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Abstract. The stable and unstable manifolds associated with a saddle point in two-dimensional non–area-
preserving flows under general time-aperiodic perturbations are examined. An improvement to
existing geometric Melnikov theory on the normal displacement of these manifolds is presented. A
new theory on the previously neglected tangential displacement is developed. Together, these enable
locating the perturbed invariant manifolds to leading order. An easily usable Laplace transform
expression for the location of the perturbed time-dependent saddle is also obtained. The theory is
illustrated with an application to the Duffing equation.
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1. Introduction. Invariant manifolds are important entities in continuous dynamical sys-
tems, forming crucial flow organizers. Their movement under perturbations can alter the
global flow structure. The original results of Melnikov [40] relate to the normal displacement
of stable and unstable manifolds in a homoclinic structure in two-dimensional area-preserving
flow, under a time-sinusoidal perturbation. The transverse zeroes of the so-called Melnikov
function identify when the perturbed invariant manifolds intersect, leading to chaos via the
Smale–Birkhoff theorem [26, 4, 57]. Extensions of the Melnikov method to higher dimen-
sions [25, 44, 60, 54], time-aperiodicity and/or finite-time [41, 44, 58, 62, 8], subharmonic
bifurcations [40, 57, 61, 59], nonhyperbolicity [54, 60, 63], and non–area-preservation [32] are
available.

While Melnikov methods can be used to determine how invariant manifolds move normal
to the original manifolds, there has been no method in the literature in which the tangen-
tial movement is characterized. This study addresses this issue, arriving at a Melnikov-like
function for the tangential displacement, under general time-dependent perturbations. The
original two-dimensional flow is assumed to contain a saddle structure but need not be area-
preserving. The displacement is expressed as a function of the original position p on the
manifold and the time-slice t. Along the way, a similar quantification for the normal dis-
placement is obtained, in which potential divergence issues in the Melnikov function and the
legitimacy of ignoring higher-order terms are explicitly addressed. The normal and tangential
results together permit the locating of the perturbed stable and unstable manifolds of the
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saddle point to first order in the perturbation parameter. Using a limiting procedure, the
location of the “perturbed saddle point” (the hyperbolic trajectory in the augmented phase
space) is also obtained, in terms of a simple expression involving Laplace transforms.

Locating perturbed stable and unstable manifolds in time-aperiodic situations has strong
applicability in geophysical fluid dynamics, particularly in oceanic flows which are weakly
two-dimensional [29, 46, 43, 13, 50, 39, 52, 22]. These form time-varying flow separators
and specifically are the boundaries of Lagrangian coherent structures [30, 47, 28, 29, 46, 52,
20, 23]. Their determination is therefore crucial to understanding fluid transport in oceanic
dynamics but remains difficult due to the fact that theoretical tools in the genuinely time-
aperiodic setting are lacking. The importance of this problem is reflected by the range of ad
hoc tools which have been developed to identify such flow separators: finite-time Lyapunov
exponent ridges [28, 45, 52], finite-size Lyapunov exponents [35, 36], patchiness [38], ergodic
partitions [42], and transfer operators [21, 22, 23]. The greatest promise of theoretically
determining time-aperiodic stable and unstable manifolds may initially be in a perturbative
setting—a steady flow with invariant manifolds which is then time-aperiodically perturbed.
Irrespective of conventional wisdom, determining perturbed invariant manifolds does require
information about both the normal and the tangential displacements, and thus the current
article has significant importance in this endeavor. Furthermore, locating the “moving saddle
stagnation points” to which these invariant manifolds are attached is crucial to understanding
mixing processes (in the ocean, in the atmosphere, in microfluidic devices, etc.). As pointed
out by Haller and Poje [29], these are not instantaneous fixed points. The results of this
article enable this determination quickly using available software, since a Laplace transform
expression is available. This Laplace transform technique also provides a useful tool in flow
control problems in which a saddle stagnation point needs to be moved to a given location
[2, 62]. An additional application to the results of this article is in determining perturbations
to traveling wave profiles in reaction-diffusion systems, arising, for example, in combustion [12,
15] or mathematical biology [11, 9], since such profiles are associated exactly with perturbed
heteroclinic manifolds.

This article is organized as follows. The main results, expressed in a geometrical frame-
work, are presented in section 2. Theorems on both the normal and tangential motions of
both the unstable and stable manifolds of a saddle point are provided. A theorem on the
location of the new hyperbolic trajectory (“time-dependent saddle point”) expressed using
simple Laplace transforms is also presented. Section 3 gives the proofs of the theorems. Leav-
ing the numerous interesting applications mentioned in the previous paragraph to the future,
section 4 illustrates the theory with an application to the invariant manifolds of Duffing’s equa-
tion [33, 56, 57, 37, 39, 34]. Finally, section 5 provides some concluding remarks regarding
the implications of these results.

2. Results. The system to be considered is

(2.1) ẋ = f(x) + εg(x, t),

in which x ∈ Ω ⊂ R
2, f : Ω → R

2, and g : Ω×R → R
2. The parameter ε is small: 0 < ε � 1.

Assume the following.
(H1) The function f ∈ C2 (Ω).
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(H2) The point a is a saddle fixed point of (2.1) when ε = 0; i.e., the matrix Df when
evaluated at a has real eigenvalues λu > 0 and λs < 0. The corresponding eigenvectors
of Df(a) are vu and vs, respectively.

(H3) The function g (x, t) is in C2 (Ω) for any t ∈ R, and g and Dg are bounded in Ω×R.
The unperturbed (ε = 0) form of (2.1) has the phase space Ω in which it possesses a saddle
fixed point a, which has a one-dimensional unstable manifold (associated with the eigenvalue
λu) and a one-dimensional stable manifold (associated with λs). These can be represented,
respectively, by the trajectories x̄u(p) and x̄s(p), in which

lim
p→−∞ x̄u(p) = a = lim

p→∞ x̄s(p).

The trajectory along the unstable direction, x̄u(p), is defined for p ∈ (−∞, P ] for any P , and
similarly, the trajectory along the stable direction, x̄s(p), is defined for p ∈ [P,∞) for any P .
That is, no assumptions are made regarding the “other end” of each manifold, which may, for
example, approach another fixed point (or even a again to form a homoclinic trajectory) or
escape to infinity.

In the augmented phase space in which ṫ = 1 is appended to (2.1) with ε = 0, the saddle
point a becomes a hyperbolic trajectory (a, t), with two-dimensional stable and unstable
manifolds Γs and Γu, respectively. These are foliated by trajectories which are simply shifts
of x̄σ(t), σ = u, s. Thus, Γu can be parametrized by (p, t) ∈ [−∞, P ]×R, through association
with the point (x̄u(p), t), where p is used for “position” and t for “time.” The stable manifold
Γs is similarly parametrized using (x̄s(p), t).

