The University of Adelaide
You are here
Text size: S | M | L
Printer Friendly Version
April 2018
MTWTFSS
      1
2345678
9101112131415
16171819202122
23242526272829
30      

Search the School of Mathematical Sciences

Find in People Courses Events News Publications

Events matching "A classical construction for simplicial sets revis"

Good and Bad Vibes
15:10 Fri 23 Feb, 2007 :: G08 Mathematics Building University of Adelaide :: Prof. Maurice Dodson

Media...
Collapsing bridges and exploding rockets have been associated with vibrations in resonance with natural frequencies. As well, the stability of the solar system and the existence of solutions of Schrödinger\'s equation and the wave equation are problematic in the presence of resonances. Such resonances can be avoided, or at least mitigated, by using ideas from Diophantine approximation, a branch of number theory. Applications of Diophantine approximation to these problems will be given and will include a connection with LISA (Laser Interferometer Space Antenna), a space-based gravity wave detector under construction.
Finite Geometries: Classical Problems and Recent Developments
15:10 Fri 20 Jul, 2007 :: G04 Napier Building University of Adelaide :: Prof. Joseph A. Thas :: Ghent University, Belgium

In recent years there has been an increasing interest in finite projective spaces, and important applications to practical topics such as coding theory, cryptography and design of experiments have made the field even more attractive. In my talk some classical problems and recent developments will be discussed. First I will mention Segre's celebrated theorem and ovals and a purely combinatorial characterization of Hermitian curves in the projective plane over a finite field here, from the beginning, the considered pointset is contained in the projective plane over a finite field. Next, a recent elegant result on semiovals in PG(2,q), due to Gács, will be given. A second approach is where the object is described as an incidence structure satisfying certain properties; here the geometry is not a priori embedded in a projective space. This will be illustrated by a characterization of the classical inversive plane in the odd case. Another quite recent beautiful result in Galois geometry is the discovery of an infinite class of hemisystems of the Hermitian variety in PG(3,q^2), leading to new interesting classes of incidence structures, graphs and codes; before this result, just one example for GF(9), due to Segre, was known.
Trisection of an angle with ruler and compass
13:10 Fri 10 Aug, 2007 :: Maths G08 :: Dr John van der Hoek

It is well known that this construction is impossible, but an interesting question is whether this can be achieved to arbitrary accuracy. We show how this can be done. This construction generalizes to dividing angles into five equal parts, and so on.
Values of transcendental entire functions at algebraic points.
15:10 Fri 28 Mar, 2008 :: LG29 Napier Building University of Adelaide :: Prof. Eugene Poletsky :: Syracuse University, USA

Algebraic numbers are roots of polynomials with integer coefficients, so their set is countable. All other numbers are called transcendental. Although most numbers are transcendental, it was only in 1873 that Hermite proved that the base $e$ of natural logarithms is not algebraic. The proof was based on the fact that $e$ is the value at 1 of the exponential function $e^z$ which is entire and does not change under differentiation.

This achievement raised two questions: What entire functions take only transcendental values at algebraic points? Also, given an entire transcendental function $f$, describe, or at least find properties of, the set of algebraic numbers where the values of $f$ are also algebraic. The first question, developed by Siegel, Shidlovsky, and others, led to the notion of $E$-functions, which have controlled derivatives. Answering the second question, Polya and Gelfond obtained restrictions for entire functions that have integer values at integer points (Polya) or Gaussian integer values at Gaussian integer points (Gelfond). For more general sets of points only counterexamples were known.

Recently D. Coman and the speaker developed new tools for the second question, which give an answer, at least partially, for general entire functions and their values at general sets of algebraic points.

In my talk we will discuss old and new results in this direction. All relevant definitions will be provided and the talk will be accessible to postgraduates and honours students.

Global and Local stationary modelling in finance: Theory and empirical evidence
14:10 Thu 10 Apr, 2008 :: G04 Napier Building University of Adelaide :: Prof. Dominique Guégan :: Universite Paris 1 Pantheon-Sorbonne

To model real data sets using second order stochastic processes imposes that the data sets verify the second order stationarity condition. This stationarity condition concerns the unconditional moments of the process. It is in that context that most of models developed from the sixties' have been studied; We refer to the ARMA processes (Brockwell and Davis, 1988), the ARCH, GARCH and EGARCH models (Engle, 1982, Bollerslev, 1986, Nelson, 1990), the SETAR process (Lim and Tong, 1980 and Tong, 1990), the bilinear model (Granger and Andersen, 1978, Guégan, 1994), the EXPAR model (Haggan and Ozaki, 1980), the long memory process (Granger and Joyeux, 1980, Hosking, 1981, Gray, Zang and Woodward, 1989, Beran, 1994, Giraitis and Leipus, 1995, Guégan, 2000), the switching process (Hamilton, 1988). For all these models, we get an invertible causal solution under specific conditions on the parameters, then the forecast points and the forecast intervals are available.

Thus, the stationarity assumption is the basis for a general asymptotic theory for identification, estimation and forecasting. It guarantees that the increase of the sample size leads to more and more information of the same kind which is basic for an asymptotic theory to make sense.

Now non-stationarity modelling has also a long tradition in econometrics. This one is based on the conditional moments of the data generating process. It appears mainly in the heteroscedastic and volatility models, like the GARCH and related models, and stochastic volatility processes (Ghysels, Harvey and Renault 1997). This non-stationarity appears also in a different way with structural changes models like the switching models (Hamilton, 1988), the stopbreak model (Diebold and Inoue, 2001, Breidt and Hsu, 2002, Granger and Hyung, 2004) and the SETAR models, for instance. It can also be observed from linear models with time varying coefficients (Nicholls and Quinn, 1982, Tsay, 1987).

Thus, using stationary unconditional moments suggest a global stationarity for the model, but using non-stationary unconditional moments or non-stationary conditional moments or assuming existence of states suggest that this global stationarity fails and that we only observe a local stationary behavior.

The growing evidence of instability in the stochastic behavior of stocks, of exchange rates, of some economic data sets like growth rates for instance, characterized by existence of volatility or existence of jumps in the variance or on the levels of the prices imposes to discuss the assumption of global stationarity and its consequence in modelling, particularly in forecasting. Thus we can address several questions with respect to these remarks.

1. What kinds of non-stationarity affect the major financial and economic data sets? How to detect them?

2. Local and global stationarities: How are they defined?

3. What is the impact of evidence of non-stationarity on the statistics computed from the global non stationary data sets?

4. How can we analyze data sets in the non-stationary global framework? Does the asymptotic theory work in non-stationary framework?

5. What kind of models create local stationarity instead of global stationarity? How can we use them to develop a modelling and a forecasting strategy?

These questions began to be discussed in some papers in the economic literature. For some of these questions, the answers are known, for others, very few works exist. In this talk I will discuss all these problems and will propose 2 new stategies and modelling to solve them. Several interesting topics in empirical finance awaiting future research will also be discussed.

Betti's Reciprocal Theorem for Inclusion and Contact Problems
15:10 Fri 1 Aug, 2008 :: G03 Napier Building University of Adelaide :: Prof. Patrick Selvadurai :: Department of Civil Engineering and Applied Mechanics, McGill University

Enrico Betti (1823-1892) is recognized in the mathematics community for his pioneering contributions to topology. An equally important contribution is his formulation of the reciprocity theorem applicable to elastic bodies that satisfy the classical equations of linear elasticity. Although James Clerk Maxwell (1831-1879) proposed a law of reciprocal displacements and rotations in 1864, the contribution of Betti is acknowledged for its underlying formal mathematical basis and generality. The purpose of this lecture is to illustrate how Betti's reciprocal theorem can be used to full advantage to develop compact analytical results for certain contact and inclusion problems in the classical theory of elasticity. Inclusion problems are encountered in number of areas in applied mechanics ranging from composite materials to geomechanics. In composite materials, the inclusion represents an inhomogeneity that is introduced to increase either the strength or the deformability characteristics of resulting material. In geomechanics, the inclusion represents a constructed material region, such as a ground anchor, that is introduced to provide load transfer from structural systems. Similarly, contact problems have applications to the modelling of the behaviour of indentors used in materials testing to the study of foundations used to distribute loads transmitted from structures. In the study of conventional problems the inclusions and the contact regions are directly loaded and this makes their analysis quite straightforward. When the interaction is induced by loads that are placed exterior to the indentor or inclusion, the direct analysis of the problem becomes inordinately complicated both in terns of formulation of the integral equations and their numerical solution. It is shown by a set of selected examples that the application of Betti's reciprocal theorem leads to the development of exact closed form solutions to what would otherwise be approximate solutions achievable only through the numerical solution of a set of coupled integral equations.
Elliptic equation for diffusion-advection flows
15:10 Fri 15 Aug, 2008 :: G03 Napier Building University of Adelaide :: Prof. Pavel Bedrikovsetsky :: Australian School of Petroleum Science, University of Adelaide.

The standard diffusion equation is obtained by Einstein's method and its generalisation, Fokker-Plank-Kolmogorov-Feller theory. The time between jumps in Einstein derivation is constant.

We discuss random walks with residence time distribution, which occurs for flows of solutes and suspensions/colloids in porous media, CO2 sequestration in coal mines, several processes in chemical, petroleum and environmental engineering. The rigorous application of the Einstein's method results in new equation, containing the time and the mixed dispersion terms expressing the dispersion of the particle time steps.

Usually, adding the second time derivative results in additional initial data. For the equation derived, the condition of limited solution when time tends to infinity provides with uniqueness of the Caushy problem solution.

The solution of the pulse injection problem describing a common tracer injection experiment is studied in greater detail. The new theory predicts delay of the maximum of the tracer, compared to the velocity of the flow, while its forward "tail" contains much more particles than in the solution of the classical parabolic (advection-dispersion) equation. This is in agreement with the experimental observations and predictions of the direct simulation.

Direct "delay" reductions of the Toda equation
13:10 Fri 23 Jan, 2009 :: School Board Room :: Prof Nalini Joshi :: University of Sydney

A new direct method of obtaining reductions of the Toda equation is described. We find a canonical and complete class of all possible reductions under certain assumptions. The resulting equations are ordinary differential-difference equations, sometimes referred to as delay-differential equations. The representative equation of this class is hypothesized to be a new version of one of the classical Painleve equations. The Lax pair associated to this equation is obtained, also by reduction.
Hunting Non-linear Mathematical Butterflies
15:10 Fri 23 Jan, 2009 :: Napier LG29 :: Prof Nalini Joshi :: University of Sydney

The utility of mathematical models relies on their ability to predict the future from a known set of initial states. But there are non-linear systems, like the weather, where future behaviours are unpredictable unless their initial state is known to infinite precision. This is the butterfly effect. I will show how to analyse functions to overcome this problem for the classical Painleve equations, differential equations that provide archetypical non-linear models of modern physics.
Boltzmann's Equations for Suspension Flow in Porous Media and Correction of the Classical Model
15:10 Fri 13 Mar, 2009 :: Napier LG29 :: Prof Pavel Bedrikovetsky :: University of Adelaide

Suspension/colloid transport in porous media is a basic phenomenon in environmental, petroleum and chemical engineering. Suspension of particles moves through porous media and particles are captured by straining or attraction. We revise the classical equations for particle mass balance and particle capture kinetics and show its non-realistic behaviour in cases of large dispersion and of flow-free filtration. In order to resolve the paradoxes, the pore-scale model is derived. The model can be transformed to Boltzmann equation with particle distribution over pores. Introduction of sink-source terms into Boltzmann equation results in much more simple calculations if compared with the traditional Chapman-Enskog averaging procedure. Technique of projecting operators in Hilbert space of Fourier images is used. The projection subspace is constructed in a way to avoid dependency of averaged equations on sink-source terms. The averaging results in explicit expressions for particle flux and capture rate. The particle flux expression describes the effect of advective particle velocity decrease if compared with the carrier water velocity due to preferential capture of "slow" particles in small pores. The capture rate kinetics describes capture from either advective or diffusive fluxes. The equations derived exhibit positive advection velocity for any dispersion and particle capture in immobile fluid that resolves the above-mentioned paradox. Finally, we discuss validation of the model for propagation of contaminants in aquifers, for filtration, for potable water production by artesian wells, for formation damage in oilfields.
Quadrature domains, p-Laplacian growth, and bubbles contracting in Hele-Shaw cells with a power-law fluid.
15:10 Mon 15 Jun, 2009 :: Napier LG24 :: Dr Scott McCue :: Queensland University Technology

