The University of Adelaide
You are here
Text size: S | M | L
Printer Friendly Version
March 2018

Search the School of Mathematical Sciences

Find in People Courses Events News Publications

Events matching "Infinite numbers: what are they and what are they "

A Bivariate Zero-inflated Poisson Regression Model and application to some Dental Epidemiological data
14:10 Fri 27 Oct, 2006 :: G08 Mathematics Building University of Adelaide :: University Prof Sudhir Paul

Data in the form of paired (pre-treatment, post-treatment) counts arise in the study of the effects of several treatments after accounting for possible covariate effects. An example of such a data set comes from a dental epidemiological study in Belo Horizonte (the Belo Horizonte caries prevention study) which evaluated various programmes for reducing caries. Also, these data may show extra pairs of zeros than can be accounted for by a simpler model, such as, a bivariate Poisson regression model. In such situations we propose to use a zero-inflated bivariate Poisson regression (ZIBPR) model for the paired (pre-treatment, posttreatment) count data. We develop EM algorithm to obtain maximum likelihood estimates of the parameters of the ZIBPR model. Further, we obtain exact Fisher information matrix of the maximum likelihood estimates of the parameters of the ZIBPR model and develop a procedure for testing treatment effects. The procedure to detect treatment effects based on the ZIBPR model is compared, in terms of size, by simulations, with an earlier procedure using a zero-inflated Poisson regression (ZIPR) model of the post-treatment count with the pre-treatment count treated as a covariate. The procedure based on the ZIBPR model holds level most effectively. A further simulation study indicates good power property of the procedure based on the ZIBPR model. We then compare our analysis, of the decayed, missing and filled teeth (DMFT) index data from the caries prevention study, based on the ZIBPR model with the analysis using a zero-inflated Poisson regression model in which the pre-treatment DMFT index is taken to be a covariate
Good and Bad Vibes
15:10 Fri 23 Feb, 2007 :: G08 Mathematics Building University of Adelaide :: Prof. Maurice Dodson

Collapsing bridges and exploding rockets have been associated with vibrations in resonance with natural frequencies. As well, the stability of the solar system and the existence of solutions of Schrödinger\'s equation and the wave equation are problematic in the presence of resonances. Such resonances can be avoided, or at least mitigated, by using ideas from Diophantine approximation, a branch of number theory. Applications of Diophantine approximation to these problems will be given and will include a connection with LISA (Laser Interferometer Space Antenna), a space-based gravity wave detector under construction.
Statistical convergence of sequences of complex numbers with application to Fourier series
15:10 Tue 27 Mar, 2007 :: G08 Mathematics Building University of Adelaide :: Prof. Ferenc Morics

The concept of statistical convergence was introduced by Henry Fast and Hugo Steinhaus in 1951. But in fact, it was Antoni Zygmund who first proved theorems on the statistical convergence of Fourier series, using the term \"almost convergence\". A sequence $\\{x_k : k=1,2\\ldots\\}$ of complex numbers is said to be statistically convergent to $\\xi$ if for every $\\varepsilon >0$ we have $$\\lim_{n\\to \\infty} n^{-1} |\\{1\\le k\\le n: |x_k-\\xi| > \\varepsilon\\}| = 0.$$ We present the basic properties of statistical convergence, and extend it to multiple sequences. We also discuss the convergence behavior of Fourier series.
Finite Geometries: Classical Problems and Recent Developments
15:10 Fri 20 Jul, 2007 :: G04 Napier Building University of Adelaide :: Prof. Joseph A. Thas :: Ghent University, Belgium

In recent years there has been an increasing interest in finite projective spaces, and important applications to practical topics such as coding theory, cryptography and design of experiments have made the field even more attractive. In my talk some classical problems and recent developments will be discussed. First I will mention Segre's celebrated theorem and ovals and a purely combinatorial characterization of Hermitian curves in the projective plane over a finite field here, from the beginning, the considered pointset is contained in the projective plane over a finite field. Next, a recent elegant result on semiovals in PG(2,q), due to Gács, will be given. A second approach is where the object is described as an incidence structure satisfying certain properties; here the geometry is not a priori embedded in a projective space. This will be illustrated by a characterization of the classical inversive plane in the odd case. Another quite recent beautiful result in Galois geometry is the discovery of an infinite class of hemisystems of the Hermitian variety in PG(3,q^2), leading to new interesting classes of incidence structures, graphs and codes; before this result, just one example for GF(9), due to Segre, was known.
Likelihood inference for a problem in particle physics
15:10 Fri 27 Jul, 2007 :: G04 Napier Building University of Adelaide :: Prof. Anthony Davison