Hyperbolicity of trajectories in nonautonomous systems is defined in terms of the vari-
ational equation along the trajectory having an exponential dichotomy property [18, p. 10],
[62, Def. 2.1], [49, p. 143], [39, Def. 2.1], [44, p. 227]. The variational equation of the ε = 0 au-
tonomous system in (2.1) evaluated along the trajectory (a, t) possesses such a dichotomy by
virtue of its hyperbolicity. The projection matrix associated with the exponential dichotomy
defines the local stable and unstable manifolds [39, Theorem 2.1], [62, Theorem 3.1]; indeed,
the distance between trajectories lying on these manifolds and the hyperbolic trajectory de-
cays to zero as t → ∞ for the stable manifold, or as t → −∞ for the unstable manifold [64,
sec. 5]. Now, set 0 < ε � 1. Under the nonautonomous perturbation which remains bounded
in t by hypothesis (H3), the exponential dichotomy property persists for a trajectory [62,
Theorem 3.2], [64]. This is a consequence of Coppel’s “roughness theorem” on the persistence
of exponential dichotomies under bounded perturbations [18, p. 34] (specific bounds on this
are obtainable [53, Theorem 2.1], but for our purposes it suffices to know that this works for
sufficiently small ε). The implication is that there exists a trajectory aε(t) which is O(ε)-close
to a for t ∈ R, such that it inherits perturbed versions Γu

ε and Γs
ε of the stable and unstable

manifolds, which are O(ε)-close to Γu and Γs, respectively, in appropriate (p, t)-domains (this
is a special case of Yi’s main theorem [64, p. 279]). (There are also similar versions of manifold
persistence requiring different hypotheses to those used here [44, 31, 19].) It must be empha-
sized that aε(t) is not necessarily an instantaneous fixed point of (2.1) (that is, it cannot be
obtained by setting the right-hand side equal to zero at each fixed t); a detailed analysis of
the relationship between instantaneous saddle points and a corresponding hyperbolic entity
for the area-preserving instance is available [29].
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Figure 1. Relevant part of unstable manifold structure in a time-slice t. The components of the vector
xu
ε (p, t)− x̄u(p) normal and tangential to Γu are characterized in Theorems 2.1 and 2.3.

To find the perturbation of Γu, fix (p, t) ∈ [−∞, P ]× (−∞, T ]. In other words, consider a
fixed time-slice t and a point x̄u(p). Figure 1 shows these entities in the time-slice t, and the
intersection of Γu with the time-slice is displayed with a dashed curve, whereas that of Γu

ε is
solid. Now, there is a trajectory (xu

ε (p, τ), τ) on Γu
ε such that the point xu

ε (p, t) is O(ε)-close
to x̄u(p) for τ ∈ [−∞, T ]. Define the “perpendicular vector” for vectors in Ω ⊂ R

2 (obtained
by rotating a vector by +π/2 in Ω) by

(2.2) F⊥ (x) = J F (x) ,

in which

(2.3) J :=

(
0 −1
1 0

)
and JT = J−1 =

(
0 1

−1 0

)
= −J,

and thus F = JTF⊥. Next, define the (scalar) “wedge product” by

(2.4) F ∧G := F⊥ ·G = GT J F = FT JT G.

Now, in the time-slice t, the distance from xu
ε (p, t) to x̄u(p), measured perpendicular to the

original manifold, can be represented by

(2.5) du(p, t, ε) := f̂⊥ (x̄u(p)) · [xu
ε (p, t)− x̄u(p)] ,

in which f̂⊥ is the unit vector in the direction of f⊥.
Theorem 2.1 (unstable manifold’s normal displacement). The quantity du(p, t, ε) can be ex-

panded in ε in the form

(2.6) du(p, t, ε) = ε
Mu(p, t)

|f (x̄u(p))| +O(ε2),

in which the unstable Melnikov function is the convergent improper integral

(2.7) Mu(p, t) =

∫ p

−∞
exp

[∫ p

τ
∇ · f (x̄u(ξ)) dξ

]
f (x̄u(τ)) ∧ g (x̄u(τ), τ+t−p) dτ.

Proof. See section 3.1.
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Remark 2.2. If the parametrization is reinterpreted, (2.7) is of the familiar Melnikov form
[40, 26, 4, 57] in which distances between stable and unstable manifolds in area-preserving
(incompressible, divergence-free, Hamiltonian) f are considered. The non–area-preserving
adjustment is based on the development by Holmes [32] and is presented in detail in the
proof.

Next, the displacement of Γu
ε in the direction tangential to the original manifold is sought.

Referring to Figure 1, for a particular value of p (say, p1), a perpendicular at x̄u(p1), in
the direction of f⊥ (x̄u(p1)) would intersect Γu

ε at one point. Hence, one might imagine that
there is no tangential movement at any p1. However, the above situation corresponds to the
point xu

ε (p1, t) being exactly in the direction f⊥ from the point x̄u(p1). If a different p value
is chosen, such as the one in Figure 1, a nontrivial displacement in the tangential direction
would generically occur. Hence, using only the normal displacement to locate the perturbed
manifold in the situation pictured in Figure 1 at the point x̄(p) would result in the perturbed
manifold being located closer to Γu than it really is.

The above problem arises from the fact that the trajectory xu
ε defined in (3.1) is not

unique, since there will be a collection of nearby trajectories on Γu
ε which satisfy this con-

dition. A particular trajectory needs to be picked before tangential displacements from this
“reference trajectory” can be discussed. This issue does not arise if focusing only on the nor-
mal displacement of the manifolds. To proceed, the idea is to choose xu

ε to be the one which
lies exactly on the normal to the manifold drawn at x̄u(0) for each and every choice of (p, t).
Since x̄u(0) is O(ε)-close to xu

ε (p, t− p), the appropriate time-slice to represent this closeness
is t− p. Hence, this amounts to imposing the condition

(2.8) f (x̄u(0)) · [xu
ε (p, t− p)− x̄u(0)] = 0.

Now, the tangential displacement at a general (p, t) is

(2.9) cu(p, t, ε) := f̂ (x̄u(p)) · [xu
ε (p, t)− x̄u(p)] ,

in which f̂ is the unit vector in the direction of f . Define the function

Ωu(ξ) :=
fT (x̄u(ξ))

[
(Df)T (x̄u(ξ)) +Df (x̄u(ξ))

]
f⊥ (x̄u(ξ))

|f (x̄u(ξ))|2

= f̂T (x̄u(ξ))
[
(Df)T (x̄u(ξ)) +Df (x̄u(ξ))

]
f̂⊥ (x̄u(ξ)) .(2.10)

Borrowing terminology from fluid mechanics in which S = Df + (Df)T represents the sym-
metric “rate of strain tensor” [27], Ωu shall be called the projected rate of strain. Notice that
it can also be written as f̂T (−JS) f̂ , in which the −π/2-rotated rate of strain tensor yields a
quadratic form in f̂ .

Theorem 2.3 (unstable manifold’s tangential displacement). The quantity cu(p, t, ε) can be
expanded in ε in the form

(2.11) cu(p, t, ε) = ε
Bu(p, t)

|f (x̄u(p))| +O(ε2),
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in which

(2.12) Bu(p, t)= |f (x̄u(p))|2
∫ p

0

Ωu(τ)Mu(p, τ+t−p) + f (x̄u(τ) · g (x̄u(τ), τ+t−p)
|f (x̄u(τ))|2 dτ.

Proof. See section 3.2.
Remark 2.4. Unlike for the normal displacement, no nice simplifications occur in the case

of area-preserving (incompressible) flows in which Tr Df = ∇ · f = 0. Irrotational (potential)
flows in which ∇∧ f = 0 also offer no simplifications to (2.12).