The classical Hele-Shaw flow problem is related to Laplacian growth and null-quadrature domains. A generalisation is constructed for power-law fluids, governed by the p-Laplace equation, and a number of results are established that are analogous to the classical case. Both fluid clearance and bubble extinction is considered, and by considering two extremes of extinction behaviour, a rather complete asymptotic description of possible behaviours is found.
Lagrangian fibrations on holomorphic symplectic manifolds III: Holomorphic coisotropic reduction
13:10 Fri 26 Jun, 2009 :: School Board Room :: Dr Justin Sawon :: Colorado State University

Given a certain kind of submanifold $Y$ of a symplectic manifold $(X,\omega)$ we can form its coisotropic reduction as follows. The null directions of $\omega|_Y$ define the characteristic foliation $F$ on $Y$. The space of leaves $Y/F$ then admits a symplectic form, descended from $\omega|_Y$. Locally, the coisotropic reduction $Y/F$ looks just like a symplectic quotient. This construction also work for holomorphic symplectic manifolds, though one of the main difficulties in practice is ensuring that the leaves of the foliation are compact. We will describe a criterion for compactness, and apply coisotropic reduction to produce a classification result for Lagrangian fibrations by Jacobians.
Quantum Billiards
15:10 Fri 7 Aug, 2009 :: Badger labs G13 Macbeth Lecture Theatre :: Prof Andrew Hassell :: Australian National University

By a "billiard" I mean a bounded plane domain D, with smooth (enough) boundary. Quantum billiards is the study of properties of eigenfunctions of the Laplacian on D, i.e. solutions of $\Delta u = Eu$, where $u$ is a function on D vanishing at the boundary, $\Delta$ is the Laplacian on D and $E$ is a real number, in the limit as $E \to \infty$. This large-E limit is the "classical limit" in which eigenfunctions exhibit behaviour related to the classical billiard system (a billiard ball moving around inside D, bouncing elastically off the boundary). I will talk about Quantum Ergodicity, which is the property that "most of" the eigenfunctions become uniformly distributed in D, asymptotically as $E \to \infty$, i.e. they are the same size, on average, in all parts of the domain D; and the stronger property of Quantum Unique Ergodicity, which is the same property with the words "most of" deleted.
A Fourier-Mukai transform for invariant differential cohomology
13:10 Fri 9 Oct, 2009 :: School Board Room :: Mr Richard Green :: University of Adelaide

Fourier-Mukai transforms are a geometric analogue of integral transforms playing an important role in algebraic geometry. Their name derives from the construction of Mukai involving the Poincare line bundle associated to an abelian variety. In this talk I will discuss recent work looking at an analogue of this original Fourier-Mukai transform in the context of differential geometry, which gives an isomorphism between the invariant differential cohomology of a real torus and its dual.
Critical sets of products of linear forms
13:10 Mon 14 Dec, 2009 :: School Board Room :: Dr Graham Denham :: University of Western Ontario, Canada

Suppose $f_1,f_2,\ldots,f_n$ are linear polynomials in $\ell$ variables and $\lambda_1,\lambda_2,\ldots,\lambda_n$ are nonzero complex numbers. The product $$ \Phi_\lambda=\Prod_{i=1}^n f_1^{\lambda_i}, $$ called a master function, defines a (multivalued) function on $\ell$-dimensional complex space, or more precisely, on the complement of a set of hyperplanes. Then it is easy to ask (but harder to answer) what the set of critical points of a master function looks like, in terms of some properties of the input polynomials and $\lambda_i$'s. In my talk I will describe the motivation for considering such a question. Then I will indicate how the geometry and combinatorics of hyperplane arrangements can be used to provide at least a partial answer.
Proper holomorphic maps from strongly pseudoconvex domains to q-convex manifolds
13:10 Fri 5 Feb, 2010 :: School Board Room :: Prof Franc Forstneric :: University of Ljubljana

(Joint work with B. Drinovec Drnovsek, Amer. J. Math., in press.) I will discuss the existence of closed complex subvarieties of a complex manifold X that are proper holomorphic images of strongly pseudoconvex Stein domains. The main sufficient condition is expressed in terms of the Morse indices and of the number of positive Levi eigenvalues of an exhaustion function on X. Examples show that our condition cannot be weakened in general. I will describe optimal results for subvarieties of this type in complements of compact complex submanifolds with Griffiths positive normal bundle; in the projective case these generalize classical theorems of Remmert, Bishop and Narasimhan concerning proper holomorphic maps and embeddings to complex Euclidean spaces.
Conformal structures with G_2 ambient metrics
13:10 Fri 19 Mar, 2010 :: School Board Room :: Dr Thomas Leistner :: University of Adelaide

The n-sphere considered as a conformal manifold can be viewed as the projectivisation of the light cone in n+2 Minkowski space. A construction that generalises this picture to arbitrary conformal classes is the ambient metric introduced by C. Fefferman and R. Graham. In the talk, I will explain the Fefferman-Graham ambient metric construction and how it detects the existence of certain metrics in the conformal class. Then I will present conformal classes of signature (3,2) for which the 7-dimensional ambient metric has the noncompact exceptional Lie group G_2 as its holonomy. This is joint work with P. Nurowski, Warsaw University.
Mathematical epidemiology with a focus on households
15:10 Fri 23 Apr, 2010 :: Napier G04 :: Dr Joshua Ross :: University of Adelaide

Mathematical models are now used routinely to inform national and global policy-makers on issues that threaten human health or which have an adverse impact on the economy. In the first part of this talk I will provide an overview of mathematical epidemiology starting with the classical deterministic model and leading to some of the current challenges. I will then present some of my recently published work which provides computationally-efficient methods for studying a mathematical model incorporating household structure. We will conclude by briefly discussing some "work-in-progess" which utilises these methods to address the issues of inference, and mixing pattern and contact structure, for emerging infections.
Estimation of sparse Bayesian networks using a score-based approach
15:10 Fri 30 Apr, 2010 :: School Board Room :: Dr Jessica Kasza :: University of Copenhagen

The estimation of Bayesian networks given high-dimensional data sets, with more variables than there are observations, has been the focus of much recent research. These structures provide a flexible framework for the representation of the conditional independence relationships of a set of variables, and can be particularly useful in the estimation of genetic regulatory networks given gene expression data.

In this talk, I will discuss some new research on learning sparse networks, that is, networks with many conditional independence restrictions, using a score-based approach. In the case of genetic regulatory networks, such sparsity reflects the view that each gene is regulated by relatively few other genes. The presented approach allows prior information about the overall sparsity of the underlying structure to be included in the analysis, as well as the incorporation of prior knowledge about the connectivity of individual nodes within the network.

Functorial 2-connected covers
13:10 Fri 21 May, 2010 :: School Board Room :: David Roberts :: University of Adelaide

The Whitehead tower of a topological space seeks to resolve that space by successively removing homotopy groups from the 'bottom up'. For a path-connected space with no 1-dimensional local pathologies the first stage in the tower can be chosen to be the universal (=1-connected) covering space. This construction also works in the category Diff of manifolds. However, further stages in the two known constructions of the Whitehead tower do not work in Diff, being purely topological - and one of these is non-functorial, depending on a large number of choices. This talk will survey results from my thesis which constructs a new, functorial model for the 2-connected cover which will lift to a generalised (2-)category of smooth objects. This talk contains joint work with Andrew Stacey of the Norwegian University of Science and Technology.
Meteorological drivers of extreme bushfire events in southern Australia
15:10 Fri 2 Jul, 2010 :: Benham Lecture Theatre :: Prof Graham Mills :: Centre for Australian Weather and Climate Research, Melbourne

Bushfires occur regularly during summer in southern Australia, but only a few of these fires become iconic due to their effects, either in terms of loss of life or economic and social cost. Such events include Black Friday (1939), the Hobart fires (1967), Ash Wednesday (1983), the Canberra bushfires (2003), and most recently Black Saturday in February 2009. In most of these events the weather of the day was statistically extreme in terms of heat, (low) humidity, and wind speed, and in terms of antecedent drought. There are a number of reasons for conducting post-event analyses of the meteorology of these events. One is to identify any meteorological circulation systems or dynamic processes occurring on those days that might not be widely or hitherto recognised, to document these, and to develop new forecast or guidance products. The understanding and prediction of such features can be used in the short term to assist in effective management of fires and the safety of firefighters and in the medium range to assist preparedness for the onset of extreme conditions. The results of such studies can also be applied to simulations of future climates to assess the likely changes in frequency of the most extreme fire weather events, and their documentary records provide a resource that can be used for advanced training purposes. In addition, particularly for events further in the past, revisiting these events using reanalysis data sets and contemporary NWP models can also provide insights unavailable at the time of the events. Over the past few years the Bushfire CRC's Fire Weather and Fire Danger project in CAWCR has studied the mesoscale meteorology of a number of major fire events, including the days of Ash Wednesday 1983, the Dandenong Ranges fire in January 1997, the Canberra fires and the Alpine breakout fires in January 2003, the Lower Eyre Peninsula fires in January 2005 and the Boorabbin fire in December 2007-January 2008. Various aspects of these studies are described below, including the structures of dry cold frontal wind changes, the particular character of the cold fronts associated with the most damaging fires in southeastern Australia, and some aspects of how the vertical temperature and humidity structure of the atmosphere may affect the fire weather at the surface. These studies reveal much about these major events, but also suggest future research directions, and some of these will be discussed.
A classical construction for simplicial sets revisited
13:10 Fri 27 Aug, 2010 :: Ingkarni Wardli B20 (Suite 4) :: Dr Danny Stevenson :: University of Glasgow

Simplicial sets became popular in the 1950s as a combinatorial way to study the homotopy theory of topological spaces. They are more robust than the older notion of simplicial complexes, which were introduced for the same purpose. In this talk, which will be as introductory as possible, we will review some classical functors arising in the theory of simplicial sets, some well-known, some not-so-well-known. We will re-examine the proof of an old theorem of Kan in light of these functors. We will try to keep all jargon to a minimum.
Simultaneous confidence band and hypothesis test in generalised varying-coefficient models
15:05 Fri 10 Sep, 2010 :: Napier LG28 :: Prof Wenyang Zhang :: University of Bath

Generalised varying-coefficient models (GVC) are very important models. There are a considerable number of literature addressing these models. However, most of the existing literature are devoted to the estimation procedure. In this talk, I will systematically investigate the statistical inference for GVC, which includes confidence band as well as hypothesis test. I will show the asymptotic distribution of the maximum discrepancy between the estimated functional coefficient and the true functional coefficient. I will compare different approaches for the construction of confidence band and hypothesis test. Finally, the proposed statistical inference methods are used to analyse the data from China about contraceptive use there, which leads to some interesting findings.
Explicit numerical simulation of multiphase and confined flows
15:10 Fri 8 Oct, 2010 :: Napier G04 :: Prof Mark Biggs :: University of Adelaide

Simulations in which the system of interest is essentially mimicked are termed explicit numerical simulations (ENS). Direct numerical simulation (DNS) of turbulence is a well known and long-standing example of ENS. Such simulations provide a basis for elucidating fundamentals in a way that is impossible experimentally and formulating and parameterizing engineering models with reduced experimentation. In this presentation, I will first outline the concept of ENS. I will then report a number of ENS-based studies of various multiphase fluid systems and flows in porous media. In the first of these studies, which is concerned with flow of suspensions in porous media accompanied by deposition, ENS is used to demonstrate the significant inadequacies of the classical trajectory models typically used for the study of such problems. In the second study, which is concerned with elucidating the change in binary droplet collision behaviour with Capillary number (Ca) and Reynolds number (Re), a range of collision scenarios are revealed as a function of Ca and Re and it appears that the boundaries between these scenarios in the Ca-Re space are not distinct but, rather, smeared. In the final study, it is shown that ENS an be used to predict ab initio the hydrodynamic properties of single phase flow through porous media from the Darcy to the turbulent regimes.
Some algebras associated with quantum gauge theories
13:10 Fri 15 Oct, 2010 :: Ingkarni Wardli B20 (Suite 4) :: Dr Keith Hannabuss :: Balliol College, Oxford

