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Abstract

The issue of determining the best perturbation which results in optimal chaotic flux across a separatrix is addressed, using
the Melnikov function and lobe dynamics. This theoretical analysis is motivated mainly through micro-fluidic devices for which
this problem has become important recently. Both two- and three-dimensional flows are analysed. Utilising a Fourier transform
representation, the nature of the perturbation which maximises this flux for each frequency value is obtained. The resulting
optimally attainable flux is computed. A concise bound on this flux is presented in terms of the supremum norm of the normal
component of the perturbing velocity, and the size of the heteroclinic manifold. In this instance where the spatial part of the
perturbation is permitted to be chosen based on the frequency, it is shown that greater flux is achievable for smaller frequencies.
The theory is illustrated through two examples.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

There are many engineering, biological, chemical, and combustion applications in which efficiency of an appa-
ratus improves when solutions are well-mixed. In other applications, a well-mixed solution may be a goal in and
of itself. A diverse collection of applications of such mixing characterisation appdar8j. Of specific recent
interest is the development of microfluidic devices which are of importance in a variety of applications such as
drug delivery, diagnostic devices, chemical synthesis, printing, “lab-on-a-chip”, protein analysis, gene expression
profiling, cell culture, and chemical testifi0—18] Enhancing or controlling fluid mixing is often a primary design
aspect of the microfluidic device. Since turbulence is suppressed in the low Reynolds number scales associated with
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microfluidic devices, and since diffusion by itself is not an effective mixing mechafii®m1,16,17]focus has
been moving towards exploiting chaotic advection for such mikl6g20,21,18,22]Characterising chaotic mixing
has of course been extensively studied even within the context of macro-scale fluids (see for B&h3818,9,34]
for a variety of applications).

Given the recent interest in enhancing mixing in micro-mixers, an important issue could be the determination
of how best to perturb a laminar flow in order to achieve optimal mixing. Two obvious questions arise. What is the
best frequency at which to perturb the system? What spatial form should the perturbation take?

In analysing this problem, an initial consideration is describing and, in partiquiantifying the mixing present
in a given flow. Statistical methods have been used for this purpose for quite some time. Alternative techniques to
quantify the chaotic flux are related to Lyapunov exponents, ergodic theory, variational principles, partial separa-
trices, Markov models for transitions between regions, escape rates, effective diffusivities, minimal flux surfaces,
and inter-material contact surfaces (for a recent selection of such ide§35s86,24,40,7,41,3%]Many of these
techniques provide diagnostics of chaotic flux. One method which provides a more direct assessment, however, i
the lobe dynamics approach utilising Melnikov’s metiid2-46,25] This usually has the disadvantage of requiring
near-integrability, with the deviation from integrability possessing periodic time-dependence. In a two-dimensional
setting the areas of lobes which are transferred are known to be related to an integral, with appropriate limits, of an
entity called the Melnikov functiofd2—44] This function, originally developed if#7], measures the signed dis-
tance between the perturbed manifolds which form the boundary of lobes (s@&8a4h44). Higher-dimensional
Melnikov methods exig60,51], and indeed have been used to understand the geometry of lobes generated through
perturbationg52,33] in three-dimensions. In spite of these advangesntifyingthe flux using this technique is
difficult, and has only been done numerically in a few instarjéBgi6].

With micro-mixers in mind, a natural idea would be to attempbpdimisethe chaotic flux. Very few studies
[25,1] have made any mathematical progress on this topic. The af26]ds particularly related to the current
topic; it utilises a simplex algorithm to optimise the flux in a corner vortex flow. The authors discover that the
optimum flux as a function of the frequency is monotonically decreasing, and decreases to a non-zero value at
high frequencie$25]. This apparently contradicts the non-monotonic and decaying to zero behaviour expected
from non-optimisedtudieg45,53,43] more discussion on this issue will appear in Secfigh The current paper
addresses the optimisation problem from a theoretical perspective, and proves that the beh§&juoirthe
optimal flux function is to be expected generically (although the flux definition used here is different). It moreover is
able to provide considerable insight into the nature of the perturbation which optimises the flux. The present results
differ from [25] in that they are not confined to particular equations, or to numerical algorithms.

Let us state the problem in more mathematical terms. Start with the unperturbed dynamical system

¥ = f(x) 1)

wherex € @ C R" (n = 2 or 3), andf : @ — R" is volume-preserving and as smooth as required. Suppose this
flows possesses a heteroclinic manifold which forms a separatfx irherefore, there is no transport across this
separatrix. The intention is to now perturb the flow, and consider the chaotic flux resulting across the separatrix.
Perturbations to be considered will take the form

x = f(x) + ¢ g(x) cospp(r — B)]. @)

where 0< ¢ « 1,w € (0, 00) is the frequency of the perturbation, afict [0, 27) is a phase constant. The choice
of the functiong : © — R" in order to optimise the flux is the main focus of the subsequent analysis.dieilEhe
permitted to depend oé—a significant extension of available resU$,46,54] This is a natural approach from
the perspective of obtaining the best flux for a given frequency. Clearly, a “large” furgctimuld generate more
chaotic flux, and hence, &@orm bound foig will be imposed in the form

181l := suplg(x)| = G.

xeQ
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(The notation|| - || will be used consistently to mean th&8 6r supremum norm in this paper.) In terms@fcan
onequantifythe chaotic transport occurring across the separatrix? Secondly, hogvbeanhosen subject to this
given @®-norm bound, such that the flux is maximised?