Remark 2.5. The term f ·g in the integrand is as expected; however, an additional compli-
cated expression involving the rate of strain tensor and the unstable Melnikov function also
appears. Thus, Mu needs to have been computed before evaluating the tangential movement
of the manifold.

Remark 2.6. In view of Theorems 2.1 and 2.3, the O(ε) movement of Γu
ε in relation to Γu

can be expressed as follows. A parametrization of Γu can be defined in terms of (p, t) through
association with the point (x̄u(p), t), which perturbs to (xu

ε (p, t), t), which lies on Γu
ε . This

movement can be represented by

xu
ε (p, t) = x̄u(p) +

[
du(p, t, ε)f̂⊥ (x̄u(p)) + cu(p, t, ε)f̂ (x̄u(p))

]
= x̄u(p)+ε

[
Mu(p, t)

|f (x̄u(p))| f̂
⊥ (x̄u(p)) +

Bu(p, t)

|f (x̄u(p))| f̂ (x̄
u(p))

]
+O(ε2).(2.13)

Next, a similar determination of the normal and tangential motion of the stable manifold
of a is obtained. The unperturbed system possessed a stable manifold representable as the
trajectory x̄s(p) for p ∈ [P,∞) for any finite P (information on the beginning of the manifold
is not needed). This trajectory approaches a along the direction vs, with exponential decay
rate λs, as p → ∞. In the appended phase space, the hyperbolic trajectory (a, τ) possesses a
two-dimensional stable manifold Γs, parametrized by (p, τ) ∈ [P,∞)× [T,∞) for any finite P
and T . Consider now a fixed time-slice t, and consider the solution xs

ε(p, τ) which is O(ε)-close
to x̄(τ − t+ p) for τ ∈ [T,∞]. As for the unstable manifold, choose the tangential reference
location to satisfy

(2.14) f⊥ (x̄s(0)) ∧ [xs
ε(p, t− p)− x̄s(0)] = 0,

representing the choice of xs
ε which lies in the normal direction to Γs at x̄s(0) in the time-slice

t− p. Let the perpendicular displacement of Γs, in the time-slice t, at the location x̄s(p) be
given by

(2.15) ds(p, t, ε) := f̂⊥ (x̄s(p)) · [xs
ε(p, t)− x̄s(p)] .

This situation can be visualized by reversing all the vectors in Figure 1.
Theorem 2.7 (stable manifold’s normal displacement). The quantity ds(p, t, ε) can be ex-

panded in ε in the form

(2.16) ds(p, t, ε) = ε
M s(p, t)

|f (x̄s(p))| +O(ε2),
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in which the stable Melnikov function is the convergent improper integral

(2.17) M s(p, t)=−
∫ ∞

p
exp

[∫ p

τ
∇ · f (x̄s(ξ)) dξ

]
f (x̄s(τ)) ∧ g (x̄s(τ), τ+t−p) dτ.

Proof. See section 3.3.
Analogously to the unstable manifold, define the tangential displacement by

(2.18) cs(p, t, ε) := f̂ (x̄s(p)) · [xs
ε(p, t)− x̄s(p)]

and the projected rate of strain tensor function by

(2.19) Ωs(ξ) := f̂T (x̄s(ξ))
[
(Df)T (x̄s(ξ)) +Df (x̄s(ξ))

]
f̂⊥ (x̄s(ξ)) .

Theorem 2.8 (stable manifold’s tangential displacement). The quantity cs(p, t, ε) can be ex-
panded in ε in the form

(2.20) cs(p, t, ε) = ε
Bs(p, t)

|f (x̄s(p))| +O(ε2),

in which

(2.21) Bs(p, t)= |f (x̄s(p))|2
∫ p

0

Ωs(τ)M s(p, τ+t−p) + f (x̄s(τ)) · g (x̄s(τ), τ+t−p)
|f (x̄s(τ))|2 dτ.

Proof. See section 3.4.
Remark 2.9. Since Γs

ε can be parametrized by (p, t) by associating with the point xs
ε(p, t),

the perturbed manifold is located according to

(2.22) xs
ε(p, t) = x̄s(p) + ε

[
M s(p, t)

|f (x̄s(p))| f̂
⊥ (x̄s(p)) +

Bs(p, t)

|f (x̄s(p))| f̂ (x̄
s(p))

]
+O(ε2).

The location of the perturbed hyperbolic trajectory aε(t) with respect to a can be deter-
mined from the above results. Suppose the eigenvectors at a are chosen to be in the direction
of flow; that is, vu points out of a while vs points in to a. See Figure 2. Let v̂u be the unit
vector in the direction of vu, v̂

⊥
u the unit vector in the direction of v⊥

u = Jvu, and similarly
for v̂s and v̂⊥

s . Define the standard Laplace transform for τ -dependent functions h by

Lτ {h(τ)} (s) :=
∫ ∞

0
h(τ) e−sτ dτ.

Then, by “going back” along the manifolds Γu
ε and Γs

ε toward a, the following is obtainable.
Theorem 2.10 (perturbed saddle trajectory). The perturbation of aε(t) from a can be rep-

resented through projections to the directions v̂⊥
u and v̂⊥

s by

(2.23)
(aε(t)− a) · v̂⊥

u = εαu(t) +O (
ε2
)

(aε(t)− a) · v̂⊥
s = εαs(t) +O (

ε2
)
⎫⎬
⎭ ,
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Figure 2. Locating the perturbed hyperbolic trajectory in a time-slice t. The components of the vector
aε(t)− a in the directions v⊥

u and v⊥
s , αu and αs, are characterized in Theorem 2.10.

in which the leading-order displacements are

(2.24)
αu(t) := Lτ

{
g (a, t− τ) · v̂⊥

u

}
(−λs)

αs(t) := −Lτ

{
g (a, t+ τ) · v̂⊥

s

}
(λu)

⎫⎬
⎭ .

Hence, aε(t)’s location can be described in the orthogonal system of unit vectors (v̂u, v̂
⊥
u ) by

(2.25) aε(t) = a+ ε

[
αu(t)v̂

⊥
u +

αu(t) (v̂u · v̂s)− αs(t)

v̂u ∧ v̂s
v̂u

]
+O(ε2)

in terms of αu,s(t) defined in (2.23).
Proof. See section 3.5.
Remark 2.11. The orthogonal system

(
v̂s, v̂

⊥
s

)
could be used alternatively in (2.25) by

simply performing the interchange u ↔ s throughout.
Remark 2.12. The behavior of g (a, ·) on both semi-infinite lines (−∞, t) and (t,∞) is

needed to determine the location of the saddle at any fixed time t.
Remark 2.13. Theorem 2.10 provides an important tool in flow control [2, 62] for which

the time-dependent hyperbolic trajectory may need to be controlled through an introduced
perturbation g.

Remark 2.14. While the location of the perturbed hyperbolic trajectory can be imputed
using exponential dichotomies of a linearized equation [62], Theorem 2.10 provides a crisp
formula for this process. The Laplace transform representation (2.23) enables quick compu-
tation using canned software packages and may be particularly relevant in control theoretical
applications.
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3. Proofs.