Classical gauge theories study sections of vector bundles and associated connections and curvature. The corresponding quantum gauge theories are normally written algebraically but can be understood as noncommutative geometries. This talk will describe one approach to the quantum gauge theories which uses braided categories.
Principal Component Analysis Revisited
15:10 Fri 15 Oct, 2010 :: Napier G04 :: Assoc. Prof Inge Koch :: University of Adelaide

Since the beginning of the 20th century, Principal Component Analysis (PCA) has been an important tool in the analysis of multivariate data. The principal components summarise data in fewer than the original number of variables without losing essential information, and thus allow a split of the data into signal and noise components. PCA is a linear method, based on elegant mathematical theory. The increasing complexity of data together with the emergence of fast computers in the later parts of the 20th century has led to a renaissance of PCA. The growing numbers of variables (in particular, high-dimensional low sample size problems), non-Gaussian data, and functional data (where the data are curves) are posing exciting challenges to statisticians, and have resulted in new research which extends the classical theory. I begin with the classical PCA methodology and illustrate the challenges presented by the complex data that we are now able to collect. The main part of the talk focuses on extensions of PCA: the duality of PCA and the Principal Coordinates of Multidimensional Scaling, Sparse PCA, and consistency results relating to principal components, as the dimension grows. We will also look at newer developments such as Principal Component Regression and Supervised PCA, nonlinear PCA and Functional PCA.
Real analytic sets in complex manifolds I: holomorphic closure dimension
13:10 Fri 4 Mar, 2011 :: Mawson 208 :: Dr Rasul Shafikov :: University of Western Ontario

After a quick introduction to real and complex analytic sets, I will discuss possible notions of complex dimension of real sets, and then discuss a structure theorem for the holomorphic closure dimension which is defined as the dimension of the smallest complex analytic germ containing the real germ.
Real analytic sets in complex manifolds II: complex dimension
13:10 Fri 11 Mar, 2011 :: Mawson 208 :: Dr Rasul Shafikov :: University of Western Ontario

Given a real analytic set R, denote by A the subset of R of points through which there is a nontrivial complex variety contained in R, i.e., A consists of points in R of positive complex dimension. I will discuss the structure of the set A.
Lattices in exotic groups
15:10 Fri 18 Mar, 2011 :: 7.15 Ingkarni Wardli :: Dr Anne Thomas :: University of Sydney

Media...
A lattice in a locally compact group G is a discrete subgroup of cofinite volume. Lattices in Lie groups are well-studied, but little is known about lattices in other, "exotic", locally compact groups. Examples of exotic groups include isometry groups of trees, buildings, polyhedral complexes and CAT(0) spaces, and Kac-Moody groups. We will survey known results, which include both rigidity and surprising examples of flexibility, and discuss the wide range of tools used to investigate lattices in these non-classical settings.
Spherical tube hypersurfaces
13:10 Fri 8 Apr, 2011 :: Mawson 208 :: Prof Alexander Isaev :: Australian National University

We consider smooth real hypersurfaces in a complex vector space. Specifically, we are interested in tube hypersurfaces, i.e., hypersurfaces represented as the direct product of the imaginary part of the space and hypersurfaces lying in its real part. Tube hypersurfaces arise, for instance, as the boundaries of tube domains. The study of tube domains is a classical subject in several complex variables and complex geometry, which goes back to the beginning of the 20th century. Indeed, already Siegel found it convenient to realise certain symmetric domains as tubes. One can endow a tube hypersurface with a so-called CR-structure, which is the remnant of the complex structure on the ambient vector space. We impose on the CR-structure the condition of sphericity. One way to state this condition is to require a certain curvature (called the CR-curvature of the hypersurface) to vanish identically. Spherical tube hypersurfaces possess remarkable properties and are of interest from both the complex-geometric and affine-geometric points of view. I my talk I will give an overview of the theory of such hypersurfaces. In particular, I will mention an algebraic construction arising from this theory that has applications in abstract commutative algebra and singularity theory. I will speak about these applications in detail in my colloquium talk later today.
The Extended-Domain-Eigenfunction Method: making old mathematics work for new problems
15:10 Fri 13 May, 2011 :: 7.15 Ingkarni Wardli :: Prof Stan Miklavcic :: University of South Australia

Media...
Standard analytical solutions to elliptic boundary value problems on asymmetric domains are rarely, if ever, obtainable. Several years ago I proposed a solution technique to cope with such complicated domains. It involves the embedding of the original domain into one with simple boundaries where the classical eigenfunction solution approach can be used. The solution in the larger domain, when restricted to the original domain is then the solution of the original boundary value problem. In this talk I will present supporting theory for this idea, some numerical results for the particular case of the Laplace equation and the Stokes flow equations in two-dimensions and discuss advantages and limitations of the proposal.
Priority queueing systems with random switchover times and generalisations of the Kendall-Takacs equation
16:00 Wed 1 Jun, 2011 :: 7.15 Ingkarni Wardli :: Dr Andrei Bejan :: The University of Cambridge

In this talk I will review existing analytical results for priority queueing systems with Poisson incoming flows, general service times and a single server which needs some (random) time to switch between requests of different priority. Specifically, I will discuss analytical results for the busy period and workload of such systems with a special structure of switchover times. The results related to the busy period can be seen as generalisations of the famous Kendall-Tak\'{a}cs functional equation for $M|G|1$: being formulated in terms of Laplace-Stieltjes transform, they represent systems of functional recurrent equations. I will present a methodology and algorithms of their numerical solution; the efficiency of these algorithms is achieved by acceleration of the numerical procedure of solving the classical Kendall-Tak\'{a}cs equation. At the end I will identify open problems with regard to such systems; these open problems are mainly related to the modelling of switchover times.
Probability density estimation by diffusion
15:10 Fri 10 Jun, 2011 :: 7.15 Ingkarni Wardli :: Prof Dirk Kroese :: University of Queensland

Media...
One of the beautiful aspects of Mathematics is that seemingly disparate areas can often have deep connections. This talk is about the fundamental connection between probability density estimation, diffusion processes, and partial differential equations. Specifically, we show how to obtain efficient probability density estimators by solving partial differential equations related to diffusion processes. This new perspective leads, in combination with Fast Fourier techniques, to very fast and accurate algorithms for density estimation. Moreover, the diffusion formulation unifies most of the existing adaptive smoothing algorithms and provides a natural solution to the boundary bias of classical kernel density estimators. This talk covers topics in Statistics, Probability, Applied Mathematics, and Numerical Mathematics, with a surprise appearance of the theta function. This is joint work with Zdravko Botev and Joe Grotowski.
Alignment of time course gene expression data sets using Hidden Markov Models
12:10 Mon 5 Sep, 2011 :: 5.57 Ingkarni Wardli :: Mr Sean Robinson :: University of Adelaide

Time course microarray experiments allow for insight into biological processes by measuring gene expression over a time period of interest. This project is concerned with time course data from a microarray experiment conducted on a particular variety of grapevine over the development of the grape berries at a number of different vineyards in South Australia. The aim of the project is to construct a methodology for combining the data from the different vineyards in order to obtain more precise estimates of the underlying behaviour of the genes over the development process. A major issue in doing so is that the rate of development of the grape berries is different at different vineyards. Hidden Markov models (HMMs) are a well established methodology for modelling time series data in a number of domains and have been previously used for gene expression analysis. Modelling the grapevine data presents a unique modelling issue, namely the alignment of the expression profiles needed to combine the data from different vineyards. In this seminar, I will describe our problem, review HMMs, present an extension to HMMs and show some preliminary results modelling the grapevine data.
Twisted Morava K-theory
13:10 Fri 9 Sep, 2011 :: 7.15 Ingkarni Wardli :: Dr Craig Westerland :: University of Melbourne

Morava's extraordinary K-theories K(n) are a family of generalized cohomology theories which behave in some ways like K-theory (indeed, K(1) is mod 2 K-theory). Their construction exploits Quillen's description of cobordism in terms of formal group laws and Lubin-Tate's methods in class field theory for constructing abelian extensions of number fields. Constructed from homotopy-theoretic methods, they do not admit a geometric description (like deRham cohomology, K-theory, or cobordism), but are nonetheless subtle, computable invariants of topological spaces. In this talk, I will give an introduction to these theories, and explain how it is possible to define an analogue of twisted K-theory in this setting. Traditionally, K-theory is twisted by a three-dimensional cohomology class; in this case, K(n) admits twists by (n+2)-dimensional classes. This work is joint with Hisham Sati.
Can statisticians do better than random guessing?
12:10 Tue 20 Sep, 2011 :: Napier 210 :: A/Prof Inge Koch :: School of Mathematical Sciences

In the finance or credit risk area, a bank may want to assess whether a client is going to default, or be able to meet the repayments. In the assessment of benign or malignant tumours, a correct diagnosis is required. In these and similar examples, we make decisions based on data. The classical t-tests provide a tool for making such decisions. However, many modern data sets have more variables than observations, and the classical rules may not be any better than random guessing. We consider Fisher's rule for classifying data into two groups, and show that it can break down for high-dimensional data. We then look at ways of overcoming some of the weaknesses of the classical rules, and I show how these "post-modern" rules perform in practice.
Metric geometry in data analysis
13:10 Fri 11 Nov, 2011 :: B.19 Ingkarni Wardli :: Dr Facundo Memoli :: University of Adelaide

The problem of object matching under invariances can be studied using certain tools from metric geometry. The central idea is to regard objects as metric spaces (or metric measure spaces). The type of invariance that one wishes to have in the matching is encoded by the choice of the metrics with which one endows the objects. The standard example is matching objects in Euclidean space under rigid isometries: in this situation one would endow the objects with the Euclidean metric. More general scenarios are possible in which the desired invariance cannot be reflected by the preservation of an ambient space metric. Several ideas due to M. Gromov are useful for approaching this problem. The Gromov-Hausdorff distance is a natural candidate for doing this. However, this metric leads to very hard combinatorial optimization problems and it is difficult to relate to previously reported practical approaches to the problem of object matching. I will discuss different variations of these ideas, and in particular will show a construction of an L^p version of the Gromov-Hausdorff metric, called the Gromov-Wassestein distance, which is based on mass transportation ideas. This new metric directly leads to quadratic optimization problems on continuous variables with linear constraints. As a consequence of establishing several lower bounds, it turns out that several invariants of metric measure spaces turn out to be quantitatively stable in the GW sense. These invariants provide practical tools for the discrimination of shapes and connect the GW ideas to a number of pre-existing approaches.
Applications of tropical geometry to groups and manifolds
13:10 Mon 21 Nov, 2011 :: B.19 Ingkarni Wardli :: Dr Stephan Tillmann :: University of Queensland

Tropical geometry is a young field with multiple origins. These include the work of Bergman on logarithmic limit sets of algebraic varieties; the work of the Brazilian computer scientist Simon on discrete mathematics; the work of Bieri, Neumann and Strebel on geometric invariants of groups; and, of course, the work of Newton on polynomials. Even though there is still need for a unified foundation of the field, there is an abundance of applications of tropical geometry in group theory, combinatorics, computational algebra and algebraic geometry. In this talk I will give an overview of (what I understand to be) tropical geometry with a bias towards applications to group theory and low-dimensional topology.
Spatial-point data sets and the Polya distribution
15:10 Fri 27 Apr, 2012 :: B.21 Ingkarni Wardli :: Dr Benjamin Binder :: The University of Adelaide