The development for the two- and three-dimensional settings will be given separately in S@ctiads3
respectively. Examples for each of these cases, related to models of RaylemgidBonvection and Hill’s spherical
vortex, will be presented in Sectieh

2. Two-dimensions
2.1. Set-up

In two dimensions, volume-preservation implies that the unperturbed flow is Hamiltonian. The velocity field
in (1) then takes the form

f(x) = JVH(x),

wherex € Q C R?,

oH
Jz(g é) and VH = (‘;‘_,})
dx2
It shall be assumed tha@ : Q@ — R is as smooth as needed. Supp(idepossesses two hyperbolic fixed poiats
andb, each with one-dimensional stable and unstable manifolds. Suppose moreover that a bréghcdoioides
with a branch ofW, to form a one-dimensional heteroclinic manifdld In this instance, this would be defined
through one heteroclinic trajectomyfr) which decays t@ andb exponentially in backwards and forwards time,
respectively. There is a freedom in the time parametrisation of this heteroclinic trajectory; as shall be shown later,
the particular time parametrisation chosen has no relevance in what follows. Notice alEaghepresentable as
a level curve oH, connecting two pointsa(andb) at whichV H = 0. The manifoldl” can be parametrised with
t € R by associating with the point(=¢) (cf. the heteroclinic coordinates as describefyii). It moreover is a
flow separatrix, forming an impermeable barrier to phase space flux transport in the unperturk{@gl flow
This inclusion of a perturbation as (&), where nowg : @ — R2, destroys this separatrix in general. It is well-
known that heteroclinic tangles generically result from time-harmonic perturbations. The signed distance between
the manifoldsW (¢) andW; (¢), as measured in the direction Bf7 at each pointonT is given by

M)

el A 2
vacCy )

d(t,e) =¢

whereM (z) is the Melnikov function, to be defined beldd8,49,44] Simple zeroes dl correspond to transverse
intersection betweel; (¢) andW; (¢) near the point o parametrised by
For the perturbation as i{2), the Melnikov function is expressible as

M) = /_ " VHGEW) - ¢(5(7)) cospp(t + 7 — B)ldt.
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(Se€[48,49]for details.) A useful reformulation (see algth,54]) is now presented. Define the function
A1) := VH(x(=1)) - g(x(—1)).

Adopt the Fourier transform definition

Alw) = FA()}w) = A1) exp(—iwr)dr.

1 o
A/ 2 /;oo
Simple trigonometric manipulations yield

M) = /OO A(—7){cosk(r — B)] cos wt — sinfw(t — B)] sin wr}dr

= V2r{cospy(r — B)IRe(A(w)) — sinfw(t — B)lIIM(A(w))}
= V27| A(w)] cOS[ATg(A (0)) + o(t — B)]. (3)

2.2. Flux computation

The Melnikov function(3) has infinitely many equally spaced transverse zeroes, occurringeieryig. 1gives
a schematic of this behaviour; the description which follows is available from any standard tejtBotik 44]
Fig. 1should be thought of as a picture of the Poigcarap which samples the flow at time intervals 8f2. The
pointsa andb are perturbed versions of the initial fixed points, but are now fixed points of the Peimegr. These
each possess manifolds with respect to this Poggeap. To visualise a separatrix in the perturbed setting, identify
any one of the primary intersection points (p.i.pfs)between the manifolds. Now define a pseudo-separatrix as
being formed by the part of th#,; betweera andp, joined with the part oW, betweerb andp (cf. [44]). This
pseudo-separatrix is indicated in heavy curveBim 1 Now, apart from the two lobes; and L, adjacent t,
all other lobes remain on the same side of the pseudo-separatrix upon iteration of theéPwiapdthis is since
they retain their relative position with respect to each manifold). However, lgb@aps toL3, which is on the
oppositeside of the pseudo-separatrix. Similady, maps toL». All flux transported across the pseudo-separatrix
must travel across thisirnstile consisting of the four lobek,, L», L3z andLg4. In particular, note that the fluid that
is exchangedcross the pseudo-separatrix in one iteration of the Pdmap is simply the area df; or Ly; these
two fluid areas simply exchange places.

The flux interchange that occurs across the separatrix per iteration of the map is therefore related to determining
lobe areas. The area of a lobe is given by

Fig. 1. Lobe dynamics and the pseudo-separatrix (in bold).
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12
Area= / ld(t, €)| dl + O(£?),
t

:[l

where d is the differential arclength element along the manifidJ&ndz; andr, are the time-values which charac-
terise the ends of the lobe, say. Since d = |J VH(x(—1))|dr = |V H(x(—1?))|dt, the required lobe area is

Area= / ? d(t, &)||V H(x(—1))| dr + O(£?)

1

[ M) _ >
_/tl onCy) Y HECId+ 06

_ g/IZ M) di + O(E2).

1

The above connection between the Melnikov function and the area was first establipt®idlrefine the leading-
order (turnstile) lobe area by

2
A :=/ |M(z)| dr.
4%

By (3) the Melnikov function is simply a shifted sinusoidal with equally spaced zeroes, and hence the lolig areas
and L, must be the same. Sincgis the amount of phase space ‘volume’ which transfers across the heteroclinic
manifold in 2t/ time units, thdeading-order fluXtransported ‘volume’ of fluid per unit time) would be reasonably
defined by[45,53,46]

s(w) = %’A = —/t |M(2)] dr.

2r Jy

Substituting from(3),
s(w) = 22@|A(w)| f i | cos[Arg(A(w)) + w(t — B)]| dt.
g n

Sincer; andr, are adjacent zeroes (&), they are adjacent zeroes of the integrand above. The quantitys Asd) —
wp is a simple phase shift; one may replace the integral above with the integcalsft| between any two adjacent
zeroes. Hence,

7/(2w)
s(w) = J%'A(w”z/o cosr)dr = \/g|A(a))|.