3.1. Proof of Theorem 2.1 (unstable manifold’s normal displacement). The proof here
mirrors the intermediate stages of the proof of the Melnikov function by Guckenheimer and
Holmes [26], and particularly by Holmes [32], in which the divergence-free nature of f is
relaxed. However, the derivation will be presented in detail in the interests of coherence,
since several adjustments are needed; such as the performance of the calculation at a movable
point x̄u(p) rather than a fixed location, the emphasis on locating the manifold rather than
distances between manifolds, the lack of necessity of a homoclinic connection, the legitimacy of
discarding higher-order terms, and the potential divergence of the Melnikov expression. This
last issue is also related to the possible divergence of a boundary term in going from (20) to (21)
in Holmes [32]. Most geometric Melnikov developments following formal perturbative analysis
[26, 4, 32] discard the O(ε) terms in the Melnikov integral, which actually needs additional
consideration since an integration over a noncompact interval needs to be performed. All
these issues are dealt with in this proof.

Begin by defining xu
1 by

(3.1) xu
ε (p, τ) = x̄u(τ − t+ p) + εxu

1(p, τ, ε).

Given the O(ε)-closeness of xu
ε (p, τ) and x̄u(τ − t+ p), this means that

(3.2) |xu
1(p, τ, ε)| ≤ K for τ ∈ [−∞, T ],

for a K independent of both τ and ε ∈ [0, ε0] for some ε0. Now define the preliminary unstable
Melnikov function by

(3.3) Mu
ε (p, τ) := f (x̄u(τ − t+ p)) ∧ xu

1(p, τ, ε).

Note that

(3.4) du(p, t, ε) = ε f̂⊥ (x̄u(p)) · xu
1(p, t, ε) = ε

f (x̄u(p))

|f (x̄u(p))| ∧ xu
1(p, t, ε) = ε

Mu
ε (p, t)

|f (x̄u(p))| ,

and hence Mu
ε (p, t) carries information on the movement of the manifold in the direction

perpendicular to f(x̄u(p)). Taking the derivative of Mu
ε (p, τ) in (3.3) with respect to τ (at

fixed t and p),

∂Mu
ε

∂τ
=

[
Df (x̄u(τ−t+p))

∂x̄u(τ−t+p)

∂τ

]
∧ xu

1 (p, τ, ε)

+ f (x̄u(τ−t+p)) ∧ ∂xu
1(p, τ, ε)

∂τ
= [Df (x̄u(τ−t+p)) f (x̄u(τ−t+p))] ∧ xu

1 (p, τ, ε)

+ f (x̄u(τ−t+p)) ∧ [f (xu
ε (p, τ)) + εg (xu

ε (p, τ), τ)−f (x̄u(τ−t+p))]
ε

= [Df (x̄u(τ−t+p)) f (x̄u(τ−t+p))] ∧ xu
1 (p, τ, ε)

+ f (x̄u(τ−t+p)) ∧ [Df (x̄u(τ−t+p))xu
1(p, τ, ε)]

+ f (x̄u(τ−t+p)) ∧ g (x̄u(τ−t+p), τ)

+ ε f (x̄u(τ−t+p))∧
[
1

2
xu
1(p,τ,ε)

TD2f (y1)+Dg (y2,τ)

]
xu
1(p,τ,ε) .(3.5)
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The initial steps in the above calculations have utilized the facts that x̄u(τ−t+p) is a solution
to (2.1) when ε = 0, and xu

ε (p, τ) is similarly a solution when ε �= 0. The final step arises
from the error terms in Taylor’s theorem, and y1 and y2 are vectors located within εK of
x̄u(τ − t+ p). The following easily verifiable identity for 2 × 2 matrices A and 2 × 1 vectors
b and c will be useful:

(Ab) ∧ c+ b ∧ (A c) = (TrA) (b ∧ c) .

Choosing A = Df (x̄u(τ − t+ p)), b = f (x̄u(τ − t+ p)), and c = xu
1(p, τ, ε) enables (3.5) to

be written as

∂Mu
ε

∂τ
= ∇ · f (x̄u(τ − t+ p))Mu

ε + f (x̄u(τ − t+ p)) ∧ g (x̄u(τ − t+ p), τ)

+ ε f (x̄u(τ − t+ p)) ∧
[
1

2
xu
1(p, τ, ε)

TD2f (y1) +Dg (y2, τ)

]
xu
1 (p, τ, ε) .(3.6)

Suppose Mu(p, τ) satisfies the same boundary condition at τ → −∞ as Mu
ε (p, τ), namely,

that Mu → 0, and that Mu solves (3.6), in which the ε-term is ignored; that is,

(3.7)
∂Mu

∂τ
= ∇ · f (x̄u(τ − t+ p))Mu + f (x̄u(τ − t+ p)) ∧ g (x̄u(τ − t+ p), τ) .

The solution of this linear equation for Mu involves using the integrating factor

μ(τ) := exp

[
−
∫ τ

0
∇ · f (x̄u(ξ − t+ p)) dξ

]
,

after which one obtains

(3.8)
∂

∂τ
[μ(τ)Mu(p, τ)] = μ(τ)f (x̄u(τ − t+ p)) ∧ g (x̄u(τ − t+ p), τ) .

Integration of (3.8) from L to t leads to

(3.9) μ(t)Mu(p, t)−μ(L)Mu(p, L)=

∫ t

L
μ(τ)f (x̄u(τ−t+p)) ∧ g (x̄u(τ−t+p), τ) dτ.

The second term is indeterminate in the limit L → −∞, since the integrating factor μ is
generically unbounded. However, note that

|μ(L)Mu(p, L)| = |f (x̄u(L− t+ p)) ∧ xu
1(L)| exp

[∫ 0

L
∇ · f (x̄u(ξ − t+ p)) dξ

]
.

Since f converges to zero exponentially (with rate λu) in this limit while xu
1 remains bounded,

the wedge product can be bounded by K1e
λuL, where K1 is a constant. On the other hand,

the integrand of μ approaches λu + λs in this limit, since this is the sum of the eigenvalues at
the limiting point a. Thus, μ is bounded by K2e

−(λu+λs)L. Hence

lim
L→−∞

|μ(L)Mu(p, L)| ≤ lim
L→−∞

K1K2e
−λsL = 0



1110 SANJEEVA BALASURIYA

since λs < 0. For completeness, the convergence of the integral in (3.9) is now examined. The
term |f ∧ g| is bounded by K3e

λuτ since f has exponential decay to zero and g is bounded,
and μ is bounded by K2e

−(λu+λs)τ , as mentioned previously. Thus, the integrand is bounded
by K3K2e

−λsτ , which is integrable over (−∞, 0). Thus, taking the limit L → −∞ in (3.9)
yields

(3.10)

Mu(p,t) =

∫ t

−∞
exp

[∫ t

τ
∇ · f (x̄u(ξ − t+ p)) dξ

]
f (x̄u(τ − t+ p)) ∧ g (x̄u(τ − t+ p), τ) dτ,

in which the improper integral converges. The change of variable τ − t + p → τ results in
(2.7).

