofFig. 4. Notice from(14)that this would be the observed intersection in any longitudinal slice
φ (such that coskφ is not identically zero) of the now non-axisymmetric flow. Each intersection point persists under
rotation about the initial axis of symmetry, since from(14) thet andφ dependencies decouple. Pick one such point,
and its rotated circuit, and identify this inR3 as aprimary intersection circuit(p.i.c.). Define the pseudo-separatrix by
taking the unstable manifold emanating froma up to this p.i.c., and joining this with the stable manifold emanating
frombup to this p.i.c. Now, the turnstile structure relates to the two ‘rings’ adjacent to the p.i.c. In this case the rings
are not uniformly solid as one travels around the axis—each ‘ring’ hask non-connected pieces. This is because the
stable and unstable manifolds exchange their relative positions 2k times asφ : 0 → 2π; it is only alternating pieces
which are inside the pseudo-separatrix. Upon iteration of the Poincaré map,k pieces cross the pseudo-separatrix in
one direction, while the otherk pieces cross it in the other direction. In the other adjacent ring, the same behaviour
occurs in the opposite direction. Thus, the volume of 2k pieces is exchanged across the pseudo-separatrix during
one periodic cycle.

Each of these pieces has the same volume, and so

Volume= 2k
∫ t2

t1

∫ φ2

φ1

|d(τ, φ)|hφ dφ|f (ȳ(−τ))| dτ +O(ε2),

wheret1 andt2 are two adjacent zero points ofM with respect tot, andφ1 andφ2 are similarly adjacent zero points
with respect toφ. But, as in Section3.2, hφ|f | = |∇H |, leading to

Volume= 2k
∫ t2

t1

∫ φ2

φ1

|d(τ, φ)| dφ|∇H(ȳ(−τ))| dτ +O(ε)2 = 2εk
∫ t2

t1

∫ φ2

φ1

|M(τ, φ)| dφ dτ +O(ε2).

The leading-order volume is theO(ε) term of this:

V = 2k
√

2π|�̃(ω)|
(∫ φ2

φ1

| coskφ| dφ

)(∫ t2

t1

| cos[Arg(�̃(ω)) + ω(τ − β)]| dτ

)
.

The two integrals yield 2/k and 2/ω, respectively. The leading-order flux is therefore

s(ω) := ω

2π
V = 4

√
2

π
|F{∇H(ȳ(t)) · h(ȳ(t))}(ω)|. (15)

Notice the somewhat surprising conclusion that the flux is independent of the azimuthal wavenumberk.



S. Balasuriya / Physica D 202 (2005) 155–176 169

The next issue is to analyse the choice ofhwhich would lead to maximisings(ω). Sinceȳ is two-dimensional, the
construction is the same as in Section2.3, withhchosen to be a vector of maximum permitted size which alternates in
direction between pointing in to, and out of,�. However,||g|| = || coskφ|| ||h(r, θ)|| = ||h||, and hence to optimise
choose||h|| = G. This leads to the expression for the leading-order optimal flux

s̄(ω) = 4G

π
sup

ψ∈[0,π)

∫ ∞

−∞
|∇H(ȳ(t))| | cos(ωt + ψ)| dt.

3.4. Separable non-axisymmetry

Now consider the more general form

g(r, θ, φ) = p(φ)h(r, θ)

for some functionp taking values inR, with hbeing three-dimensional. In this case, the perturbation has a separable
scalar azimuthal function, which generalises the modal form of Section3.3.

The Melnikov function(14) can be modified by simply replacing coskφ with p(φ); the zeroes ofp therefore
govern the azimuthal intersection pattern of the perturbed manifolds. Each of two turnstile ‘rings’ adjacent to the
p.i.c. will be broken into pieces as before; these pieces are now defined in terms of whetherp(φ) > 0 orp(φ) < 0.
In contrast to Section3.3, these pieces need not have the same volumes. Focus first on one turnstile ring, say the
upper one. The pieces corresponding top(φ) > 0 will move across the pseudo-separatrix in one direction (say
inwards) upon iteration of the Poincaré map, whereas the pieces withp(φ) < 0 will go across the other way. In
contrast, in the lower turnstile ring, pieces withp(φ) > 0 will move outwards. The total volume transported across
the pseudo-separatrix therefore contains both the portionsp(φ) > 0 andp(φ) < 0. The fact that there correspond
to different turnstile rings does not matter in the volume computation, since the upper and lower turnstile rings have
the same volume. Thus, the quantity 2k