Thus, the flux corresponding to a perturbation of frequencyherefore, has a direct relationship to a Fourier
transform:

s(w) = \/g |FAVH (x(1)) - g(x())} ). (4)

The formula(4) is valid for any perturbation of the forrf2). The current issue is to determine the formgab
maximise this leading-order flux.
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2.3. Choosing g to optimise flux

Let the Fourier transform of\|H - g](x(¢)) have polar representatid®(w) explif(w)]. The phasé&(w) has no
effect on the fluxs(w) by (4). Now, for any realr,

FUVH - )t — )} () = € F(VH - )F(1)) () = R(@)ele 7,
Choosingx corresponds to picking a time parametrisation albngor the choicer = (—6(w) + 2mrx)/w for any

integerm, the Fourier transform is real. Sinééw) is unknown, the precise value of this time shift is unclear; yet
there is a time parametrisation for which this works. Applyfdyfor this purely real Fourier transform,

s(w) = % ‘/_OO (VH - g)(x(1)) cos wt dt

Now coswt is negative in alternating bandstadf width z/w. To maximises, it would help if VH - g were positive
whenever cost was, and negative if else. To effect this, define the set

.y [(4n— e (4n+1)rr>’

et 2w 2w

whereZ is the set of integers. Partition the heteroclinic maniflishto two alternating portions
I ={x():reT} and I'_:=T\Ty.

Fig. 2displays these sets. Each comprises countably many segments, diminishing in length as the enapoints
b are approached. Now define brthe function

—y. . VH({)
)= O Hw)

[Ir, (x) — Ir_(x)],

wherel is the indicator function. Whilg is not smooth, one can obtain smooth functigmeich are arbitrarily close

to g in the C-norm, by suitably connecting the piecewise segments withbdmp functions. Any such function
can then be extended smoothly$ The upper bound for the flu{w), which can be approached as closely as
required, is therefore

s(w) = g/oo |V H(x(r))|| cos wt|dz.

—00

This expression was derived assuming that a time parametrisatidhrémulting in a real Fourier transform was
made. If a phase shift of/2 were instead present, the Fourier transform would be purely imaginary, necessitating
the replacement of the cosine above by a sine (the definitiorig oy andI'_ need to be appropriately modified).

In practice, itis difficult to know whether the chosen parametrisation relates to these two extremes, or to something
intermediate. Hence, in order to handlié possible time parametrisations, the general formula for the maximum
flux obtainable through a perturbation of frequencis

)= sup [ IVHEW) coser + )i (5)
T yel0,m) J—o0
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Fig. 2. The subsets; andI'_ of I".

This automatically compensates for the original phase ghatewell. Realising that it is only the normal component
g1 tothe manifold™ which truly contributes to this flux, the implication (&) for general (unoptimised) perturbations
is

s(@) < = suplg.(¥)] sup / " \VHE)| costr + )]s, 6)
4 Yel0,m) J—o0

xel

with equality being approached gs— g. Note also from Sectio.2that|V H|dr = dI. Lett = (/) be the function
expressing the monotonic relationship between the tiamel arclengtth parametrisation along. Then,(5) has the
alternative representation

@) =2 sup [ Icoseit) + v)id. @)
T yelo,n)JT

2.4. Optimal flux discussion

The time-periodic switching af predicted through this analysis is no surprise. The effegti#ing in a normal
direction toI" would be to push a manifold in that direction; in the next segment (in which the manifolds have
exchanged relative positions), this same manifold would benefit from being pushed in the opposite direction. This
would increase the lobe areas, thereby increasing chaotic flux.

The Eq.(5) answers the question as to the maximum flux possible for perturbations of the form gi2griana
givenw (note that the entiti€, I';. andI'_ are eaclw-dependent). Since the flow on the unperturbed heteroclinic is
exponentially slow near the critical poiragindb, g must switch back and forth in very small regions of phase-space
near these points in order to achieve the best chaotic mixing. However, the quantitative effect of Bhis guite
small, given the exponential damping [dhH | that occurs. The main contributions arise from switchbacks occurring
in regions far removed from the critical pointsglfverenotpermitted to be chosen dependingarthe results will
be different (indeed, there would be no optimisation problem, f&5/46]). However, the current question is more
natural—it gives a limiting value of the flux achievable for norm-limited perturbations of any given frequency.

While s willin reality never be achievable for smooth perturbations, arbitrarily closeness is possible. For example,
the normal could be modulated with a cosine term sodhwts the form

o) = G V H(x)

NH) cospw 1(x)]

for x e I". Using many Fourier modes (terms involving casf@x)], cos[3wz(x)], etc.) could make this approagh ~

as closely as required. This is analogous to the approximation of a discontinuous wave with a Fourier series.
The formulag(5) and (7)provide the optimal flux for a given (fixed) frequeney A natural question would be

whether the flux can be optimised ol w. In other words, is there a limit on the flux achievable through any sort
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of sinusoidal perturbation? Notice frof#) that

- — length
S(w)fsm ::E/dZZGLg(r)’ (8)
T Jr T
which could be more transparently written as
— length
s(w) < LY squIgL(x)l. 9)
xe

Is the upper bound achievable? Observe f(@jthat

G _
5(0") = — sup | |cosy|dl = s,.
T ye[0,n) JT

Here,w = 0T is the adiabatic limit corresponding to vanishingly small frequency, or alternatively, infinitely large
periodicity. By choosinge smaller and smaller, the upper limit {8) can be approached as closely as required.
This is qualitatively consistent with the numerically obtained optimal flux for a corner vorf@é]nHowever, as
pointed out if45,53] there is an inconsistency in taking e~ 07 limitin the Melnikov setting, which explicitly
presupposes smallbut non-smalk. The difficulty arises in using(w) to approximate the flux, which is actually
of the formes(w) + O(e2). Asw — 01, its smallness competes with thatspfand the®(2) terms in the flux may
acquire importance. Presumably there is a funcii(r) such thak(w) ands(w) are only legitimate representations
for the leading-order flux i&» > w(e). Characterising(¢) is non-trivial, as is the singular limié — 0 in the current
context.