It remains to show that the solution to (3.6) is within O(ε) of (3.7), which is not obvious
since integration over the noncompact domain (−∞, t) is needed for the solution. Subtracting
(3.7) from (3.6) gives

(3.11)
∂

∂τ
[Mu

ε −Mu] = ε f ∧
[
1

2
xu
1(p, τ, ε)

TD2f (y1) +Dg (y2, τ)

]
xu
1 ,

where (when omitted) the spatial argument is x̄u(τ − t + p) and the temporal argument is
τ . When considering τ ∈ (−∞, t), xu

1(p, τ, ε) remains bounded by K. The matrix D2f(y1)
also remains bounded, since y1 lies within εK of points in the unstable manifold segment
x̄u(τ − t+p) and thus can be forced to lie on a compact set. A similar argument works for the
first argument of Dg (y2, τ), and the second argument offers no difficulty since it is assumed
that Dg is bounded in time as well. The prefactor term f (x̄u(τ − t+ p)) has a stronger bound
because of the exponential decay with rate λu. Thus, there exists a constant K4 such that
the right-hand side of (3.11) is bounded by a term εK4e

λuτ . Hence

−εK4e
λuτ ≤ ∂

∂τ
[Mu

ε (p, τ, ε)−Mu(p, τ)] ≤ εK4e
λuτ .

Consider integrating the above from −∞ to t and note from (3.3) that Mu
ε goes to zero as

τ → −∞, which Mu is also assumed to obey. This enables the bound

(3.12) |Mu
ε (p, t)−Mu(p, t)| ≤ ε

K4

λu
eλut,

and thus Mu
ε (p, t) = Mu(p, t) +O(ε). Applying this to (3.4) yields (2.6).

3.2. Proof of Theorem 2.3 (unstable manifold’s tangential displacement). Define the
“tangential version” of (3.3) by

(3.13) Bu
ε (p, τ) := f (x̄u(τ − t+ p)) · xu

1(p, τ, ε) = fT (x̄u(τ − t+ p))xu
1 (p, τ, ε).

Note from (2.8) that xu
ε is chosen such that it is located in the direction of f⊥ with respect to

x̄(0) in the time-slice t− p, and hence Bu
ε (p, t− p) = 0. Now

(3.14) cu(p, t, ε) = ε f̂ (x̄u(p)) · xu
1(p, t, ε) = ε

Bu
ε (p, t)

|f (x̄u(p))| .
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Taking the τ -derivative of Bu
ε (p, τ) in (3.13) at fixed t and p, and utilizing the expression for

the derivative of xu
1 as used in the derivation of (3.5), one obtains

∂Bu
ε

∂τ
= fT (x̄u(τ − t+ p)) [Df (x̄u(τ − t+ p))xu

1(p, τ, ε) + g (x̄u(τ − t+ p), τ)]

+
∂fT (x̄u(τ − t+ p))

∂τ
xu
1(p, τ, ε)

+ ε f (x̄u(τ−t+p))T
[
1

2
xu
1(p, τ, ε)

TD2f (y1) +Dg (y2, τ)

]
xu
1 (p, τ, ε) ,(3.15)

where y1,2 are as described in (3.5). Now note that

∂f (x̄u(τ − t+ p))

∂τ
= Df (x̄u(τ − t+ p))

∂x̄u(τ − t+ p)

∂τ
= Df (x̄u(τ − t+ p)) f (x̄u(τ − t+ p)) ;

i.e., f satisfies the equation of variation associated with (2.1) when ε = 0. Therefore,

(3.16)
∂

∂τ
f = (Df) f and

∂

∂τ
fT = fT (Df)T

with each quantity being evaluated at x̄u(τ − t+ p). Substituting in (3.15),

(3.17)
∂

∂τ

[
fTxu

1

]
= fT

[
(Df)T+Df

]
xu
1+fT g+ε fT

[
1

2
(xu

1)
TD2f (y1)+Dg (y2, τ)

]
xu
1 ,

where (when omitted) the spatial arguments are x̄u(τ − t + p) and the temporal argument
is τ . Even if the ε-term were discarded, (3.17) is not a closed equation for Bu = fTxu

1 , and
the Melnikov strategy adopted for solving for Mu

ε cannot be used. Now note that xu
1 can be

written in terms of its components in the two perpendicular directions f̂ and f̂⊥ by

xu
1 =

fTxu
1

|f | f̂ +
f ∧ xu

1

|f | f̂⊥ =
Bu

ε

|f |2 f +
Mu

ε

|f |2 f
⊥.

With the definition of Ωu in (2.10), (3.17) can be written as

∂Bu
ε

∂τ
=

fT
[
(Df)T +Df

]
f

|f |2 Bu
ε +Ωu(τ − t+ p)Mu

ε (p, τ) + fTg

+ ε fT
[
1

2
(xu

1)
T D2f (y1) +Dg (y2, τ)

]
xu
1 .(3.18)

The linear coefficient in (3.18) simplifies to

fT
[
(Df)T +Df

]
f

|f |2 =
∂fT

∂τ f + fT ∂f
∂τ

|f |2 =
∂
∂τ

[
fT f

]
|f |2 =

1

|f |2
∂

∂τ
|f |2 = ∂

∂τ

(
ln |f |2

)
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through the usage of the variational equations (3.16). Moreover,

Ωu(τ − t+ p)Mu
ε (p, τ) = Ωu(τ − t+ p)Mu(p, τ) + Ωu(τ − t+ p) [Mu

ε (p, τ)−Mu(p, τ)] ,

enabling (3.18) to become

∂Bu
ε

∂τ
=

∂

∂τ

(
ln |f |2

)
Bu

ε +Ωu(τ − t+ p)Mu(p, τ) + fTg

+ ε fT
[
1

2
(xu

1)
T D2f (y1) +Dg (y2, τ)

]
xu
1

+Ωu(τ − t+ p) [Mu
ε (p, τ)−Mu(p, τ)] .(3.19)

Now, the last two lines of (3.19) are O(ε) terms—a point which will be elaborated on later.
Suppose Bu(p, τ) is the solution to the equation in which these terms are ignored, i.e.,

∂Bu

∂τ
=

∂

∂τ

(
ln |f |2

)
Bu +Ωu(τ − t+ p)Mu(p, τ) + fTg,(3.20)

which moreover satisfies the same “initial” condition as Bu
ε , namely, Bu(p, t − p) = 0. This

has an integrating factor

μ(τ) := exp

[
−
∫ τ

t

∂

∂u
ln |f (x̄u(u− t+ p))|2 du

]
=

|f (x̄u(p))|2
|f (x̄u(τ − t+ p))|2 ;

using which (3.20) can be represented by

(3.21)
∂

∂τ

[
Bu(p, τ)

|f (x̄u(τ − t+ p))|2
]
=

Ωu(τ − t+ p)Mu(p, τ) + fTg

|f (x̄u(τ − t+ p))|2 .

While it is clear from (3.13) that Bu → 0 as τ → −∞, this condition cannot be applied
to (3.21) because the denominator |f |2 also goes to zero (and indeed does so faster than
the numerator). Hence, (3.21) cannot be integrated from −∞ as was done for the normal
component. This highlights the necessity of another condition at a finite time, which in this
case is Bu(p, t− p) = 0, as reflected in (2.8). Integrating (3.21) from t− p to t, and utilizing
Bu(p, t− p) = 0,

Bu(p, t)

|f (x̄u(p))|2 =

∫ t

t−p

Ωu(τ−t+p)Mu(p, τ) + fT (x̄u(τ−t+p))g (x̄u(τ−t+p), τ)

|f (x̄u(τ−t+p))|2 dτ.