Media...
Spatial-point data sets, generated from a wide range of physical systems and mathematical models, can be analyzed by counting the number of objects in equally sized bins. We find that the bin counts are related to the Polya distribution. New indexes are developed which quantify whether or not a spatial data set is at its most evenly distributed state. Using three case studies (Lagrangian fluid particles in chaotic laminar flows, cellular automata agents in discrete models, and biological cells within colonies), we calculate the indexes and predict the spatial-state of the system.
On the full holonomy group of special Lorentzian manifolds
13:10 Fri 25 May, 2012 :: Napier LG28 :: Dr Thomas Leistner :: University of Adelaide

The holonomy group of a semi-Riemannian manifold is defined as the group of parallel transports along loops based at a point. Its connected component, the `restricted holonomy group', is given by restricting in this definition to contractible loops. The restricted holonomy can essentially be described by its Lie algebra and many classification results are obtained in this way. In contrast, the `full' holonomy group is a more global object and classification results are out of reach. In the talk I will describe recent results with H. Baum and K. Laerz (both HU Berlin) about the full holonomy group of so-called `indecomposable' Lorentzian manifolds. I will explain a construction method that arises from analysing the effects on holonomy when dividing the manifold by the action of a properly discontinuous group of isometries and present several examples of Lorentzian manifolds with disconnected holonomy groups.
Adventures with group theory: counting and constructing polynomial invariants for applications in quantum entanglement and molecular phylogenetics
15:10 Fri 8 Jun, 2012 :: B.21 Ingkarni Wardli :: Dr Peter Jarvis :: The University of Tasmania

Media...
In many modelling problems in mathematics and physics, a standard challenge is dealing with several repeated instances of a system under study. If linear transformations are involved, then the machinery of tensor products steps in, and it is the job of group theory to control how the relevant symmetries lift from a single system, to having many copies. At the level of group characters, the construction which does this is called PLETHYSM. In this talk all this will be contextualised via two case studies: entanglement invariants for multipartite quantum systems, and Markov invariants for tree reconstruction in molecular phylogenetics. By the end of the talk, listeners will have understood why Alice, Bob and Charlie love Cayley's hyperdeterminant, and they will know why the three squangles -- polynomial beasts of degree 5 in 256 variables, with a modest 50,000 terms or so -- can tell us a lot about quartet trees!
IGA Workshop: Dendroidal sets
14:00 Tue 12 Jun, 2012 :: Ingkarni Wardli B17 :: Dr Ittay Weiss :: University of the South Pacific

Media...
A series of four 2-hour lectures by Dr. Ittay Weiss. The theory of dendroidal sets was introduced by Moerdijk and Weiss in 2007 in the study of homotopy operads in algebraic topology. In the five years that have past since then several fundamental and highly non-trivial results were established. For instance, it was established that dendroidal sets provide models for homotopy operads in a way that extends the Joyal-Lurie approach to homotopy categories. It can be shown that dendroidal sets provide new models in the study of n-fold loop spaces. And it is very recently shown that dendroidal sets model all connective spectra in a way that extends the modeling of certain spectra by Picard groupoids. The aim of the lecture series will be to introduce the concepts mentioned above, present the elementary theory, and understand the scope of the results mentioned as well as discuss the potential for further applications. Sources for the course will include the article "From Operads to Dendroidal Sets" (in the AMS volume on mathematical foundations of quantum field theory (also on the arXiv)) and the lecture notes by Ieke Moerdijk "simplicial methods for operads and algebraic geometry" which resulted from an advanced course given in Barcelona 3 years ago. No prior knowledge of operads will be assumed nor any knowledge of homotopy theory that is more advanced then what is required for the definition of the fundamental group. The basics of the language of presheaf categories will be recalled quickly and used freely.
Notions of non-commutative metric spaces; why and how
15:10 Fri 15 Jun, 2012 :: B.21 Ingkarni Wardli :: Dr Ittay Weiss :: The University of the South Pacific

Media...
The classical notion of metric space includes the axiom of symmetry: d(x,y)=d(y,x). Some applications of metric techniques to problems in computer graphics, concurrency, and physics (to mention a few) are seriously stressing the limitations imposed by symmetry, resulting in various relaxations of it. I will review some of the motivating problems that seem to require non-symmetry and then review some of the suggested models to deal with the problem. My review will be critical to the topological implications (which are often unpleasant) of some of the models and I will present metric 1-spaces, a new notion of generalized metric spaces.
The Banach-Tarski Paradox
11:10 Mon 30 Jul, 2012 :: G.07 Engineering Mathematics :: Mr William Crawford :: University of Adelaide

Media...
The Banach-Tarski Paradox is one of the most counter intuitive results in set theory. It states that a ball can be cut up into a finite number of pieces, which using just rotations and translations can be reassembled into two identical copies of the original ball. This contradicts our naive belief that cutting, rotating and translating objects in Euclidean space should preserve volume. However the construction of the "cutting" is heavily dependent on the axiom of choice, and the resultant pieces are non-measurable, i.e. no consistent notion of volume can be assigned to them. A stronger form of the theorem states that any two bounded subsets of R^3 with non-empty interior are equidecomposable, that is one can be disassembled and reassembled into the other. I'll be going through a brief proof of the theorem (and in doing so further alienate the pure mathematicians in the room from everybody else).
Geometry - algebraic to arithmetic to absolute
15:10 Fri 3 Aug, 2012 :: B.21 Ingkarni Wardli :: Dr James Borger :: Australian National University

Media...
Classical algebraic geometry is about studying solutions to systems of polynomial equations with complex coefficients. In arithmetic algebraic geometry, one digs deeper and studies the arithmetic properties of the solutions when the coefficients are rational, or even integral. From the usual point of view, it's impossible to go deeper than this for the simple reason that no smaller rings are available - the integers have no proper subrings. In this talk, I will explain how an emerging subject, lambda-algebraic geometry, allows one to do just this and why one might care.
Hodge numbers and cohomology of complex algebraic varieties
13:10 Fri 10 Aug, 2012 :: Engineering North 218 :: Prof Gus Lehrer :: University of Sydney

Let $X$ be a complex algebraic variety defined over the ring $\mathfrak{O}$ of integers in a number field $K$ and let $\Gamma$ be a group of $\mathfrak{O}$-automorphisms of $X$. I shall discuss how the counting of rational points over reductions mod $p$ of $X$, and an analysis of the Hodge structure of the cohomology of $X$, may be used to determine the cohomology as a $\Gamma$-module. This will include some joint work with Alex Dimca and with Mark Kisin, and some classical unsolved problems.
The fundamental theorems of invariant theory, classical and quantum
15:10 Fri 10 Aug, 2012 :: B.21 Ingkarni Wardli :: Prof Gus Lehrer :: The University of Sydney

Media...
Let V = C^n, and let (-,-) be a non-degenerate bilinear form on V , which is either symmetric or anti-symmetric. Write G for the isometry group of (V , (-,-)); thus G = O_n (C) or Sp_n (C). The first fundamental theorem (FFT) provides a set of generators for End_G(V^{\otimes r} ) (r = 1, 2, . . . ), while the second fundamental theorem (SFT) gives all relations among the generators. In 1937, Brauer formulated the FFT in terms of his celebrated 'Brauer algebra' B_r (\pm n), but there has hitherto been no similar version of the SFT. One problem has been the generic non-semisimplicity of B_r (\pm n), which caused H Weyl to call it, in his work on invariants 'that enigmatic algebra'. I shall present a solution to this problem, which shows that there is a single idempotent in B_r (\pm n), which describes all the relations. The proof is through a new 'Brauer category', in which the fundamental theorems are easily formulated, and where a calculus of tangles may be used to prove these results. There are quantum analogues of the fundamental theorems which I shall also discuss. There are numerous applications in representation theory, geometry and topology. This is joint work with Ruibin Zhang.
Continuous random walk models for solute transport in porous media
15:10 Fri 17 Aug, 2012 :: B.21 Ingkarni Wardli :: Prof Pavel Bedrikovetski :: The University of Adelaide

Media...
The classical diffusion (thermal conductivity) equation was derived from the Master random walk equation and is parabolic. The main assumption was a probabilistic distribution of the jump length while the jump time is constant. Distribution of the jump time along with the jump length adds the second time derivative into the averaged equations, but the equation becomes ... elliptic! Where from to take an extra initial condition? We discuss how to pose the well-posed flow problem, exact 1d solution and numerous engineering applications. This is joint work with A. Shapiro and H. Yuan.
Noncommutative geometry and conformal geometry
13:10 Fri 24 Aug, 2012 :: Engineering North 218 :: Dr Hang Wang :: Tsinghua University

In this talk, we shall use noncommutative geometry to obtain an index theorem in conformal geometry. This index theorem follows from an explicit and geometric computation of the Connes-Chern character of the spectral triple in conformal geometry, which was introduced recently by Connes and Moscovici. This (twisted) spectral triple encodes the geometry of the group of conformal diffeomorphisms on a spin manifold. The crux of of this construction is the conformal invariance of the Dirac operator. As a result, the Connes-Chern character is intimately related to the CM cocycle of an equivariant Dirac spectral triple. We compute this equivariant CM cocycle by heat kernel techniques. On the way we obtain a new heat kernel proof of the equivariant index theorem for Dirac operators. (Joint work with Raphael Ponge.)
Principal Component Analysis (PCA)
12:30 Mon 3 Sep, 2012 :: B.21 Ingkarni Wardli :: Mr Lyron Winderbaum :: University of Adelaide

Media...
Principal Component Analysis (PCA) has become something of a buzzword recently in a number of disciplines including the gene expression and facial recognition. It is a classical, and fundamentally simple, concept that has been around since the early 1900's, its recent popularity largely due to the need for dimension reduction techniques in analyzing high dimensional data that has become more common in the last decade, and the availability of computing power to implement this. I will explain the concept, prove a result, and give a couple of examples. The talk should be accessible to all disciplines as it (should?) only assume first year linear algebra, the concept of a random variable, and covariance.
Quantisation commutes with reduction
15:10 Fri 14 Sep, 2012 :: B.20 Ingkarni Wardli :: Dr Peter Hochs :: Leibniz University Hannover

Media...
The "Quantisation commutes with reduction" principle is an idea from physics, which has powerful applications in mathematics. It basically states that the ways in which symmetry can be used to simplify a physical system in classical and quantum mechanics, are compatible. This provides a strong link between the areas in mathematics used to describe symmetry in classical and quantum mechanics: symplectic geometry and representation theory, respectively. It has been proved in the 1990s that quantisation indeed commutes with reduction, under the important assumption that all spaces and symmetry groups involved are compact. This talk is an introduction to this principle and, if time permits, its mathematical relevance.
Interaction of double-stranded DNA inside single-walled carbon nanotubes
12:10 Mon 5 Nov, 2012 :: B.21 Ingkarni Wardli :: Mr Mansoor Alshehri :: University of Adelaide

Media...
Here we investigate the interaction of deoxyribonucleic acid (DNA) inside single walled carbon nanotubes (SWCNTs). Using classical applied mathematical modeling, we derive explicit analytical expressions for the encapsulation of DNA inside single-walled carbon nanotubes. We adopt the 6-12 Lennard-Jones potential function together with the continuous approach to determine the preferred minimum energy position of the dsDNA molecule inside a single-walled carbon nanotube, so as to predict its location with reference to the cross- section of the carbon nanotube. An analytical expression is obtained in terms of hypergeometric functions, which provides a computationally rapid procedure to determine critical numerical values.
Spatiotemporally Autoregressive Partially Linear Models with Application to the Housing Price Indexes of the United States
12:10 Mon 12 Nov, 2012 :: B.21 Ingkarni Wardli :: Ms Dawlah Alsulami :: University of Adelaide

Media...
We propose a Spatiotemporal Autoregressive Partially Linear Regression ( STARPLR) model for data observed irregularly over space and regularly in time. The model is capable of catching possible non linearity and nonstationarity in space by coefficients to depend on locations. We suggest two-step procedure to estimate both the coefficients and the unknown function, which is readily implemented and can be computed even for large spatio-temoral data sets. As an illustration, we apply our model to analyze the 51 States' House Price Indexes (HPIs) in USA.
Hyperplane arrangements and tropicalization of linear spaces
10:10 Mon 17 Dec, 2012 :: Ingkarni Wardli B17 :: Dr Graham Denham :: University of Western Ontario