∫ φ2
φ1

coskφ dφ appearing in the volume expressions in Section3.3 should

be replaced by
∫ 2π

0 |p(φ)| dφ. Then,(15) receives the modification

s(ω) =
(√

2

π

∫ 2π

0
|p(φ)| dφ

)
|F{∇H(ȳ(t)) · h(ȳ(t))}(ω)|. (16)

Eq. (16) gives an explicit expression for the chaotic flux for perturbations of this specific form. The remaining
equations in Section3.3for s̄ are therefore easily corrected as well, for example the optimum flux

s̄(ω) =
(

||h||
π

∫ 2π

0
|p(φ)| dφ

)
sup

ψ∈[0,π)

∫ ∞

−∞
|∇H(ȳ(t))| | cos(ωt + ψ)| dt. (17)

Here, the supremum norm||h|| satisfies||h(r, θ)|| ||p(φ)|| = G, where|| · || indicates C0-norms associated with the
appropriate domains. For unoptimised separableg this implies that

s(ω) < 2 sup
x∈�

|g⊥(x)| sup
ψ∈[0,π)

∫ ∞

−∞
|∇H(ȳ(t))| | cos(ωt + ψ)| dt, (18)

with equality being approached asg → ḡ. Notice that it is possible thatp has no zeroes; in this case, the picture is
very similar to the axisymmetric perturbation case, since there will not be any topological variation of perturbed
manifold structure in the azimuthal direction. If so, the turnstile rings would be solid entities. Whenp does have
transverse zeroes, the topological structure would be a non-uniform analogue of the non-axisymmetric modal case.
As argued in Section2.4for two-dimensions, the development of the formula for the optimal fluxs̄(ω) is consistent
even within an incompressible setting for the perturbing velocityg.
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Now, the area element on� is given by

dA = (hφ dφ)

( |∇H(x̄φ(−t))|
hφ

dt

)
= |∇H(ȳ(−t))| dφ dt,

since|f | = |∇H |/hφ is the velocity, and the unperturbed flow is axisymmetric. This enables(17)to be reformulated
as

s̄(ω) = G

π||p|| sup
ψ∈[0,π)

∫ ∫
�

|p(φ)| | cos(ωt + ψ)| dA, (19)

analogous to(7) in the two-dimensional setting. Hence

s̄(ω) ≤ G

π
sup

ψ∈[0,π)

∫ ∫
�

| cos(ωt + ψ)| dA,

This can be bounded over allω by

s̄(ω) ≤ Garea(�)

π
=: s̄m. (20)

Again, this is more informatively expressed as

s̄(ω) ≤ area(�)

π
sup
x∈�

|g⊥(x)|. (21)

Note the pleasing similarity between(21) and (9). Now using(19),

s̄(0+) = G

π||p||
∫ ∫

�

|p(φ)| dA

which is not necessarily the same ass̄m in (20). In order fors̄(0+) to approach the supremum value ofs̄, one needs
to choosep(φ) to be a constant function. Azimuthal complications apparently do not enhance the flux.

By pulling out theφ-dependence, one can use(19) and the argument in Section2.4 to show that the optimum
flux s̄(ω) is monotonically decreasing inω from its supremum value at 0+, and levels out to a limit asω → ∞. This
limit is

s̄(∞) = G

π||p||
2

π

∫ ∫
�

|p(φ)| dA = 2

π
s(0+).