By changing the variable of integration in the form τ − t+ p → τ , (2.12) is obtained.
It remains to argue that the terms neglected in (3.19) yield higher-order corrections to Bu.

The terms explicitly with an ε in front in (3.19) have a specific bound as argued in section 3.1,
and since the integration here is over a finite interval, their contribution remains O(ε). The
final term in (3.19) can be bounded by

|Ωu(τ − t+ p) [Mu
ε (p, τ)−Mu(p, τ)]| ≤ ε |Ωu(τ − t+ p)| K4

λu
eλuτ ≤ εK5e

λuτ

by using (3.12) at a general point τ , and then by realizing from (2.10) that Ωu remains bounded
since it approaches a constant in the limit as τ → −∞ (Df converges to the local linearization
at a, and f̂ → v̂u). Therefore, the contribution from this term also remains O(ε), implying
that Bu

ε (p, t) and Bu(p, t) differ by at most O(ε). Applying this to (3.14) yields (2.11).
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3.3. Proof of Theorem 2.7 (stable manifold’s normal displacement). Adopt an expan-
sion similar to (3.1),

(3.22) xs
ε(p, τ) = x̄s(τ − t+ p) + εxs

1(p, τ, ε),

now valid for τ ∈ [T,∞], and define M s
ε (p, t) analogously to Mu

ε (p, t) in section 3.1. Following
the same argument as in section 3.1, M s(p, t) also obeys (3.8). Integrating (3.8) from τ = t
to L and taking the limit as L → ∞ gives the desired result. The convergence argument and
the legitimacy of neglecting the O(ε) terms are exactly as given for the proof of Theorem 2.1.

3.4. Proof of Theorem 2.8 (stable manifold’s tangential displacement). This proof is
identical to that of Theorem 2.3 as given in section 3.2.

3.5. Proof of Theorem 2.10 (hyperbolic trajectory location). Consider applying the
limit p → −∞ to

f̂⊥ (x̄u(p)) · [xu
ε (p, t)− x̄u(p)] = ε

Mu(p, t)

|f (x̄u(p))| +O(ε2).

The left-hand side converges to v̂⊥
u · [aε(t)− a]. In analyzing the limit on the O(ε) term on

the right, it is convenient to represent Mu by employing the change of integration variable
τ → τ − t+ p as given in (3.10) in the proof of Theorem 3.1. The limit of this leading-order
term is then

Ξu= lim
p→−∞

∫ t

−∞
exp

[∫ t

τ
∇ · f (x̄u(ξ−t+p)) dξ

]
f (x̄u(τ−t+p))

|f (x̄u(p))| ∧ g (x̄u(τ−t+p), τ) dτ

= lim
p→−∞

∫ t

−∞
exp

[∫ t

τ
∇·f (x̄u(ξ−t+p)) dξ

]|f (x̄u(τ−t+p))|
|f (x̄u(p))| g⊥

u (x̄
u(τ−t+p), τ) dτ,(3.23)

in which g⊥
u is the component of g in the direction of v̂⊥

u . Now, for suitably negative p, it is
claimed that the integrand above is bounded by

(3.24) H(τ) := C eλs(t−τ) g⊥
u (a, τ)

for some constant C. This claim works because of the hypotheses given at the beginning of
section 2—the smoothness of f and the boundedness of g. Since x̄u(τ−t+p) → a exponentially
as p → −∞, g⊥

u remains bounded. Moreover, the quantity

|f (x̄u(τ − t+ p))|
|f (x̄u(p))| → Aeλu(τ−t+p)

Aeλup
= eλu(τ−t)

and thus can be bounded by a constant times the function on the right. Finally, ∇ · f →
TrDf (a) = λu + λs, and hence there exists K4 such that

exp

[∫ t

τ
∇ · f (x̄u(ξ − t+ p)) dξ

]
≤ exp

[∫ t

τ
K4 (λu + λs) dξ

]
= eK4e(λu+λs)(t−τ).

Putting these bounds together yields a bounding function of the form (3.24). Now, (3.24) is
integrable over (−∞, t), and by the Lebesgue dominated convergence theorem, the limit p →



1114 SANJEEVA BALASURIYA

−∞ can be moved inside the integral in (3.23). Applying a term-by-term limit analogously
to what has been described above,

Ξu=

∫ t

−∞
lim

p→−∞ e(λu+λs)(t−τ)Aeλu(τ−t+p)

Aeλup
g⊥
u (a, τ) dτ=

∫ t

−∞
eλs(t−τ)g⊥

u (a, τ) dτ,

after which a straightforward shift in the integration variable yields the first equation in (2.23).
The second equation in (2.23) is obtained by applying the limit p → ∞ to

f̂⊥ (x̄s(p)) · [xs
ε(p, t)− x̄s(p)] = ε

M s(p, t)

|f (x̄s(p))| +O(ε2).

The details are analogous to the above proof and will be omitted.
Obtaining the expression (2.25) relies on applying straightforward geometry, since the

projections of aε(t)− a in the potentially nonorthogonal directions v̂⊥
u and v̂⊥

s are known via
(2.23). The linear independence of vu and vs ensures that v̂u ∧ v̂s �= 0. Once again, the
details will be omitted.

Remark 3.1. The above calculations used the normal displacements as given in Theo-
rems 2.1 and 2.3. It is not possible to use the tangential displacement expressions in Theo-
rems 2.3 and 2.8 to arrive at the displacement of the saddle point, since, for example, using
(2.11) and (2.12) gives a potentially divergent result as p → −∞. This is caused by the
boundary term arising from integrating (3.21), Bu(p, t − p)/ |f (x̄u(p))|, being indeterminate
in this limit, and thus the expression (2.12) is valid strictly for finite p.

4. Duffing oscillator. The Duffing oscillator in the form as studied by Holmes andWhitley
[33], Wiggins [57, 56], and Mancho and collaborators [39, 34] will be examined, and the location
of the hyperbolic trajectory and its invariant manifolds will be computed using the results
derived in this article. Consider

(4.1) ẍ− x+ x3 + δ ẋ = γ force(t),

in which the damping δ > 0 and forcing γ > 0 are both considered small, and the dot denotes
the time derivative. Significant research has been done on this equation, for example, in
establishing chaotic motion when δ = 0, force(t) = cos t, and 0 < γ � 1 [33, 57, 56], or when
periodic orbits are persistent [37, 55]. When δ = 0 and γ = 0, the Duffing oscillator (4.1) can
be written as

(4.2)
ẋ = y
ẏ = x− x3

}
.

This is a Hamiltonian system possessing a “figure-of-eight” phase space structure, with a
saddle point at the origin. See Figure 3, in which the stable and unstable manifolds of the
origin are indicated in the form Γσ

i , in which σ = u, s, and i represents the quadrant into which
that branch of manifold extends from the saddle point. The behavior of the saddle point and
these associated manifolds when either γ or δ is turned on will be examined. In preparation
for this, note that Γu

1 = Γs
4 and Γu

3 = Γs
2 form two homoclinic loops, and the symmetry of
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Figure 3. Phase portrait of the undamped, unforced Duffing equation (4.2), with the saddle point at the
origin and the four branches of its invariant manifolds in bold.

the system ensures that it is sufficient to obtain information concerning the perturbation of
Γu
1 = Γs

4. This homoclinic manifold can be parametrized by

(4.3) x̄(p) =

(
x̄(p)
ȳ(p)

)
=

( √
2 sech p

−√
2 sech p tanh p

)
,

which works for either Γu
1 or Γ

s
4. Straightforward linearization of the vector field f =

(
y, x− x3

)T
in (4.2) enables identification of the appropriate eigensystem at the origin to be

λu = 1 , v̂u =
1√
2

(
1
1

)
; λs = −1 , v̂s =

1√
2

( −1
1

)
.