I will give an introduction to a sequence of ideas in tropical geometry, the tropicalization of linear spaces. In the beginning, a construction due to De Concini and Procesi (wonderful models, 1995) gave a combinatorially explicit description of various iterated blowups of projective spaces along (proper transforms of) linear subspaces. A decade later, Tevelev's notion of tropical compactifications led to, in particular, a new view of the wonderful models and their intersection theory in terms of the theory of toric varieties (via work of Feichtner-Sturmfels, Feichtner-Yuzvinsky, Ardila-Klivans, and others). Recently, these ideas have played a role in Huh and Katz's proof of a long-standing conjecture in combinatorics.
How fast? Bounding the mixing time of combinatorial Markov chains
15:10 Fri 22 Mar, 2013 :: B.18 Ingkarni Wardli :: Dr Catherine Greenhill :: University of New South Wales

Media...
A Markov chain is a stochastic process which is "memoryless", in that the next state of the chain depends only on the current state, and not on how it got there. It is a classical result that an ergodic Markov chain has a unique stationary distribution. However, classical theory does not provide any information on the rate of convergence to stationarity. Around 30 years ago, the mixing time of a Markov chain was introduced to measure the number of steps required before the distribution of the chain is within some small distance of the stationary distribution. One reason why this is important is that researchers in areas such as physics and biology use Markov chains to sample from large sets of interest. Rigorous bounds on the mixing time of their chain allows these researchers to have confidence in their results. Bounding the mixing time of combinatorial Markov chains can be a challenge, and there are only a few approaches available. I will discuss the main methods and give examples for each (with pretty pictures).
Gauge groupoid cocycles and Cheeger-Simons differential characters
13:10 Fri 5 Apr, 2013 :: Ingkarni Wardli B20 :: Prof Jouko Mickelsson :: Royal Institute of Technology, Stockholm

Groups of gauge transformations in quantum field theory are typically extended by a 2-cocycle with values in a certain abelian group due to chiral symmetry breaking. For these extensions there exist a global explicit construction since the 1980's. I shall study the higher group cocycles following a recent paper by F. Wagemann and C. Wockel, but extending to the transformation groupoid setting (motivated by QFT) and discussing potential obstructions in the construction due to a nonvanishing of low dimensional homology groups of the gauge group. The resolution of the obstruction is obtained by an application of the Cheeger-Simons differential characters.
A stability theorem for elliptic Harnack inequalities
15:10 Fri 5 Apr, 2013 :: B.18 Ingkarni Wardli :: Prof Richard Bass :: University of Connecticut

Media...
Harnack inequalities are an important tool in probability theory, analysis, and partial differential equations. The classical Harnack inequality is just the one you learned in your graduate complex analysis class, but there have been many extensions, to different spaces, such as manifolds, fractals, infinite graphs, and to various sorts of elliptic operators. A landmark result was that of Moser in 1961, where he proved the Harnack inequality for solutions to a class of partial differential equations. I will talk about the stability of Harnack inequalities. The main result says that if the Harnack inequality holds for an operator on a space, then the Harnack inequality will also hold for a large class of other operators on that same space. This provides a generalization of the result of Moser.
Crystallographic groups I: the classical theory
12:10 Fri 17 May, 2013 :: Ingkarni Wardli B19 :: Dr Wolfgang Globke :: University of Adelaide

A discrete isometry group acting properly discontinuously on the n-dimensional Euclidean space with compact quotient is called a crystallographic group. This name reflects the fact that in dimension n=3 their compact fundamental domains resemble a space-filling crystal pattern. For higher dimensions, Hilbert posed his famous 18th problem: "Is there in n-dimensional Euclidean space only a finite number of essentially different kinds of groups of motions with a [compact] fundamental region?" This problem was solved by Bieberbach when he proved that in every dimension n there exists only a finite number of isomorphic crystallographic groups and also gave a description of these groups. From the perspective of differential geometry these results are of major importance, as crystallographic groups are precisely the fundamental groups of compact flat Riemannian orbifolds. The quotient is even a manifold if the fundamental group is required to be torsion-free, in which case it is called a Bieberbach group. Moreover, for a flat manifold the fundamental group completely determines the holonomy group. In this talk I will discuss the properties of crystallographic groups, study examples in dimension n=2 and n=3, and present the three Bieberbach theorems on the structure of crystallographic groups.
A new approach to pointwise heat kernel upper bounds on doubling metric measure spaces
12:10 Fri 7 Jun, 2013 :: Ingkarni Wardli B19 :: Prof Thierry Coulhon :: Australian National University

On doubling metric measure spaces endowed with a Dirichlet form and satisfying the Davies-Gaffney estimate, we show some characterisations of pointwise upper bounds of the heat kernel in terms of one-parameter weighted inequalities which correspond respectively to the Nash inequality and to a Gagliardo-Nirenberg type inequality when the volume growth is polynomial. This yields a new and simpler proof of the well-known equivalence between classical heat kernel upper bounds and the relative Faber-Krahn inequalities. We are also able to treat more general pointwise estimates where the heat kernel rate of decay is not necessarily governed by the volume growth. This is a joint work with Salahaddine Boutayeb and Adam Sikora.
Invariant Theory: The 19th Century and Beyond
15:10 Fri 21 Jun, 2013 :: B.18 Ingkarni Wardli :: Dr Jarod Alper :: Australian National University

Media...
A central theme in 19th century mathematics was invariant theory, which was viewed as a bridge between geometry and algebra. David Hilbert revolutionized the field with two seminal papers in 1890 and 1893 with techniques such as Hilbert's basis theorem, Hilbert's Nullstellensatz and Hilbert's syzygy theorem that spawned the modern field of commutative algebra. After Hilbert's groundbreaking work, the field of invariant theory remained largely inactive until the 1960's when David Mumford revitalized the field by reinterpreting Hilbert's ideas in the context of algebraic geometry which ultimately led to the influential construction of the moduli space of smooth curves. Today invariant theory remains a vital research area with connections to various mathematical disciplines: representation theory, algebraic geometry, commutative algebra, combinatorics and nonlinear differential operators. The goal of this talk is to provide an introduction to invariant theory with an emphasis on Hilbert's and Mumford's contributions. Time permitting, I will explain recent research with Maksym Fedorchuk and David Smyth which exploits the ideas of Hilbert, Mumford as well as Kempf to answer a classical question concerning the stability of algebraic curves.
Geometry of moduli spaces
12:10 Fri 30 Aug, 2013 :: Ingkarni Wardli B19 :: Prof Georg Schumacher :: University of Marburg

We discuss the concept of moduli spaces in complex geometry. The main examples are moduli of compact Riemann surfaces, moduli of compact projective varieties and moduli of holomorphic vector bundles, whose points correspond to isomorphism classes of the given objects. Moduli spaces carry a natural topology, whereas a complex structure that reflects the variation of the structure in a family exists in general only under extra conditions. In a similar way, a natural hermitian metric (Weil-Petersson metric) on moduli spaces that induces a symplectic structure can be constructed from the variation of distinguished metrics on the fibers. In this way, various questions concerning the underlying symplectic structure, the curvature of the Weil-Petersson metric, hyperbolicity of moduli spaces, and construction of positive/ample line bundles on compactified moduli spaces can be answered.
What are fusion categories?
12:10 Fri 6 Sep, 2013 :: Ingkarni Wardli B19 :: Dr Scott Morrison :: Australian National University

Fusion categories are a common generalization of finite groups and quantum groups at roots of unity. I'll explain a little of their structure, mention their applications (to topological field theory and quantum computing), and then explore the ways in which they are in general similar to, or different from, the 'classical' cases. We've only just started exploring, and don't yet know what the exotic examples we've discovered signify about the landscape ahead.
Conformal geometry in four variables and a special geometry in five
12:10 Fri 20 Sep, 2013 :: Ingkarni Wardli B19 :: Dr Dennis The :: Australian National University

Starting with a split signature 4-dimensional conformal manifold, one can build a 5-dimensional bundle over it equipped with a 2-plane distribution. Generically, this is a (2,3,5)-distribution in the sense of Cartan's five variables paper, an aspect that was recently pursued by Daniel An and Pawel Nurowski (finding new examples concerning the geometry of rolling bodies where the (2,3,5)-distribution has G2-symmetry). I shall explain how to understand some elementary aspects of this "twistor construction" from the perspective of parabolic geometry. This is joint work with Michael Eastwood and Katja Sagerschnig.
Dynamics and the geometry of numbers
14:10 Fri 27 Sep, 2013 :: Horace Lamb Lecture Theatre :: Prof Akshay Venkatesh :: Stanford University

Media...
It was understood by Minkowski that one could prove interesting results in number theory by considering the geometry of lattices in R^n. (A lattice is simply a grid of points.) This technique is called the "geometry of numbers." We now understand much more about analysis and dynamics on the space of all lattices, and this has led to a deeper understanding of classical questions. I will review some of these ideas, with emphasis on the dynamical aspects.
Interaction of double-stranded DNA inside single-walled carbon nanotubes
12:35 Mon 28 Oct, 2013 :: B.19 Ingkarni Wardli :: Mansoor Alshehri :: University of Adelaide

Media...
Here we investigate the interaction of deoxyribonucleic acid (DNA) inside single walled carbon nanotubes (SWCNTs). Using classical applied mathematical modeling, we derive explicit analytical expressions for the encapsulation of DNA inside single-walled carbon nanotubes. We adopt the 6-12 Lennard-Jones potential function together with the continuous approach to determine the preferred minimum energy position of the dsDNA molecule inside a single-walled carbon nanotube, so as to predict its location with reference to the cross- section of the carbon nanotube. An analytical expression is obtained in terms of hypergeometric functions, which provides a computationally rapid procedure to determine critical numerical values.
Geometric quantisation in the noncompact setting
12:10 Fri 7 Mar, 2014 :: Ingkarni Wardli B20 :: Peter Hochs :: University of Adelaide

Geometric quantisation is a way to construct quantum mechanical phase spaces (Hilbert spaces) from classical mechanical phase spaces (symplectic manifolds). In the presence of a group action, the quantisation commutes with reduction principle states that geometric quantisation should be compatible with the ways the group action can be used to simplify (reduce) the classical and quantum phase spaces. This has deep consequences for the link between symplectic geometry and representation theory. The quantisation commutes with reduction principle has been given explicit meaning, and been proved, in cases where the symplectic manifold and the group acting on it are compact. There have also been results where just the group, or the orbit space of the action, is assumed to be compact. These are important and difficult, but it is somewhat frustrating that they do not even apply to the simplest example from the physics point of view: a free particle in Rn. This talk is about a joint result with Mathai Varghese where the group, manifold and orbit space may all be noncompact.
Embed to homogenise heterogeneous wave equation.
12:35 Mon 17 Mar, 2014 :: B.19 Ingkarni Wardli :: Chen Chen :: University of Adelaide

Media...
Consider materials with complicated microstructure: we want to model their large scale dynamics by equations with effective, `average' coefficients. I will show an example of heterogeneous wave equation in 1D. If Centre manifold theory is applied to model the original heterogeneous wave equation directly, we will get a trivial model. I embed the wave equation into a family of more complex wave problems and I show the equivalence of the two sets of solutions.
Semiclassical restriction estimates
12:10 Fri 4 Apr, 2014 :: Ingkarni Wardli B20 :: Melissa Tacy :: University of Adelaide

Eigenfunctions of Hamiltonians arise naturally in the theory of quantum mechanics as stationary states of quantum systems. Their eigenvalues have an interpretation as the square root of E, where E is the energy of the system. We wish to better understand the high energy limit which defines the boundary between quantum and classical mechanics. In this talk I will focus on results regarding the restriction of eigenfunctions to lower dimensional subspaces, in particular to hypersurfaces. A convenient way to study such problems is to reframe them as problems in semiclassical analysis.
Bayesian Indirect Inference
12:10 Mon 14 Apr, 2014 :: B.19 Ingkarni Wardli :: Brock Hermans :: University of Adelaide