For valid (non-infinitesimal)v, it will now be shown thak(w) is monotonically decreasing. For each fixgd
andw, define a partition of" with respect to its arclength parametrisation as follows. Let

L() = [L, (), L, ()
whereL(w) are the length parametrisationsf I' corresponding to the times

3_1[(2;111);1_14_

=
w 2

Then,I" can be represented as the countable union of thelsesr n € Z. As w varies this partition changes, yet
remains denumerable. The arclength intenggshave a strong connection to the alternating segmenits. aind
I'_ of Section2.3, with a possible time shifting of additionally included. Now, fron{7),

W=7 s | [ leostil) + yia

T 11/6[()’7T)neZ

As w is increased, the length of the segménptdecreases, since the time difference between the endp@jnts
and., decreases. Now, the integral is of a cosine curve over one-half its period, subject to nonlinear modulations
through the monotonic functiorfl). With the increase i, this curve gets squashed horizontally as the length of
the interval diminishes. Thus, each integral odgrwill decrease with the increase of the end result being that
the total integral decreases. Therefore, it has been argueddhas a decreasing function af. The underlying
principle is that smaller frequencies can generate larger optimal chaotic fluxes.

There is an apparent contradiction with the result§48f53,43] whose flux functions are non-monotonic in
. However, the monotonicity has been argued here for the optimal flux fundiign(in which g was chosen
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depending o), and nots(w). An optimising problem has been solved here, unlikg$53,43]in which g was
w-independent.

The decreasing functiaf{w) is bounded from below, and therefore, must have a limibas oo. In this limit
| cosr + )| oscillates so rapidly that its contribution to the integralGhis effectively just its average value/2.
Thus

I 2G o _ 2G length 2_
lim s(w)=—— sup |VH(x(r)| dt = M = —5p.
@00 T yel0,7) /-0 b4 4

Hence,s(w) reduces monotonically from a value gf whenw = 0, to (2/7)s,, asw — oo. The flux function

in [45,53,43,54}was shown to go to zero as — oo; the current result again does not contradict this since an
optimisation approach has been followed. The interesting implication is that, for large frequencies, there is only
marginal change in the optimum flux propensity.ais varied.

The behaviour of the optimal flux function as described above, is completely consistent with the optimising
approach of25]. They numerically solve an optimisation problem for a more heuristic flux definition than used in
this paper, and for a specific corner vortex problem. Nevertheless, they argue that the optimal flux function increases
asw decreases (Appendix B), and decreases to a hon-zero vatuesaso (Appendix C). Their numerical results
also bear this out. The current theoretical study displays that their results are generically to be expected in such
settings, though the technique (unlikg25]) is confined to time-harmonic perturbations. An extension of the theory
to more general time-periodicity (as possible in the numerical algoritH26]) seems possible through the usage
of the ideas if46]. However, an important observation that emerges is the distinction betweeptthwl flux
function as discussed [25] and the present article, and the non-optimised flux functidd®63,43]

The lack of continuity ofg also leads to the question as to whether the derived theory is applicable in realistic
fluid mechanical settings in which incompressibility is also enforced (at this point no such condition has been used
for g). Let g7 andgy represent the tangential and normal componentE)iof g, respectively. Incompressibility
would mean satisfying

agr(x) n agn(x)
aT N

for all x. Now, the limiting functiong hasgr = 0 onT", but hasy undefined at countably many points, and therefore,
cannot satisfy this differential form of incompressibility. However, there is no basttisfying thentegral form

of incompressibility. One can constrygtocally (nearT”) by setting up “streams” of constant speedrossingl” in
opposite directions, and then proceeding outfaguch that these streams always remain adjacent, non-intersecting,
and have constant cross-section. While this contrived situation may be volume-preserving, it violates other fluid
mechanical conditions (it has infinite rate-of-strain and vorticity at the stream interfaces).

Onthe other hand, there is no difficulty for a “nearby” smooth funagitmsatisfy the incompressibility condition
above. Note that we only need to specify on T, such that it has a value sulfficiently closegtoThis leaves the
freedom to defingr on T, and also to specifg just off I. The only restriction in either of these endeavours is
that|gn|% + |g7]% < G2. Suppose o we choseg (smoothly) which satisfies this. Thé)g7 /9T may be not be
zero—but we can extengy off I" to ensure that the incompressibility conditi(i®) is satisfied orT".

A possible practical attempt to makeas close as possible gowould be to try to set up “streams” of speed
G in opposite directions acrogsas described above. Presumably, the flow will adjust along the stream interfaces
to provide a smooth transition, thereby generating a physically vighlhich is close to (but not equal t@) —

The locations of these interfaces of reversing direction is given by the transition points @fhich correspond

to t differences ofr/w along the heteroclinic. However, these locations are impossible to determine generally,
because of lack of knowledge of the phase shifioccurring in(5), (6) or (7). It may be that) could be varied
experimentally in the domain [Gr), or in some cases where full information on the unperturbed flow is available,
determined analytically (as is possible in the examples in Sedjiofsiven also that the exponential damping

0, (10)
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present in(5) makes the contributions to the flux from the reversals near the critical points small, a finite number
of such reversals may give a flux which is nealt should be once again emphasised that ¢ghisnot g because

of the inevitable adjustment that must occur along the stream interfaces to prevent violations of fluid laws. This
form of g is reminiscent of cross-channel micro-mixf6,21,1,55] However, it provides additional information;

for example it suggests that the spatial widths of the cross-stream channels should not be the same (but be given b
constant time parametrisation changes ab).