The projected rate of strain associated with (4.2) along the homoclinic solution (4.3) is

Ωu,s(τ) =

√
2 (cosh(2τ) − 5) (3 cosh(2τ)− 5) sech5(τ)√

9− 6 cosh(2τ) + cosh(4τ)
.

4.1. No damping and small forcing. When δ = 0 and 0 < γ � 1, (4.2) becomes

(4.4)
ẋ = y
ẏ = x− x3 + γ force(t)

}
,
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in which γ is the small parameter, and g = (0, force(t))T . Thus,

(4.5)
f (x̄(τ)) ∧ g (x̄(τ), τ + t− p) = ȳ(τ) force (τ + t− p)

f (x̄(τ)) · g (x̄(τ), τ + t− p) =
(
x̄(τ)− [x̄(τ)]3

)
force (τ + t− p)

}
.

Since ∇· f = 0, the expression for the unstable Melnikov function (2.7) simplifies. For a given
forcing, it can be numerically (and, in some cases, analytically) calculated easily, and the
unstable tangential function (2.12) can subsequently be numerically computed as well. The
components of the saddle movement (2.24) are

αu
s
=

1√
2
Lτ {force(t∓ τ)} (1) = 1√

2

∫ ∞

0
force(t∓ τ)e−τ dτ,

using the top and bottom signs, respectively, based on which the perturbed saddle location
(2.25) is

(4.6) a(t) =
γ

2

⎛
⎜⎜⎝

−
∫ ∞

0
[force(t− τ) + force(t+ τ)] e−τ dτ∫ ∞

0
[force(t− τ)− force(t+ τ)] e−τ dτ

⎞
⎟⎟⎠+O(γ2).

These expressions will now be used to compute the structures for the “standard” forcing
force(t) = cos t [33, 57, 56] and then later for a time-aperiodic situation. If force(t) = cos t,
the above expressions enable the unstable Melnikov function to be written as

Mu(p, t) = −
√
2

∫ p

−∞
sech(τ) tanh(τ) cos (τ + t− p) dτ

= −
√
2

[
cos t

∫ p

−∞
sech(τ) tanh(τ) cos (τ − p) dτ

− sin t

∫ p

−∞
sech(τ) tanh(τ) sin (τ − p) dτ

]

= −
√
2A(p) cos [t+ φ(p)] ,

in which A(p) and φ(p) are the modulus and argument of

(4.7)

G(p) := e−ip

∫ p

−∞
sech(τ) tanh(τ) eiτ dτ = −sech (p) + ep(1 + i) F

(
1+i

2
, 1,

3+i

2
;−e2p

)
,

where the calculation was performed by dividing and multiplying by A(p) following similar
ideas [7, 6]. While the first equality in (4.7) defining G is adequate for computational pur-
poses, the derivation of the alternative second form in terms of the hypergeometric function
F (a, b, c; z) as defined in (A.1) is relegated to Appendix A. It is clear from (2.12) that Bu is
also periodic in t, but numerical evaluation is needed. Figure 4 shows a comparison between
Mu(0.35, t) and Bu(0.35, t), which shows that the tangential and normal displacements of Γu

1
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Figure 4. Mu(p, t) (solid) and Bu(p, t) (dashed) for p = 0.35 in the case of no damping and small periodic
forcing.

are of comparable size at p = 0.35. The location of the perturbed manifold Γu
1(γ) can be

numerically determined by keeping only the O(γ) term in Remark 2.6. A numerical deter-
mination of this appears in Figure 5, which is drawn in the time-slice t = 3 for the choice of
the small parameter γ = 0.1. The solid curve is the perturbed manifold, whereas the dashed
curve is the unperturbed one. The dotted curve indicates the incorrect calculation for the
perturbed unstable manifold that would occur if the tangential displacement were ignored.
When picturing the manifold thus in a time-slice, the tangential displacement appears to give
a less significant effect than the normal displacement for the obvious reason that moving a
curve tangentially to itself by a small amount initially takes the point toward other points on
the curve.

The locations of the other perturbed manifolds Γs
4(γ), Γ

s
2(γ), and Γu

3(γ) can be obtained
easily using symmetry. The intersections of these manifolds leads to chaotic motion but will
not be analyzed since this is not the focus of this article. The location of the perturbed
hyperbolic trajectory is from (4.6),

(4.8) aγ(t) =
γ

2

( − cos t
sin t

)
+O(γ2),

consistent with existing alternative derivations [34, 39].
Now, as a genuinely time-aperiodic example, consider

force(t) = tanh t,

which transitions smoothly from a constant forcing in one direction to the other (an alternative,
and much easier to compute, example would be the “switching on” of a force at a specific
time, which could be modeled with the Heaviside function by force(t) = H(t− t0)). Figures 6
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Figure 5. Perturbed unstable manifold Γu
1 (γ) (solid) in the time-slice t = 3 in the case of no damping and

periodic forcing with γ = 0.1, computed using Remark 2.6. The dashed curve is the unperturbed manifold, while
the dotted curve is that computed by ignoring the tangential displacement.

and 7 display numerically computed Mu and Bu variations, and it is apparent that Bu is
of the same order as Mu and cannot be legitimately ignored. The corresponding unstable
manifold in the time-slice t = −3 is shown in Figure 8. The fully three-dimensional unstable
manifold Γu

1(γ) computed to leading order in γ is shown in Figure 9. Such calculations can be
performed in a straightforward manner for any reasonable forcing function, providing a new
tool for analysis of arbitrary forcing in the Duffing equation to complement existing numerical
algorithms [39].

The time variation of the perturbed hyperbolic trajectory can be explicitly determined
using (4.6) and is

(4.9) aγ(t) = γ

(
e−t tan−1 et − et cot−1 et

1− e−t tan−1 et − et cot−1 et

)
+O(γ2).

In the limit t → −∞, the leading-order location approaches (γ, 0), while it approaches (−γ, 0)
as t → ∞. It was possible to compute this behavior with hardly any effort using Theorem 2.10.
The leading-order locus of this hyperbolic trajectory is shown in Figure 10 for γ = 0.1; it
progresses from (−0.1, 0) to (0.1, 0) as time varies from −∞ to ∞.
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Figure 6. Mu(p, t) (solid) and Bu(p, t) (dashed) for p = 0.4 in the case of no damping and with force(t) =
tanh t.
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Figure 7. Bu(p, t) for δ = 0 and force(t) = tanh t.
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Figure 8. Perturbed unstable manifold Γu
1 (γ) (solid) in the time-slice t = −3, in which δ = 0, force(t) =

tanh t, and γ = 0.06, computed using Remark 2.6. The unperturbed manifold (dashed) and the incorrect
manifold obtained by ignoring the tangential displacement (dotted) are also shown.
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Figure 9. Perturbed unstable manifold Γu
1 (γ) in the augmented (x, y, t) phase space for δ = 0, γ = 0.1, and

force(t) = tanh t, computed using Remark 2.6.
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Figure 10. The time variation of the perturbed hyperbolic trajectory when δ = 0, γ = 0.1, and force(t) =
tanh t.
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Figure 11. Mu(p) (solid) and Bu(p) (dashed) for the situation of no forcing but small damping.