Media...
Bayesian likelihood-free methods saw the resurgence of Bayesian statistics through the use of computer sampling techniques. Since the resurgence, attention has focused on so-called 'summary statistics', that is, ways of summarising data that allow for accurate inference to be performed. However, it is not uncommon to find data sets in which the summary statistic approach is not sufficient. In this talk, I will be summarising some of the likelihood-free methods most commonly used (don't worry if you've never seen any Bayesian analysis before), as well as looking at Bayesian Indirect Likelihood, a new way of implementing Bayesian analysis which combines new inference methods with some of the older computational algorithms.
The p-Minkowski problem
12:10 Fri 13 Jun, 2014 :: Ingkarni Wardli B20 :: Xu-Jia Wang :: Australian National University

The p-Minkowski problem is an extension of the classical Minkowski problem. It concerns the existence, uniqueness, and regularity of closed convex hypersurfaces with prescribed Gauss curvature. The Minkowski problem has been studied by many people in the last century and has been completely resolved. The p-Minkowski problem involves more applications. In this talk we will review the development of the study of the p-Minkowski problem and discuss some recent works on the problem.​
Not nots, knots.
12:10 Mon 16 Jun, 2014 :: B.19 Ingkarni Wardli :: Luke Keating-Hughes :: University of Adelaide

Media...
Although knot theory does not ordinarily arise in classical mathematics, the study of knots themselves proves to be very intricate and is certainly an area with promise for new developments. Ultimately, the study of knots boils down to problems of classification and when two knots are seen to be 'equivalent'. In this seminar we will first talk about some basic definitions and properties of knots, then move on to calculating the knot polynomial - a powerful invariant on knots.
The Bismut-Chern character as dimension reduction functor and its twisting
12:10 Fri 4 Jul, 2014 :: Ingkarni Wardli B20 :: Fei Han :: National University of Singapore

The Bismut-Chern character is a loop space refinement of the Chern character. It plays an essential role in the interpretation of the Atiyah-Singer index theorem from the point of view of loop space. In this talk, I will first briefly review the construction of the Bismut-Chern character and show how it can be viewed as a dimension reduction functor in the Stolz-Teichner program on supersymmetric quantum field theories. I will then introduce the construction of the twisted Bismut-Chern character, which represents our joint work with Varghese Mathai.
The Dirichlet problem for the prescribed Ricci curvature equation
12:10 Fri 15 Aug, 2014 :: Ingkarni Wardli B20 :: Artem Pulemotov :: University of Queensland

We will discuss the following question: is it possible to find a Riemannian metric whose Ricci curvature is equal to a given tensor on a manifold M? To answer this question, one must analyze a weakly elliptic second-order geometric PDE. In the first part of the talk, we will review the history of the subject and state several classical theorems. After that, our focus will be on new results concerning the case where M has nonempty boundary.
T-duality and the chiral de Rham complex
12:10 Fri 22 Aug, 2014 :: Ingkarni Wardli B20 :: Andrew Linshaw :: University of Denver

The chiral de Rham complex of Malikov, Schechtman, and Vaintrob is a sheaf of vertex algebras that exists on any smooth manifold M. It has a square-zero differential D, and contains the algebra of differential forms on M as a subcomplex. In this talk, I'll give an introduction to vertex algebras and sketch this construction. Finally, I'll discuss a notion of T-duality in this setting. This is based on joint work in progress with V. Mathai.
Spectral asymptotics on random Sierpinski gaskets
12:10 Fri 26 Sep, 2014 :: Ingkarni Wardli B20 :: Uta Freiberg :: Universitaet Stuttgart

Self similar fractals are often used in modeling porous media. Hence, defining a Laplacian and a Brownian motion on such sets describes transport through such materials. However, the assumption of strict self similarity could be too restricting. So, we present several models of random fractals which could be used instead. After recalling the classical approaches of random homogenous and recursive random fractals, we show how to interpolate between these two model classes with the help of so called V-variable fractals. This concept (developed by Barnsley, Hutchinson & Stenflo) allows the definition of new families of random fractals, hereby the parameter V describes the degree of `variability' of the realizations. We discuss how the degree of variability influences the geometric, analytic and stochastic properties of these sets. - These results have been obtained with Ben Hambly (University of Oxford) and John Hutchinson (ANU Canberra).
Happiness and social information flow: Computational social science through data.
15:10 Fri 7 Nov, 2014 :: EM G06 (Engineering & Maths Bldg) :: Dr Lewis Mitchell :: University of Adelaide

The recent explosion in big data coming from online social networks has led to an increasing interest in bringing quantitative methods to bear on questions in social science. A recent high-profile example is the study of emotional contagion, which has led to significant challenges and controversy. This talk will focus on two issues related to emotional contagion, namely remote-sensing of population-level wellbeing and the problem of information flow across a social network. We discuss some of the challenges in working with massive online data sets, and present a simple tool for measuring large-scale happiness from such data. By combining over 10 million geolocated messages collected from Twitter with traditional census data we uncover geographies of happiness at the scale of states and cities, and discuss how these patterns may be related to traditional wellbeing measures and public health outcomes. Using tools from information theory we also study information flow between individuals and how this may relate to the concept of predictability for human behaviour.
Happiness and social information flow: Computational social science through data.
15:10 Fri 7 Nov, 2014 :: EM G06 (Engineering & Maths Bldg) :: Dr Lewis Mitchell :: University of Adelaide

The recent explosion in big data coming from online social networks has led to an increasing interest in bringing quantitative methods to bear on questions in social science. A recent high-profile example is the study of emotional contagion, which has led to significant challenges and controversy. This talk will focus on two issues related to emotional contagion, namely remote-sensing of population-level wellbeing and the problem of information flow across a social network. We discuss some of the challenges in working with massive online data sets, and present a simple tool for measuring large-scale happiness from such data. By combining over 10 million geolocated messages collected from Twitter with traditional census data we uncover geographies of happiness at the scale of states and cities, and discuss how these patterns may be related to traditional wellbeing measures and public health outcomes. Using tools from information theory we also study information flow between individuals and how this may relate to the concept of predictability for human behaviour.
Modelling segregation distortion in multi-parent crosses
15:00 Mon 17 Nov, 2014 :: 5.57 Ingkarni Wardli :: Rohan Shah (joint work with B. Emma Huang and Colin R. Cavanagh) :: The University of Queensland

Construction of high-density genetic maps has been made feasible by low-cost high-throughput genotyping technology; however, the process is still complicated by biological, statistical and computational issues. A major challenge is the presence of segregation distortion, which can be caused by selection, difference in fitness, or suppression of recombination due to introgressed segments from other species. Alien introgressions are common in major crop species, where they have often been used to introduce beneficial genes from wild relatives. Segregation distortion causes problems at many stages of the map construction process, including assignment to linkage groups and estimation of recombination fractions. This can result in incorrect ordering and estimation of map distances. While discarding markers will improve the resulting map, it may result in the loss of genomic regions under selection or containing beneficial genes (in the case of introgression). To correct for segregation distortion we model it explicitly in the estimation of recombination fractions. Previously proposed methods introduce additional parameters to model the distortion, with a corresponding increase in computing requirements. This poses difficulties for large, densely genotyped experimental populations. We propose a method imposing minimal additional computational burden which is suitable for high-density map construction in large multi-parent crosses. We demonstrate its use modelling the known Sr36 introgression in wheat for an eight-parent complex cross.
Factorisations of Distributive Laws
12:10 Fri 19 Dec, 2014 :: Ingkarni Wardli B20 :: Paul Slevin :: University of Glasgow

Recently, distributive laws have been used by Boehm and Stefan to construct new examples of duplicial (paracyclic) objects, and hence cyclic homology theories. The paradigmatic example of such a theory is the cyclic homology HC(A) of an associative algebra A. It was observed by Kustermans, Murphy, and Tuset that the functor HC can be twisted by automorphisms of A. It turns out that this twisting procedure can be applied to any duplicial object defined by a distributive law. I will begin by defining duplicial objects and cyclic homology, as well as discussing some categorical concepts, then describe the construction of Boehm and Stefan. I will then define the category of factorisations of a distributive law and explain how this acts on their construction, and give some examples, making explicit how the action of this category generalises the twisting of an associative algebra.
Boundary behaviour of Hitchin and hypo flows with left-invariant initial data
12:10 Fri 27 Feb, 2015 :: Ingkarni Wardli B20 :: Vicente Cortes :: University of Hamburg

Hitchin and hypo flows constitute a system of first order pdes for the construction of Ricci-flat Riemannian mertrics of special holonomy in dimensions 6, 7 and 8. Assuming that the initial geometric structure is left-invariant, we study whether the resulting Ricci-flat manifolds can be extended in a natural way to complete Ricci-flat manifolds. This talk is based on joint work with Florin Belgun, Marco Freibert and Oliver Goertsches, see arXiv:1405.1866 (math.DG).
On the analyticity of CR-diffeomorphisms
12:10 Fri 13 Mar, 2015 :: Engineering North N132 :: Ilya Kossivskiy :: University of Vienna

One of the fundamental objects in several complex variables is CR-mappings. CR-mappings naturally occur in complex analysis as boundary values of mappings between domains, and as restrictions of holomorphic mappings onto real submanifolds. It was already observed by Cartan that smooth CR-diffeomorphisms between CR-submanifolds in C^N tend to be very regular, i.e., they are restrictions of holomorphic maps. However, in general smooth CR-mappings form a more restrictive class of mappings. Thus, since the inception of CR-geometry, the following general question has been of fundamental importance for the field: Are CR-equivalent real-analytic CR-structures also equivalent holomorphically? In joint work with Lamel, we answer this question in the negative, in any positive CR-dimension and CR-codimension. Our construction is based on a recent dynamical technique in CR-geometry, developed in my earlier work with Shafikov.
Higher rank discrete Nahm equations for SU(N) monopoles in hyperbolic space
11:10 Wed 8 Apr, 2015 :: Engineering & Maths EM213 :: Joseph Chan :: University of Melbourne

Braam and Austin in 1990, proved that SU(2) magnetic monopoles in hyperbolic space H^3 are the same as solutions of the discrete Nahm equations. I apply equivariant K-theory to the ADHM construction of instantons/holomorphic bundles to extend the Braam-Austin result from SU(2) to SU(N). During its evolution, the matrices of the higher rank discrete Nahm equations jump in dimensions and this behaviour has not been observed in discrete evolution equations before. A secondary result is that the monopole field at the boundary of H^3 determines the monopole.
Groups acting on trees
12:10 Fri 10 Apr, 2015 :: Napier 144 :: Anitha Thillaisundaram :: Heinrich Heine University of Duesseldorf

From a geometric point of view, branch groups are groups acting spherically transitively on a spherically homogeneous rooted tree. The applications of branch groups reach out to analysis, geometry, combinatorics, and probability. The early construction of branch groups were the Grigorchuk group and the Gupta-Sidki p-groups. Among its many claims to fame, the Grigorchuk group was the first example of a group of intermediate growth (i.e. neither polynomial nor exponential). Here we consider a generalisation of the family of Grigorchuk-Gupta-Sidki groups, and we examine the restricted occurrence of their maximal subgroups.
Indefinite spectral triples and foliations of spacetime
12:10 Fri 8 May, 2015 :: Napier 144 :: Koen van den Dungen :: Australian National University

Motivated by Dirac operators on Lorentzian manifolds, we propose a new framework to deal with non-symmetric and non-elliptic operators in noncommutative geometry. We provide a definition for indefinite spectral triples, which correspond bijectively with certain pairs of spectral triples. Next, we will show how a special case of indefinite spectral triples can be constructed from a family of spectral triples. In particular, this construction provides a convenient setting to study the Dirac operator on a spacetime with a foliation by spacelike hypersurfaces. This talk is based on joint work with Adam Rennie (arXiv:1503.06916).
Instantons and Geometric Representation Theory
12:10 Thu 23 Jul, 2015 :: Engineering and Maths EM212 :: Professor Richard Szabo :: Heriot-Watt University