3. Three dimensions
3.1. Setup

The ideas in two dimensions can be extended to three dimensions in some cases. Once again the unperturbe
flow is as given in(1), where nowr € @ c R3, andf : @ — R3 is as smooth as required. It will be necessary to
make the following hypotheses.

(H1) The vector field of1) is volume-preserving, i.e., dif = 0.

(H2) The flow of(1) is axisymmetric, and has no swirl around the axis of symmetry.

(H3) The systen{l) possesses two hyperbolic critical poiatandb on the axis of symmetry such thét! and
W;, are two-dimensional.

(H4) A branch ofW/ coincides with a branch d¥; to form a two-dimensional heteroclinic manifald

The prototypical example that should be kept in mind is that of Hill's spherical v@s@&xrom fluid mechanics;
more details on this appear in Sectidr2. The volume-preservation and axisymmetry assumptions together give
the presence of 8tokes streamfunctial (x) [56]. It is convenient to orient the axis of symmetry in the Cartesian
z-direction, and employ spherical polar coordinates,(®). The systen(l) is expressible in terms of the Stokes
streamfunction as

1 oH 1 0oH

= Zsine e T Trsing o

up =0,

where f = u,7 + ugh + u¢<}5 is the spherical polar representation of the vector field)r(cf. [56]).

The basic geometry is shown kig. 3. The heteroclinic manifold" is topologically a sphere punctured at the
poles, and composed of a collection of heteroclinic trajectories which can be indee®byceH is conserved
by the flow[56], H(a) = H(b), and since these are the endpoints of any of the heteroclinic trajectories, this also
means thaH = constant orT". Moreover, given the dimensions of the stable and unstable manifoédaratb, it
is clear thatV H is zero at botha andb. Along any heteroclinic trajectory,, however,VH is nonzero (though
approaching zero as— 4o00) and orientation preserving (consistently points either into or odt)oOne can
parametrisé™ with (¢, ¢) by identification with the point,(—1); ¢ chooses a particular heteroclinic trajectagy
andt the reverse time along it. Herg,c [0, 2) and: € R, and as before, there is ambiguity in this parametrisation
related to choosing time-zero.

Consider now(2) as the perturbed flow. Here, conditions such as volume-preservation, axisymmetry, no-swirl,
etc, arenotin general assumed for the perturbed flow (though certain special cases will be considered later). Upon
perturbation,W,; andW; need no longer coincide, and split apart. A higher-dimensional Melnikov method exists
for exactly this situatiorj50,51] The splitting between the manifolds is representable through a signed distance
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Fig. 3. The heteroclinic manifolfl, with a couple of heteroclinic trajectories. Notice that the azimuthal coordinese be used to index the
heteroclinicsyy.

functiond(, ¢, &), which measures their separation along a transvatagv, (—r)) at the point£, ¢) onT. In fact,

M(t, 9)
IV H (xg(—1))

whereM(z, ¢) is the Melnikov function. Not surprisingly, this is defined by

d(t, ¢,6) = ¢ + O(£2), (11)

Mt §) = f V H(ip(r)) - 8 (2)) cosur + 7 — A))dr. (12)

(See[52,33,39,24]for Melnikov transport applications in three dimensions, in addition to the initial theoretical
Melnikov developmentfs0,51]) Through the definition of

Ap(t) = VH(xg(—1)) - g(xp(—1))
and its Fourier transform 4(w) exactly as in in Sectio@.1, the Melnikov function is expressible in the form

M(t, ¢) = V27| Ag(w)| COS[AIg(A4()) + w(t — B)]. (13)

In proceeding with the phase space structure determination, the trivial case ingihitdelf axisymmetric will
be considered first. This will help in extending the flux formula to general separable non-axisymmetry.
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3.2. Axisymmetric perturbation

If g is axisymmetric)q(f) and Ag(w) have no dependence @n The Melnikov function is then independent
of the longitude chosen. It is sufficient to picture the topological intersection betWgeand W; along one
such longitude. As beforé/ has periodic zeroes, resulting in the heteroclinic tangle illustratédgnd. This is
topologically equivalent téig. 1 from the two-dimensional analysis.

However, in reality each turnstile lobe is a three-dimensional entity—it is the shaded redian # rotated
about thez-axis to form aturnstile ring It will be necessary to determine the volume of this ring. An apparent
complication is that the arclength element along the heteroclinic is no longer giviehab§t(—1))| dr as before,
since| f| # |V H|. The volume of the turnstile ring is

2
Vqume:/tZ/O ld(z, €)lhg dp| f(x(—1))| d,

whereh, = r sin ¢ is the scale factor in the direction, andr; andr, are two adjacent zeroes of the Melnikov
function. Now,

1 9H\? ~1 9H\* 1
|f1= s—— | T\ —=—=—--) = —IVHI|
r<sing 90 rsing or he

Fig. 4. Typical intersection pattern after axisymmetric perturbations.
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and the volume is given by

\Volume = f ? /O 2” ld(z, &)| |V H(x(=1))| dp dr + O(?).

Substituting ford from (11), and keeping only thé(e) terms gives théeading-order volume

Ve ( /02” d¢) ( /: e ) = 2 /: M)

Hence thdeading-order fluxs

s(w) = %vz a)ft

1

f;

i |M(7)] dr.