4.2. No forcing and small damping. When γ = 0 and 0 < δ � 1, (4.2) becomes

(4.10)
ẋ = y
ẏ = x− x3 − δy

}
,

which is well understood since it is autonomous and possesses a Lyapunov function [57].
Nevertheless, it is instructive to apply the results of this article to this situation. The unstable
Melnikov function Mu(p, t) is easily seen from (2.7) to be independent of t in this autonomous
situation and is

Mu(p) = −
∫ p

−∞
[ȳ(τ)]2 dτ = −2

∫ p

−∞
sech2τ tanh2τ dτ = −2

3

[
1 + tanh3 p

]
.

Inspection of (2.12) reveals that Bu(p, t) also inherits this independence, as must happen
since the perturbed system is also autonomous. A comparison of Mu(p) with the numerically
evaluated Bu(p) appears in Figure 11. The function Bu here has significant contribution only
in a localized region of p. However, as Mu → 1 as p → ∞, the perturbative expansion in ε
given in (2.6) loses control as one proceeds along the manifold.
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Figure 12. The manifold Γu
1 (δ) (solid) in the unforced Duffing equation computed using Remark 2.6 with

δ = 0.1. The unperturbed (undamped) manifold (dashed) and the incorrect manifold obtained by omitting the
tangential displacement (dotted) are also pictured.

The corresponding manifold Γu
1(δ) appears as the solid curve in Figure 12, where, as in

Figure 8, the dashed curve is the unperturbed manifold and the dotted one the incorrect
calculation of the perturbed manifold if the tangential component is ignored. The manifold
wraps inward, as is well known, but how much it bends inward is underestimated if only the
normal displacement is used.

If using Theorem 2.10 to calculate the displacement of the saddle point in this autonomous
situation, both αu and αs turn out to be zero to leading order in δ. This is comforting, since
it is clear from (4.10) that the saddle point continues to be at the origin.

5. Concluding remarks. The normal displacement between perturbed invariant mani-
folds, associated with the function of Melnikov [40], has been the main focus in the geometric
analysis of invariant manifolds in the existing literature. A possible motivation for this is its
connection to manifold intersections and chaos [26, 4, 57]. A wide range of applications exists:
in oscillations [32, 51, 56, 33, 61, 59], in fluid transport [3, 48, 46, 29, 13, 7, 8, 10, 5], and
recently also in combustion [12, 15] and in ecology [11, 9]. A pleasing theoretical formula-
tion of manifold intersections in terms of a Lyapunov–Schmidt reduction [17, 44, 16, 14] also
yields an alternative derivation of the Melnikov function, though its geometric meaning as a
leading-order normal displacement is hidden with this approach. The existing (most general)
normal displacement from a geometric perspective [32] suggests the correct formula, which
was reaffirmed in the present article.
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In contrast, the tangential displacement has never been studied. While not related to
manifold intersections, this is still interesting both mathematically and from an applied per-
spective. The nonclosed nature of the equation arising from mimicking the geometric Melnikov
approach implies that additional theoretical work was needed and has been provided in this
article. The extant literature also provides no clues as to whether the presence of a tangential
displacement was even known to exist, and that it was not possible to find the leading-order
displacement of the manifolds with only “normal” information. However, as demonstrated in
Figures 4 and 6 the tangential displacement may be as large as the normal displacement in
some instances, and ignoring it is not justifiable. This article is thus the first to truly enable
the computation of the perturbed manifold in the general time-aperiodic setting. There are
immediate applications in geophysical fluid mechanics, in which determining time-dependent
flow separators in barotropic (weakly two-dimensional) flows has been a significant research
area for some time [43, 29, 46, 39, 13, 50, 24, 47, 28, 45, 52, 35]. Recent work by the author
and collaborators in traveling wave problems in combustion and ecology [12, 15, 11, 9] yields
another application: determining the perturbation to the traveling wave profile by applying
the theory to the time-autonomous situation. Since a traveling wave is exactly associated with
a heteroclinic trajectory, determining the perturbation to such a trajectory (i.e., determining
the location of the persistent heteroclinic manifold) provides a direct method of quantifying
the perturbation to the wave profile. The relaxation of area-preservation is particularly im-
portant in these traveling wave situations, since the governing reaction-diffusion equations
generically yield non-Hamiltonian ordinary differential equations.

A side result in this article is the Laplace transform method for locating the perturbed
hyperbolic trajectory (“moving saddle stagnation point”). The ease of use of the formulæ in
Theorem 2.10 should make this a significant new tool in many applied areas. Once again,
geophysical flows are an obvious application. There is also strong potential for using this
tool in flow control theory [2] in determining perturbations which control the location of the
time-dependent analogue of a stagnation point. Being presented in the language of Laplace
transforms renders it particularly attractive to control theory.

Appendix A. Derivation of (4.7). This section outlines the derivation of the second
equality in (4.7), in which the unstable Melnikov function associated with time-sinusoidal
forcing of the Duffing equation is given in terms of the Gauss hypergeometric function F .
This function can be expressed in terms of Euler’s integral form [1] as

(A.1) F (a, b, c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

sa−1 (1− s)c−a−1

(1− zs)b
ds,

in which Γ is the Gamma function. Now, the integral in the definition for G in (4.7) can be
expressed as∫ p

−∞
sech τ tanh τ eiτdτ =

∫ p

−∞
sinh τ sech 2τ eiτdτ

=
[
cosh τ sech 2τ eiτ

]p
−∞−

∫ p

−∞
cosh τ

(−2 sech 2τ tanh τ + i sech 2τ
)
eiτdτ

= sech p eip + 2

∫ p

−∞
sech τ tanh τ eiτdτ −

∫ p

−∞
i sech τ eiτdτ.
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Hence∫ p

−∞
sech τ tanh τ eiτdτ = − sech p eip + i

∫ p

−∞
sech τeiτdτ

= − sech p eip + i

∫ p

−∞

2e(1+i)τ

e2τ + 1
dτ

= − sech p eip + ie(1+i)p

∫ 1

0

s(−1+i)/2

1 + e2ps
ds

= − sech p eip + i (1− i) e(1+i)pF

(
1 + i

2
, 1,

3 + i

2
;−e2p

)
,

where the third equality is based on the substitution s = e2(τ−p) and the last uses (A.1), since

Γ
(
1+i
2

)
Γ(1)

Γ
(
3+i
2

) =
2

1 + i
= 1− i.

Substitution into (4.7) leads to the required result.

Acknowledgments. I blame this article on Gary Froyland’s manifold problems, and par-
ticularly on Georg Gottwald’s (ab)normal scepticism, which led me tangentially. Thanks
also to an anonymous referee’s computer-algebra-free derivation of equation (4.7), as given in
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