4. Examples

4.1. Planar cellular flow

As a two-dimensional example, consider planar cellular flow in which

ẋ = − sin(2πx) sin(2πy)

ẏ = − cos(2πx) cos(2πy)

}
. (22)
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Separatrix map and Melnikov studies of this have appeared recently[57,9,46]; this also forms a simple kinematic
model for steady Rayleigh–B́enard convection[58–60]. The flow(22)has a Hamiltonian

H(x, y) = − 1

2π
sin(2πx) cos(2πy),

whose level curves define flow trajectories. The flow consists of periodically repeating square cells of alternating
vorticity, separated by linear heteroclinics; seeFig. 6. Given the symmetry in the system, it suffices to address
the inter-cellular chaotic transport generated across any one of these linear separatrices. Choose the central lower
heteroclinic which goes from (x, y) = (0,1/4) to (0,3/4); the intention is to now characterise the chaotic transport
between the two lower cells inFig. 6. The heteroclinic trajectory’s temporal evolution is given by ¯x(t) = 0 and

ȳ(t) =
{

1
2π cos−1[−sech(2πt)], if t ≤ 0

1 − 1
2π cos−1[−sech(2πt)], if t > 0

for a symmetric choice of time zero. Thus,|∇H(x̄(t), ȳ(t))| = sech(2πt), which upon insertion into(5) yields the
optimum flux

s̄(ω) = G

π
sup

ψ∈[0,π)

∫ ∞

−∞
sech(2πt)| cos(ωt + ψ)| dt.

Now, given the fact that sech(2πt) is even and unimodal, the choice ofψ to optimise the above must be the symmetric
one, which corresponds toψ = 0. Therefore,

s̄(ω) = 2G

π

∫ ∞

0
sech(2πt)| cos(ωt)| dt. (23)

The arguments of Section2.4 indicate that(23) approaches its maximum̄sm asω → 0+, is monotonically
decreasing for positiveω, and levels out to a non-zero limit asω → ∞. Indeed, from(8), s̄m = G/(2π), and
s̄(∞) = (2/π)s̄m = G/π2 are the exact values expected. The results of numerically evaluating(23) with G = 1
are shown inFig. 7, which exhibits all the properties claimed. In particular, thequantitativevalues are borne

Fig. 6. Phase space for planar cellular flow.
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Fig. 7. Optimal fluxs̄ vs. frequencyω for planar cellular flow withG = 1.

out by the following data, correct to six decimals, which were obtained in generatingFig. 7: s̄(0+) = 0.159155,
s̄(30) = 0.101321, and̄s(50) = 0.101321. Hence, the numerics tells us thats̄m = 0.159155, and̄s(∞) = 0.101321.
These confirm the theoretical predictions of 1/(2π) and 1/π2, respectively.

Observe also how steeply the curve decreases at low frequencies before abruptly plateauing. The optimal flux
is highly susceptible to variations inω for small frequencies, but not at all for large ones. For highly wiggling
perturbationsg, the optimal chaotic flux is essentiallyG/π2, a saturation flux. In any case, the main point of this
analysis is that for a given frequencyω, the leading-order flux can never be any higher than the supremum norm of
g times the corresponding value obtained from the graph ofFig. 7.

4.2. Hill’s spherical vortex

A classical ideal fluid flow is that of Hill’s spherical vortex[56], which is an axisymmetric entity whose structure
is shown inFig. 8. The pointa is the north pole, andb the south, of a manifold� which is a spherical separating
surface between flow on cylinders (outside), and flow on tori (inside). Sincea andb are both fixed points,� forms
a heteroclinic manifold, being simultaneously part ofWu

a andWs
b. The heteroclinic trajectories connectinga to b

traverse the longitudes of�. Perturbations would generically destroy�, enabling mixing between the vortex core
and its exterior. For related analyses of this particular geometry, and its destruction through a Melnikov approach,
see[52,33].

Here, the emphasis is on flux computations. The Stokes streamfunction here is

H(r, θ) =



−U
2

(
r2 − c3

r

)
sin2 θ, if r ≥ c,

3U
4 r

2
(
1 − r2

c2

)
sin2 θ, if r < c,

whereU and c are positive constants, representing the radius of the spherical surface� and a velocity scale,
respectively. The corresponding velocity fieldf, based on the relationship given in Section3.1, is

f (r, θ, φ) =



−U
(
1 − c3

r3

)
cosθ r̂ + U

(
1 + c3

2r3

)
sin θ θ̂, if r ≥ c,

3U
2

(
1 − r2

c2

)
cosθ r̂ − 3U

2

(
1 − 2r2

c2

)
sin θ θ̂, if r < c.
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Fig. 8. Hill’s spherical vortex in a constantφ cross-section.