Substituting from(13), and following the identical calculation as in Sect@a,
s(w) = 2V 27| FAVH(x(1) - g(x())} ),

where thep-dependence in has been suppressed since choosing any longitude gives the same result. Not surpris-
ingly, there is no qualitative difference between this formula and the two-dimensional vétsion

3.3. Non-axisymmetric modes

At the next level of complexity, assume that the non-axisymmetgydansists only of “modes” defined through

8(r, 6, ¢) = coskg)h(r, 6),

wherek is a positive integer, andtakes values ifR3. This incorporates a mode of wavenumkén the azimuthal
direction. For convenience, let= (r, 6), thereby representing each unperturbed heteroclinic trajectary as
(v, ¢). Since the unperturbed flow is axisymmetNtH (x4(7)) = VH(y(7)) is independent ap. Thus

VH(xy(7)) - 8(x4(7)) = (COSk@)V H(y(7)) - h(¥(1)),

and therefore, coky can be pulled out of the integral (42). The function playing the role of(¢) is then seen to
be

L) = VHO(=1) - h((—1)),
and let its Fourier transform b&(w). Following the process used to obtir8),
M(t, ) = coskp/2r| A(w)| cos[Arg(A (w)) + w(t — B)]. (14)

Fix a¢ such that cog¢ # 0. Along this longitude of”, the zeroes oM occur in exactly the same way as for the
two-dimensional cag@) and the three-dimensional axisymmetric cds3). On the other hand, each fixesuch that
the last cosine term ilL4)is honzero corresponds to a fixed latitudd affhose zeroes distribution is governed by
the term coskg. For example, ik = 3, there would be six zeroes@t= 7/6, /2, 57/6, 77/6, 37/2, and 1&/6. A
schematic of the resulting intersection pattern of the perturbed manifolds is sh&ign Sa The three-dimensional
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&

Fig. 5. Generic (exaggerated) intersection pattern in a slice of constant latitude. This picture correspeads to

picture of manifold intersection is then a combinationFids. 4 and 5As one rotate§ig. 4 (corresponding to
changingy), the intersecting manifolds change their relative positions at gactue which is a zero dfl. The
end result is that the perturbed manifolds form a rippling intersection pattern in bathrkethep directions.

To make sense of the volume of transferred fluid at each iteration of the Poimear, begin with the simpler
axisymmetric picture ofig. 4. Notice from(14)that this would be the observed intersection in any longitudinal slice
¢ (such that cog¢ is not identically zero) of the now non-axisymmetric flow. Each intersection point persists under
rotation about the initial axis of symmetry, since frétd) thet and¢ dependencies decouple. Pick one such point,
and its rotated circuit, and identify thisR? as aprimary intersection circuifp.i.c.). Define the pseudo-separatrix by
taking the unstable manifold emanating frarap to this p.i.c., and joining this with the stable manifold emanating
fromb up to this p.i.c. Now, the turnstile structure relates to the two ‘rings’ adjacent to the p.i.c. In this case the rings
are not uniformly solid as one travels around the axis—each ‘ringkimas-connected pieces. This is because the
stable and unstable manifolds exchange their relative positiotim2s asp : 0 — 2r; it is only alternating pieces
which are inside the pseudo-separatrix. Upon iteration of the P@msap k pieces cross the pseudo-separatrix in
one direction, while the othdrpieces cross it in the other direction. In the other adjacent ring, the same behaviour
occurs in the opposite direction. Thus, the volume lopces is exchanged across the pseudo-separatrix during
one periodic cycle.

Each of these pieces has the same volume, and so

2 ré2
Volume = Zk/ /;) ld(t, §)|hg dp| f(y(—7))| dz + O(£?),

wherer; andr, are two adjacent zero points Bfwith respect td, andg; andg, are similarly adjacent zero points
with respect tap. But, as in Sectio.2 hy| f| = |V H|, leading to

t2 o 2 ro
\Volume = 2/</ 2f i |d(z, $)| d|V H(3(—1))| dr + O(e)? = 2gk/2f i |M(z, ¢)| dp dr + O(¢?).
1 Jé1 n Je¢1

The leading-order volume is th@(¢) term of this:

2 17
V = 2k /27| A(w)| </¢ | cosk| dqb) (/ | cos[Arg(A (w)) + o(z — B)]| dr) .

The two integrals yield 2k and 2w, respectively. The leading-order flux is therefore

s(w) = %V = 4\/glf{VH(§(t)) ~h(Y(O)} @) (15)

Notice the somewhat surprising conclusion that the flux is independent of the azimuthal wavekumber
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The nextissue is to analyse the choic@wfich would lead to maximising(w). Sincey is two-dimensional, the
construction is the same as in Sect®b® with hchosen to be a vector of maximum permitted size which alternatesin
direction between pointing in to, and out &f, However,||g|| = || coske|| ||A(r, 8)|| = ||k||, and hence to optimise
choosd|n|| = G. This leads to the expression for the leading-order optimal flux

o0

4G _
s(w) = — sup IVH(y(2))| | cosgt + )| dr.
T ye[0,n) J —oc0

3.4. Separable non-axisymmetry

Now consider the more general form

8(r. 0. ¢) = p(p)h(r. 0)

for some functiomp taking values iR, with h being three-dimensional. In this case, the perturbation has a separable
scalar azimuthal function, which generalises the modal form of Se8tibn