We give an overview of the various approaches to studying supersymmetric quiver gauge theories on ALE spaces, and their conjectural connections to two-dimensional conformal field theory via AGT-type dualities. From a mathematical perspective, this is formulated as a relationship between the equivariant cohomology of certain moduli spaces of sheaves on stacks and the representation theory of infinite-dimensional Lie algebras. We introduce an orbifold compactification of the minimal resolution of the A-type toric singularity in four dimensions, and then construct a moduli space of framed sheaves which is conjecturally isomorphic to a Nakajima quiver variety. We apply this construction to derive relations between the equivariant cohomology of these moduli spaces and the representation theory of the affine Lie algebra of type A.
Dirac operators and Hamiltonian loop group action
12:10 Fri 24 Jul, 2015 :: Engineering and Maths EM212 :: Yanli Song :: University of Toronto

A definition to the geometric quantization for compact Hamiltonian G-spaces is given by Bott, defined as the index of the Spinc-Dirac operator on the manifold. In this talk, I will explain how to generalize this idea to the Hamiltonian LG-spaces. Instead of quantizing infinite-dimensional manifolds directly, we use its equivalent finite-dimensional model, the quasi-Hamiltonian G-spaces. By constructing twisted spinor bundle and twisted pre-quantum bundle on the quasi-Hamiltonian G-space, we define a Dirac operator whose index are given by positive energy representation of loop groups. A key role in the construction will be played by the algebraic cubic Dirac operator for loop algebra. If time permitted, I will also explain how to prove the quantization commutes with reduction theorem for Hamiltonian LG-spaces under this framework.
Be careful not to impute something ridiculous!
12:20 Mon 24 Aug, 2015 :: Benham Labs G10 :: Sarah James :: University of Adelaide

Media...
When learning how to make inferences about data, we are given all of the information with no missing values. In reality data sets are often missing data, anywhere from 5% of the data to extreme cases such as 70% of the data. Instead of getting rid of the incomplete cases we can impute predictions for each missing value and make inferences on the resulting data set. But just how sensible are our predictions? In this talk, we will learn how to deal with missing data and talk about why we have to be careful with our predictions.
The Calderon Problem: From the Past to the Present
15:10 Fri 11 Sep, 2015 :: Ingkarni Wardli B21 :: Dr Leo Tzou :: University of Sydney

The problem of determining the electrical conductivity of a body by making voltage and current measurements on the object's surface has various applications in fields such as oil exploration and early detection of malignant breast tumour. This classical problem posed by Calderon remained open until the late '80s when it was finally solved in a breakthrough paper by Sylvester-Uhlmann.

In the recent years, geometry has played an important role in this problem. The unexpected connection of this subject to fields such as dynamical systems, symplectic geometry, and Riemannian geometry has led to some interesting progress. This talk will be an overview of some of the recent results and an outline of the techniques used to treat this problem.

Chern-Simons classes on loop spaces and diffeomorphism groups
12:10 Fri 16 Oct, 2015 :: Ingkarni Wardli B17 :: Steve Rosenberg :: Boston University

Media...
Not much is known about the topology of the diffeomorphism group Diff(M) of manifolds M of dimension four and higher. We'll show that for a class of manifolds of dimension 4k+1, Diff(M) has infinite fundamental group. This is proved by translating the problem into a question about Chern-Simons classes on the tangent bundle to the loop space LM. To build the CS classes, we use a family of metrics on LM associated to a Riemannian metric on M. The curvature of these metrics takes values in an algebra of pseudodifferential operators. The main technical step in the CS construction is to replace the ordinary matrix trace in finite dimensions with the Wodzicki residue, the unique trace on this algebra. The moral is that some techniques in finite dimensional Riemannian geometry can be extended to some examples in infinite dimensional geometry.
Covariant model structures and simplicial localization
12:10 Fri 30 Oct, 2015 :: Ingkarni Wardli B17 :: Danny Stevenson :: The University of Adelaide

Media...
This talk will describe some aspects of the theory of quasi-categories, in particular the notion of left fbration and the allied covariant model structure. If B is a simplicial set, then I will describe some Quillen equivalences relating the covariant model structure on simplicial sets over B to a certain localization of simplicial presheaves on the simplex category of B. I will show how this leads to a new description of Lurie's simplicial rigidification functor as a hammock localization and describe some applications to Lurie's theory of straightening and unstraightening functors.
Ocean dynamics of Gulf St Vincent: a numerical study
12:10 Mon 2 Nov, 2015 :: Benham Labs G10 :: Henry Ellis :: University of Adelaide

Media...
The aim of this research is to determine the physical dynamics of ocean circulation within Gulf St. Vincent, South Australia, and the exchange of momentum, nutrients, heat, salt and other water properties between the gulf and shelf via Investigator Strait and Backstairs Passage. The project aims to achieve this through the creation of high-resolution numerical models, combined with new and historical observations from a moored instrument package, satellite data, and shipboard surveys. The quasi-realistic high-resolution models are forced using boundary conditions generated by existing larger scale ROMS models, which in turn are forced at the boundary by a global model, creating a global to regional to local model network. Climatological forcing is done using European Centres for Medium range Weather Forecasting (ECMWF) data sets and is consistent over the regional and local models. A series of conceptual models are used to investigate the relative importance of separate physical processes in addition to fully forced quasi-realistic models. An outline of the research to be undertaken is given: • Connectivity of Gulf St. Vincent with shelf waters including seasonal variation due to wind and thermoclinic patterns; • The role of winter time cooling and formation of eddies in flushing the gulf; • The formation of a temperature front within the gulf during summer time; and • The connectivity and importance of nutrient rich, cool, water upwelling from the Bonney Coast with the gulf via Backstairs Passage during summer time.
Locally homogeneous pp-waves
12:10 Fri 6 Nov, 2015 :: Ingkarni Wardli B17 :: Thomas Leistner :: The University of Adelaide

Media...
For a certain type of Lorentzian manifolds, the so-called pp-waves, we study the conditions implied on the curvature by local homogeneity of the metric. We show that under some mild genericity assumptions, these conditions are quite strong, forcing the pp-wave to be a plane wave, and yielding a classification of homogeneous pp-waves. This also leads to a generalisation of a classical result by Jordan, Ehlers and Kundt about vacuum pp-waves in dimension 4 to arbitrary dimensions. Several examples show that our genericity assumptions are essential. This is joint work with W. Globke.
A fixed point theorem on noncompact manifolds
12:10 Fri 12 Feb, 2016 :: Ingkarni Wardli B21 :: Peter Hochs :: University of Adelaide / Radboud University

Media...
For an elliptic operator on a compact manifold acted on by a compact Lie group, the Atiyah-Segal-Singer fixed point formula expresses its equivariant index in terms of data on fixed point sets of group elements. This can for example be used to prove Weyl’s character formula. We extend the definition of the equivariant index to noncompact manifolds, and prove a generalisation of the Atiyah-Segal-Singer formula, for group elements with compact fixed point sets. In one example, this leads to a relation with characters of discrete series representations of semisimple Lie groups. (This is joint work with Hang Wang.)
Counting periodic points of plane Cremona maps
12:10 Fri 1 Apr, 2016 :: Eng & Maths EM205 :: Tuyen Truong :: University of Adelaide

Media...
In this talk, I will present recent results, join with Tien-Cuong Dinh and Viet-Anh Nguyen, on counting periodic points of plane Cremona maps (i.e. birational maps of P^2). The tools used include a Lefschetz fixed point formula of Saito, Iwasaki and Uehara for birational maps of surface whose fixed point set may contain curves; a bound on the arithmetic genus of curves of periodic points by Diller, Jackson and Sommerse; a result by Diller, Dujardin and Guedj on invariant (1,1) currents of meromorphic maps of compact Kahler surfaces; and a theory developed recently by Dinh and Sibony for non proper intersections of varieties. Among new results in the paper, we give a complete characterisation of when two positive closed (1,1) currents on a compact Kahler surface behave nicely in the view of Dinh and Sibony’s theory, even if their wedge intersection may not be well-defined with respect to the classical pluripotential theory. Time allows, I will present some generalisations to meromorphic maps (including an upper bound for the number of isolated periodic points which is sometimes overlooked in the literature) and open questions.
Time series analysis of paleo-climate proxies (a mathematical perspective)
15:10 Fri 27 May, 2016 :: Engineering South S112 :: Dr Thomas Stemler :: University of Western Australia

Media...
In this talk I will present the work my colleagues from the School of Earth and Environment (UWA), the "trans disciplinary methods" group of the Potsdam Institute for Climate Impact Research, Germany, and I did to explain the dynamics of the Australian-South East Asian monsoon system during the last couple of thousand years. From a time series perspective paleo-climate proxy series are more or less the monsters moving under your bed that wake you up in the middle of the night. The data is clearly non-stationary, non-uniform sampled in time and the influence of stochastic forcing or the level of measurement noise are more or less unknown. Given these undesirable properties almost all traditional time series analysis methods fail. I will highlight two methods that allow us to draw useful conclusions from the data sets. The first one uses Gaussian kernel methods to reconstruct climate networks from multiple proxies. The coupling relationships in these networks change over time and therefore can be used to infer which areas of the monsoon system dominate the complex dynamics of the whole system. Secondly I will introduce the transformation cost time series method, which allows us to detect changes in the dynamics of a non-uniform sampled time series. Unlike the frequently used interpolation approach, our new method does not corrupt the data and therefore avoids biases in any subsequence analysis. While I will again focus on paleo-climate proxies, the method can be used in other applied areas, where regular sampling is not possible.
Geometry of pseudodifferential algebra bundles
12:10 Fri 16 Sep, 2016 :: Ingkarni Wardli B18 :: Mathai Varghese :: University of Adelaide

Media...
I will motivate the construction of pseudodifferential algebra bundles arising in index theory, and also outline the construction of general pseudodifferential algebra bundles (and the associated sphere bundles), showing that there are many that are purely infinite dimensional that do not come from usual constructions in index theory. I will also discuss characteristic classes of such bundles. This is joint work with Richard Melrose.
Segregation of particles in incompressible flows due to streamline topology and particle-boundary interaction
15:10 Fri 2 Dec, 2016 :: Ingkarni Wardli 5.57 :: Professor Hendrik C. Kuhlmann :: Institute of Fluid Mechanics and Heat Transfer, TU Wien, Vienna, Austria

Media...
The incompressible flow in a number of classical benchmark problems (e.g. lid-driven cavity, liquid bridge) undergoes an instability from a two-dimensional steady to a periodic three-dimensional flow, which is steady or in form of a traveling wave, if the Reynolds number is increased. In the supercritical regime chaotic as well as regular (quasi-periodic) streamlines can coexist for a range of Reynolds numbers. The spatial structures of the regular regions in three-dimensional Navier-Stokes flows has received relatively little attention, partly because of the high numerical effort required for resolving these structures. Particles whose density does not differ much from that of the liquid approximately follow the chaotic or regular streamlines in the bulk. Near the boundaries, however, their trajectories strongly deviate from the streamlines, in particular if the boundary (wall or free surface) is moving tangentially. As a result of this particle-boundary interaction particles can rapidly segregate and be attracted to periodic or quasi-periodic orbits, yielding particle accumulation structures (PAS). The mechanism of PAS will be explained and results from experiments and numerical modelling will be presented to demonstrate the generic character of the phenomenon.
Algae meet the mathematics of multiplicative multifractals
12:10 Tue 2 May, 2017 :: Inkgarni Wardli Conference Room 715 :: Professor Tony Roberts :: School of Mathematical Sciences