In spherical polar coordinates, ¯xφ(t) = (c, θ̄(t), φ), andφ remains constant for a choice of heteroclinic. The only
time-variation is that of theθ-component. Using the velocity field whenr = c, and noting that theθ-component of
velocity isc dθ/dt,

c
d

dt
θ̄ = 3U

2
sin θ̄.

Solving this equation subject to the symmetric initial condition (i.e.,θ̄(0) lies on the equator) leads to

sin θ̄(t) = sech

(
3Ut

2c

)
.

Now,

∇H(xφ(t)) = ∇H(c, θ̄(t), φ) = −3Uc

2
sin2 θ̄(t)r̂ = −3Uc

2
sech2

(
3Ut

2c

)
r̂.

See also[33] for the additional details of the above results. The most general separable case of Section3.4will be
addressed directly; a velocity perturbation in the formεp(φ)h(r, θ) cos[ω(t − β)] is hypothesised. The expression
for the unoptimised flux from(16) is

s(ω) = 3Uc

2

√
2

π

(∫ 2π

0
|p(φ)| dφ

) ∣∣∣∣F
{

sech2
(

3Ut

2c

)
hr(c, θ̄(t))

}
(ω)

∣∣∣∣ ,
wherehr is ther̂ component of the perturbationh. This can be numerically evaluated for different choices ofhr if
necessary.
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Fig. 9. Optimal fluxs̄ vs. frequencyω for Hill’s spherical vortex withU = 1, c = 1,G = 1 andp constant.

Our interest is in the optimum flux, as given by(17):

s̄(ω) = 3U c||hr||
2π

(∫ 2π

0
|p(φ)| dφ

)
sup

ψ∈[0,π)

∫ ∞

−∞
sech2

(
3Ut

2c

)
| cos(ωt + ψ)| dt,

for which, as in Section4.1, the appropriate choice ofψ is 0 by symmetry. This leads to

s̄(ω) = 3U c||hr||
2π

(∫ 2π

0
|p(φ)| dφ

)∫ ∞

−∞
sech2

(
3Ut

2c

)
| cos(ωt)| dt, (24)

where ||hr|| is the supremum norm of the functionhr(c, θ) over θ ∈ [0, π]. The functionp has no qualitative
effect on the frequency-dependence ofs̄(ω), which is governed by the improper integral which cannot be evaluated
explicitly except in the limitsω → 0+ (in which case it is 4c/(3U)) andω → ∞ (in which case it is (2/π)s̄(0+)).
The same qualitative behaviour as for planar cellular flow is to be expected froms̄(ω), and this is confirmed by
the numerically generatedFig. 9, in whichU = 1, c = 1, p is constant, andG = 1 (for this supremum value ofg,
one can take any consistent values forp and||hr||, for examplep = 1/2 and||hr|| = 2). A constantp is chosen
since as described in Section3.4, this is the optimal choice. For any perturbation which is azimuthally separable,
Fig. 9 can be used to determine the maximum possible chaotic flux which can be approached for each given
frequency.

5. Concluding remarks

This study has provided some insights into how best to perturb a system in order to achieve optimum chaotic
mixing. Both two- and three-dimensional flows were addressed, and the results hold even within the constraint of
incompressibility. Formulæ which bound the chaotic flux at each frequency of perturbation were presented in(6)
and (18). The nature of the perturbation which approaches this upper bound was described in detail, and the optimal
flux function s̄(ω) expressed in different ways in(5), (7), (17) and (19).

The behaviour of the optimal flux as a function of frequency was also detailed. It monotonically decreases from a
maximum at zero frequency to a non-zero limit at infinite frequency. While being consistent with the results of[25],
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this highlights the difference with thenon-optimisedflux function which rises from zero, has at least one maximum,
and then decays to zero in the high frequency limit[45,53,43].

The ideas used here are hoped to contribute to the design of devices which exploit chaotic motion to improve
mixing. Micro-fluidic mixers (in which turbulence is negligible and diffusion may be too slow) may be particularly
relevant applications, and there too the theory seems directly applicable to cross-channel micromixers[20,21,1,55].
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