The Melnikov function(14) can be modified by simply replacing cég with p(¢); the zeroes op therefore
govern the azimuthal intersection pattern of the perturbed manifolds. Each of two turnstile ‘rings’ adjacent to the
p.i.c. will be broken into pieces as before; these pieces are now defined in terms of wh{gdher0 or p(¢) < 0.
In contrast to SectioB.3, these pieces need not have the same volumes. Focus first on one turnstile ring, say the
upper one. The pieces correspondingp(@) > 0 will move across the pseudo-separatrix in one direction (say
inwards) upon iteration of the Poinémap, whereas the pieces wijiyp) < 0 will go across the other way. In
contrast, in the lower turnstile ring, pieces wjify) > 0 will move outwards. The total volume transported across
the pseudo-separatrix therefore contains both the poriéps> 0 andp(¢) < 0. The fact that there correspond
to different turnstile rings does not matter in the volume computation, since the upper and lower turnstile rings have
the same volume. Thus, the quantilzyj%pl2 cosk¢ d¢ appearing in the volume expressions in Sec8dhshould

be replaced b)[oz” | p(¢)| d¢. Then,(15) receives the modification

2
s(w) = <\/§ /0 |P(¢)|d¢> |FAVH@) - h(y(E)} )] (16)

Eq. (16) gives an explicit expression for the chaotic flux for perturbations of this specific form. The remaining
equations in SectioB.3for s are therefore easily corrected as well, for example the optimum flux

. ]| [ > _
o) = (120 [ 1p@ids) sup [ (9HGE coser + v 17)
T Jo vel0,m) J—oo
Here, the supremum norf{tk|| satisfieg |z (r, 6)|| || p(#)|] = G, where]| - || indicates G-norms associated with the

appropriate domains. For unoptimised separgtités implies that
o
() <2 sUplgu()l sup_ [ (VHG) coser + ) k. 18)
xel Yvel0,m) J —o0

with equality being approached as— g. Notice that it is possible thathas no zeroes; in this case, the picture is

very similar to the axisymmetric perturbation case, since there will not be any topological variation of perturbed
manifold structure in the azimuthal direction. If so, the turnstile rings would be solid entities. tees have
transverse zeroes, the topological structure would be a non-uniform analogue of the non-axisymmetric modal case.
As argued in SectioB.4for two-dimensions, the development of the formula for the optimalsf{wy) is consistent

even within an incompressible setting for the perturbing velagity
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Now, the area element dnis given by

|V H (xg(—1))

— tnp ) (52

dr) — [VH((—1)| dp

since| f| = |V H|/ hy is the velocity, and the unperturbed flow is axisymmetric. This engbigs$o be reformulated
as

d 19
n||p||¢e[on)//"’("’)"COS“”‘”' A, (19)

analogous t@7) in the two-dimensional setting. Hence

_ .G
slw) = —
T

sup //|cos@)t+1/f)|dA

¥el0,7)

This can be bounded over allby

s() £ ——— =I5y (20)
Again, this is more informatively expressed as

area (“)
T

s(w) = ——— suplgL(x)!. (21)

xel

Note the pleasing similarity betweg¢p1) and (9) Now using(19),

G
+)
)_n||p||/fr'p(¢)'dA

which is not necessarily the samesgsin (20). In order fors(0") to approach the supremum valuespbne needs
to choosep(¢) to be a constant function. Azimuthal complications apparently do not enhance the flux.

By pulling out theg-dependence, one can ud®) and the argument in Sectiéh4 to show that the optimum
flux s(w) is monotonically decreasing infrom its supremum value at'Q and levels out to a limit a® — co. This
limit is

- G 2 2
o) = =22 [ [[ip@)aa = 250,

4. Examples
4.1. Planar cellular flow
As a two-dimensional example, consider planar cellular flow in which

& = — sin(2rx) sin(2ry) } (22)

y = — cos(2rx) cos(2ry)
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Separatrix map and Melnikov studies of this have appeared red&iit§,46] this also forms a simple kinematic
model for steady Rayleigh-@ard convectiof68-60] The flow(22) has a Hamiltonian

H(x,y)=— % sin(2rx) cos(2ry),

whose level curves define flow trajectories. The flow consists of periodically repeating square cells of alternating
vorticity, separated by linear heteroclinics; déig. 6. Given the symmetry in the system, it suffices to address

the inter-cellular chaotic transport generated across any one of these linear separatrices. Choose the central lowel
heteroclinic which goes fromx(y) = (0, 1/4) to (0,3/4); the intention is to now characterise the chaotic transport
between the two lower cells IRig. 6. The heteroclinic trajectory’s temporal evolution is givenigs) = 0 and

) = = cos [—sech(ar)], ifr<0
S % cos Y[-sech(zr)], ifr>0

for a symmetric choice of time zero. Thy§,H(x(¢), y(¢))| = sech(2Zr), which upon insertion intg5) yields the
optimum flux

_ G o0
s(w) = — sup sech(zrt)| cosr + )| dr.
T ye[0,7) J —oc0

Now, given the fact that sech?) is even and unimodal, the choiceyptfo optimise the above must be the symmetric
one, which corresponds b = 0. Therefore,

s(w) = 26 f ” sech(Zrt)| cosr)| dr. (23)
7 Jo

The arguments of Sectio?.4 indicate that(23) approaches its maximus}, asw — 07, is monotonically
decreasing for positive), and levels out to a non-zero limit as— oo. Indeed, from(8), s,, = G/(2r), and
5(00) = (2/7)sm = G/7? are the exact values expected. The results of numerically evaly@®gvith G = 1
are shown inFig. 7, which exhibits all the properties claimed. In particular, theantitativevalues are borne

-1/2,5/4 0,5/4 1/2,5/4
(-1/2,5/4) y ( : ) < ( )
A
(-1/2,3/4) (1/2.3/4)
> <
(-1/2,1/4) (0.1/4) (1/2,1/4)

Fig. 6. Phase space for planar cellular flow.
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Fig. 7. Optimal fluxs vs. frequency» for planar cellular flow withG = 1.

out by the following data, correct to six decimals, which were obtained in genefitng: s(0™) = 0.159155,
s(30)= 0.101321, and(50) = 0.101321. Hence, the numerics tells us that= 0.159155, and(co) = 0.101321.
These confirm the theoretical predictions ¢{2r) and 1/72, respectively.