Media...
There is much that is fragmented and rough in the world around us: clouds and landscapes are examples, as is algae. We need fractal geometry to encompass these. In practice we need multifractals: a composite of interwoven sets, each with their own fractal structure. Multiplicative multifractals have known properties. Optimising a fit between them and the data then empowers us to quantify subtle details of fractal geometry in applications, such as in algae distribution.
Schubert Calculus on Lagrangian Grassmannians
12:10 Tue 23 May, 2017 :: EM 213 :: Hiep Tuan Dang :: National centre for theoretical sciences, Taiwan

Media...
The Lagrangian Grassmannian $LG = LG(n,2n)$ is the projective complex manifold which parametrizes Lagrangian (i.e. maximal isotropic) subspaces in a symplective vector space of dimension $2n$. This talk is mainly devoted to Schubert calculus on $LG$. We first recall the definition of Schubert classes in this context. Then we present basic results which are similar to the classical formulas due to Pieri and Giambelli. These lead to a presentation of the cohomology ring of $LG$. Finally, we will discuss recent results related to the Schubert structure constants and Gromov-Witten invariants of $LG$.
Stokes' Phenomenon in Translating Bubbles
15:10 Fri 2 Jun, 2017 :: Ingkarni Wardli 5.57 :: Dr Chris Lustri :: Macquarie University

This study of translating air bubbles in a Hele-Shaw cell containing viscous fluid reveals the critical role played by surface tension in these systems. The standard zero-surface-tension model of Hele-Shaw flow predicts that a continuum of bubble solutions exists for arbitrary flow translation velocity. The inclusion of small surface tension, however, eliminates this continuum of solutions, instead producing a discrete, countably infinite family of solutions, each with distinct translation speeds. We are interested in determining this discrete family of solutions, and understanding why only these solutions are permitted. Studying this problem in the asymptotic limit of small surface tension does not seem to give any particular reason why only these solutions should be selected. It is only by using exponential asymptotic methods to study the Stokes’ structure hidden in the problem that we are able to obtain a complete picture of the bubble behaviour, and hence understand the selection mechanism that only permits certain solutions to exist. In the first half of my talk, I will explain the powerful ideas that underpin exponential asymptotic techniques, such as analytic continuation and optimal truncation. I will show how they are able to capture behaviour known as Stokes' Phenomenon, which is typically invisible to classical asymptotic series methods. In the second half of the talk, I will introduce the problem of a translating air bubble in a Hele-Shaw cell, and show that the behaviour can be fully understood by examining the Stokes' structure concealed within the problem. Finally, I will briefly showcase other important physical applications of exponential asymptotic methods, including submarine waves and particle chains.
Dynamics of transcendental Hanon maps
11:10 Wed 20 Sep, 2017 :: Engineering & Math EM212 :: Leandro Arosio :: University of Rome

The dynamics of a polynomial in the complex plane is a classical topic studied already at the beginning of the 20th century by Fatou and Julia. The complex plane is partitioned in two natural invariant sets: a compact set called the Julia set, with (usually) fractal structure and chaotic behaviour, and the Fatou set, where dynamics has no sensitive dependence on initial conditions. The dynamics of a transcendental map was first studied by Baker fifty years ago, and shows striking differences with the polynomial case: for example, there are wandering Fatou components. Moving to C^2, an analogue of polynomial dynamics is given by Hanon maps, polynomial automorphisms with interesting dynamics. In this talk I will introduce a natural generalisation of transcendental dynamics to C^2, and show how to construct wandering domains for such maps.
On directions and operators
11:10 Wed 27 Sep, 2017 :: Engineering & Math EM213 :: Malabika Pramanik :: University of British Columbia

Media...
Many fundamental operators arising in harmonic analysis are governed by sets of directions that they are naturally associated with. This talk will survey a few representative results in this area, and report on some new developments.
Springer correspondence for symmetric spaces
12:10 Fri 17 Nov, 2017 :: Engineering Sth S111 :: Ting Xue :: University of Melbourne

Media...
The Springer theory for reductive algebraic groups plays an important role in representation theory. It relates nilpotent orbits in the Lie algebra to irreducible representations of the Weyl group. We develop a Springer theory in the case of symmetric spaces using Fourier transform, which relates nilpotent orbits in this setting to irreducible representations of Hecke algebras of various Coxeter groups with specified parameters. This in turn gives rise to character sheaves on symmetric spaces, which we describe explicitly in the case of classical symmetric spaces. A key ingredient in the construction is the nearby cycle sheaves associated to the adjoint quotient map. The talk is based on joint work with Kari Vilonen and partly based on joint work with Misha Grinberg and Kari Vilonen.
A Hecke module structure on the KK-theory of arithmetic groups
13:10 Fri 2 Mar, 2018 :: Barr Smith South Polygon Lecture theatre :: Bram Mesland :: University of Bonn

Media...
Let $G$ be a locally compact group, $\Gamma$ a discrete subgroup and $C_{G}(\Gamma)$ the commensurator of $\Gamma$ in $G$. The cohomology of $\Gamma$ is a module over the Shimura Hecke ring of the pair $(\Gamma,C_G(\Gamma))$. This construction recovers the action of the Hecke operators on modular forms for $SL(2,\mathbb{Z})$ as a particular case. In this talk I will discuss how the Shimura Hecke ring of a pair $(\Gamma, C_{G}(\Gamma))$ maps into the $KK$-ring associated to an arbitrary $\Gamma$-C*-algebra. From this we obtain a variety of $K$-theoretic Hecke modules. In the case of manifolds the Chern character provides a Hecke equivariant transformation into cohomology, which is an isomorphism in low dimensions. We discuss Hecke equivariant exact sequences arising from possibly noncommutative compactifications of $\Gamma$-spaces. Examples include the Borel-Serre and geodesic compactifications of the universal cover of an arithmetic manifold, and the totally disconnected boundary of the Bruhat-Tits tree of $SL(2,\mathbb{Z})$. This is joint work with M.H. Sengun (Sheffield).
Calculating optimal limits for transacting credit card customers
15:10 Fri 2 Mar, 2018 :: Horace Lamb 1022 :: Prof Peter Taylor :: University of Melbourne

Credit card users can roughly be divided into `transactors', who pay off their balance each month, and `revolvers', who maintain an outstanding balance, on which they pay substantial interest. In this talk, we focus on modelling the behaviour of an individual transactor customer. Our motivation is to calculate an optimal credit limit from the bank's point of view. This requires an expression for the expected outstanding balance at the end of a payment period. We establish a connection with the classical newsvendor model. Furthermore, we derive the Laplace transform of the outstanding balance, assuming that purchases are made according to a marked point process and that there is a simplified balance control policy which prevents all purchases in the rest of the payment period when the credit limit is exceeded. We then use the newsvendor model and our modified model to calculate bounds on the optimal credit limit for the more realistic balance control policy that accepts all purchases that do not exceed the limit. We illustrate our analysis using a compound Poisson process example and show that the optimal limit scales with the distribution of the purchasing process, while the probability of exceeding the optimal limit remains constant. Finally, we apply our model to some real credit card purchase data.
Quantum Airy structures and topological recursion
13:10 Wed 14 Mar, 2018 :: Ingkarni Wardli B17 :: Gaetan Borot :: MPI Bonn

Media...
Quantum Airy structures are Lie algebras of quadratic differential operators -- their classical limit describes Lagrangian subvarieties in symplectic vector spaces which are tangent to the zero section and cut out by quadratic equations. Their partition function -- which is the function annihilated by the collection of differential operators -- can be computed by the topological recursion. I will explain how to obtain quantum Airy structures from spectral curves, and explain how we can retrieve from them correlation functions of semi-simple cohomological field theories, by exploiting the symmetries. This is based on joint work with Andersen, Chekhov and Orantin.
Family gauge theory and characteristic classes of bundles of 4-manifolds
13:10 Fri 16 Mar, 2018 :: Barr Smith South Polygon Lecture theatre :: Hokuto Konno :: University of Tokyo

Media...
I will define a non-trivial characteristic class of bundles of 4-manifolds using families of Seiberg-Witten equations. The basic idea of the construction is to consider an infinite dimensional analogue of the Euler class used in the usual theory of characteristic classes. I will also explain how to prove the non-triviality of this characteristic class. If time permits, I will mention a relation between our characteristic class and positive scalar curvature metrics.
Models, machine learning, and robotics: understanding biological networks
15:10 Fri 16 Mar, 2018 :: Horace Lamb 1022 :: Prof Steve Oliver :: University of Cambridge

The availability of complete genome sequences has enabled the construction of computer models of metabolic networks that may be used to predict the impact of genetic mutations on growth and survival. Both logical and constraint-based models of the metabolic network of the model eukaryote, the ale yeast Saccharomyces cerevisiae, have been available for some time and are continually being improved by the research community. While such models are very successful at predicting the impact of deleting single genes, the prediction of the impact of higher order genetic interactions is a greater challenge. Initial studies of limited gene sets provided encouraging results. However, the availability of comprehensive experimental data for the interactions between genes involved in metabolism demonstrated that, while the models were able to predict the general properties of the genetic interaction network, their ability to predict interactions between specific pairs of metabolic genes was poor. I will examine the reasons for this poor performance and demonstrate ways of improving the accuracy of the models by exploiting the techniques of machine learning and robotics. The utility of these metabolic models rests on the firm foundations of genome sequencing data. However, there are two major problems with these kinds of network models - there is no dynamics, and they do not deal with the uncertain and incomplete nature of much biological data. To deal with these problems, we have developed the Flexible Nets (FNs) modelling formalism. FNs were inspired by Petri Nets and can deal with missing or uncertain data, incorporate both dynamics and regulation, and also have the potential for model predictive control of biotechnological processes.

Publications matching "A classical construction for simplicial sets revis"

Publications
The decoupling and solution of logistic and classical two-species lotka-volterra dynamics with variable production rates
Pearce, Charles; Leipnik, R, Biophysical Reviews and Letters 3 (183–194) 2008
The decoupling & solution of logistic & classical two-species lotka-volterra dynamics with variable production rates
Pearce, Charles; Leipnik, R, Biomat 2007, Brazil 24/11/08
Special tensors in the deformation theory of quadratic algebras for the classical Lie algebras
Eastwood, Michael; Somberg, P; Soucek, V, Journal of Geometry and Physics 57 (2539–2546) 2007
The twistor construction and Penrose transform in split signature
Eastwood, Michael, The Asian Journal of Mathematics 11 (103–111) 2007
Flock generalized quadrangles and tetradic sets of elliptic quadrics of PG(3, q)
Barwick, Susan; Brown, Matthew; Penttila, T, Journal of Combinatorial Theory Series A 113 (273–290) 2006
An optimal multisecret threshold scheme construction
Barwick, Susan; Jackson, Wen-Ai, Designs Codes and Cryptography 37 (367–389) 2005
A geometrical construction of the oval(s) associated with an a-flock
Brown, Matthew; Thas, J, Advances in Geometry 4 (9–17) 2004
The dual Yoshiara construction gives new extended generalized quadrangles
Barwick, Susan; Brown, Matthew, European Journal of Combinatorics 25 (377–382) 2004
Inequalities for lattice constrained planar convex sets
Hillock, P; Scott, Paul, Journal of Inequalities in Pure and Applied Mathematics 3 (www 23:1–www 23:10) 2002
Yet another construction of the central extension of the loop group
Murray, Michael; Stevenson, Daniel, National Research Symposium on Geometric Analysis & Applications, AUSTRALIA 26/06/00
Inequalities for convex sets
Scott, Paul; Awyong, P-W, Journal of Inequalities in Pure and Applied Mathematics 1 (1–6) 2000
On two lemmas of Brown and Shepp having application to sum sets and fractals, III
Elezovic, N; Matic, M; Pearce, Charles; Pecaric, Josip, The ANZIAM Journal 41 (329–337) 2000

Advanced search options

You may be able to improve your search results by using the following syntax:

QueryMatches the following
Asymptotic EquationAnything with "Asymptotic" or "Equation".
+Asymptotic +EquationAnything with "Asymptotic" and "Equation".
+Stokes -"Navier-Stokes"Anything containing "Stokes" but not "Navier-Stokes".
Dynam*Anything containing "Dynamic", "Dynamical", "Dynamicist" etc.