Observe also how steeply the curve decreases at low frequencies before abruptly plateauing. The optimal flux
is highly susceptible to variations i for small frequencies, but not at all for large ones. For highly wiggling
perturbationsy, the optimal chaotic flux is essentially/=2, a saturation flux. In any case, the main point of this
analysis is that for a given frequeney the leading-order flux can never be any higher than the supremum norm of
g times the corresponding value obtained from the gragFigf7.

4.2. Hill's spherical vortex

A classical ideal fluid flow is that of Hill's spherical vortgx6], which is an axisymmetric entity whose structure
is shown inFig. 8 The pointa is the north pole, ant the south, of a manifold which is a spherical separating
surface between flow on cylinders (outside), and flow on tori (inside). Siaeelb are both fixed pointd; forms
a heteroclinic manifold, being simultaneously partigf and W;. The heteroclinic trajectories connectiago b
traverse the longitudes &f. Perturbations would generically destrByenabling mixing between the vortex core
and its exterior. For related analyses of this particular geometry, and its destruction through a Melnikov approach,
seg[52,33]

Here, the emphasis is on flux computations. The Stokes streamfunction here is

_% (rz_ ?)sin2 0, ifr>c,

H(r, 6) = 5
?’TUrZ (1— %) sinf g, ifr<ec,

whereU andc are positive constants, representing the radius of the spherical suitfand a velocity scale,
respectively. The corresponding velocity figldvased on the relationship given in Sect®f, is

U (1— %;) cosfi+ U (1+ 2%35) sinf6, if r>c,
10 0.9) = 3U 2 ~ 3U 22\ cinnd i
> (1— ’—z)coser— > (1— —2)3|n99, if r <c.

C C
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Fig. 8. Hill’s spherical vortex in a constagtcross-section.

In spherical polar coordinates, () = (c, 0_(t), ¢), and¢ remains constant for a choice of heteroclinic. The only
time-variation is that of thé-component. Using the velocity field when= ¢, and noting that thé-component of
velocity isc d6/dt,

9 U sin 6.
c—0=— .
dr 2

Solving this equation subject to the symmetric initial condition (§€0) lies on the equator) leads to
.= 3Ut
sin 6(r) = sech(—) .
2c
Now,

VH(xo(0) = VH(c. 60). 9) = _% sir? 6(1)7 = —%secr’r (3Z—If> .

See alsq33] for the additional details of the above results. The most general separable case of Sdetitirbe
addressed directly; a velocity perturbation in the fa(p)i(r, 6) cosfw(t — B)] is hypothesised. The expression
for the unoptimised flux fronf16)is

2w —
oy =206 2 ( [ vte d¢) #{seok (5 e} @

whereh, is ther component of the perturbatidn This can be numerically evaluated for different choices,of
necessary.

3
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Fig. 9. Optimal fluxs vs. frequency for Hill's spherical vortex withU = 1, ¢ = 1, G = 1 andp constant.

Our interest is in the optimum flux, as given {yr):

27 00
s‘(w)=%(/o |p(¢)|d¢> sup/ secht (%)lcos@tﬂﬁ)ldt,

t
ve[0,7) J—o0 c

for which, as in Sectiod.1, the appropriate choice @f is 0 by symmetry. This leads to

2 fe’e)
S_(w)=w< /0 |p(¢)|d¢) [ sect (%)mos@z)mn (24)

—00

where||h,|| is the supremum norm of the functidn(c, 6) over 6 € [0, n]. The functionp has no qualitative

effect on the frequency-dependence(@f), which is governed by the improper integral which cannot be evaluated
explicitly except in the limitso — 0T (in which case itis 4/(3U)) andw — oo (in which case it is (27)s(07)).

The same qualitative behaviour as for planar cellular flow is to be expectedsft@mand this is confirmed by

the numerically generatdelg. 9, in whichU = 1, ¢ = 1, pis constant, and: = 1 (for this supremum value @f,

one can take any consistent values fiaand ||4,||, for examplep = 1/2 and||k,|| = 2). A constanip is chosen

since as described in SectiBr, this is the optimal choice. For any perturbation which is azimuthally separable,
Fig. 9 can be used to determine the maximum possible chaotic flux which can be approached for each given
frequency.

5. Concluding remarks

This study has provided some insights into how best to perturb a system in order to achieve optimum chaotic
mixing. Both two- and three-dimensional flows were addressed, and the results hold even within the constraint of
incompressibility. Formulae which bound the chaotic flux at each frequency of perturbation were presédited in
and (18) The nature of the perturbation which approaches this upper bound was described in detail, and the optimal
flux functions(w) expressed in different ways (B), (7), (17) and (19)

The behaviour of the optimal flux as a function of frequency was also detailed. It monotonically decreases from a
maximum at zero frequency to a non-zero limit at infinite frequency. While being consistent with the refBis of
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this highlights the difference with thn-optimisedlux function which rises from zero, has at least one maximum,
and then decays to zero in the high frequency lj@d#,53,43]

The ideas used here are hoped to contribute to the design of devices which exploit chaotic motion to improve
mixing. Micro-fluidic mixers (in which turbulence is negligible and diffusion may be too slow) may be particularly
relevant applications, and there too the theory seems directly applicable to cross-channel mici@thXers,55]
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