The Large Hadron Collider (LHC), a particle accelerator located at CERN, near Geneva, is (currently!) expected to start operation in early 2008. It is located in an underground tunnel 27km in circumference, and when fully operational, will be the world's largest and highest energy particle accelerator. It is hoped that it will provide evidence for the existence of the Higgs boson, the last remaining particle of the so-called Standard Model of particle physics. The quantity of data that will be generated by the LHC is roughly equivalent to that of the European telecommunications network, but this will be boiled down to just a few numbers. After a brief introduction, this talk will outline elements of the statistical problem of detecting the presence of a particle, and then sketch how higher order likelihood asymptotics may be used for signal detection in this context. The work is joint with Nicola Sartori, of the Università Ca' Foscari, in Venice.
Queues with Advance Reservations
15:10 Fri 21 Sep, 2007 :: G04 Napier Building University of Adelaide :: Prof. Peter Taylor :: Department of Mathematics and Statistics, University of Melbourne

Queues where, on "arrival", customers make a reservation for service at some time in the future are endemic. However there is surprisingly little about them in the literature. Simulations illustrate some interesting implications of the facility to make such reservations. For example introducing independent and identically distributed reservation periods into an Erlang loss system can either increase or decrease the blocking probability from that given by Erlang's formula, despite the fact that the process of 'reserved arrivals' is still Poisson. In this talk we shall discuss a number of ways of looking at such queues. In particular, we shall obtain various transient and stationary distributions associated with the "bookings diary" for the infinite server system. However, this does not immediately answer the question of how to calculate the above-mentioned blocking probabilities. We shall conclude with a few suggestions as to how this calculation might be carried out.
Similarity solutions for surface-tension driven flows
15:10 Fri 14 Mar, 2008 :: LG29 Napier Building University of Adelaide :: Prof John Lister :: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK

The breakup of a mass of fluid into drops is a ubiquitous phenomenon in daily life, the natural environment and technology, with common examples including a dripping tap, ocean spray and ink-jet printing. It is a feature of many generic industrial processes such as spraying, emulsification, aeration, mixing and atomisation, and is an undesirable feature in coating and fibre spinning. Surface-tension driven pinch-off and the subsequent recoil are examples of finite-time singularities in which the interfacial curvature becomes infinite at the point of disconnection. As a result, the flow near the point of disconnection becomes self-similar and independent of initial and far-field conditions. Similarity solutions will be presented for the cases of inviscid and very viscous flow, along with comparison to experiments. In each case, a boundary-integral representation can be used both to examine the time-dependent behaviour and as the basis of a modified Newton scheme for direct solution of the similarity equations.
Counting fish
13:10 Wed 19 Mar, 2008 :: Napier 210 :: Mr Jono Tuke

How often have you asked yourself: "I wonder how many fish are in that lake?" Probably never, but if you ever did, then this is the lecture for you. The solution is easy (Seuss, 1960), but raises the question of how good the answer is. I will answer this by looking at confidence intervals. In the lecture, I will discuss what a confidence interval is and how to calculate it using techniques for calculating probabilities in poker. I will also look at how these ideas have been used in epidemiology, the study of disease, to estimate the number of people with diabetes. [1] Seuss, Dr. (1960). "One Fish Two Fish Red Fish Blue Fish". Random House Books.
Values of transcendental entire functions at algebraic points.
15:10 Fri 28 Mar, 2008 :: LG29 Napier Building University of Adelaide :: Prof. Eugene Poletsky :: Syracuse University, USA

Algebraic numbers are roots of polynomials with integer coefficients, so their set is countable. All other numbers are called transcendental. Although most numbers are transcendental, it was only in 1873 that Hermite proved that the base $e$ of natural logarithms is not algebraic. The proof was based on the fact that $e$ is the value at 1 of the exponential function $e^z$ which is entire and does not change under differentiation.

This achievement raised two questions: What entire functions take only transcendental values at algebraic points? Also, given an entire transcendental function $f$, describe, or at least find properties of, the set of algebraic numbers where the values of $f$ are also algebraic. The first question, developed by Siegel, Shidlovsky, and others, led to the notion of $E$-functions, which have controlled derivatives. Answering the second question, Polya and Gelfond obtained restrictions for entire functions that have integer values at integer points (Polya) or Gaussian integer values at Gaussian integer points (Gelfond). For more general sets of points only counterexamples were known.

Recently D. Coman and the speaker developed new tools for the second question, which give an answer, at least partially, for general entire functions and their values at general sets of algebraic points.

In my talk we will discuss old and new results in this direction. All relevant definitions will be provided and the talk will be accessible to postgraduates and honours students.

Something cool about primes
13:10 Wed 13 Aug, 2008 :: Napier 210 :: Mr David Butler

So far this year in the undergraduate seminars, we have seen how mathematics is useful for solving important problems, and how mathematics can be used to uncover profound truths. In this seminar I will show you something about prime numbers that is neither useful nor profound. I just think it is extremely cool.
Free surface Stokes flows with surface tension
15:10 Fri 5 Sep, 2008 :: G03 Napier Building University of Adelaide :: Prof. Darren Crowdy :: Imperial College London

In this talk, we will survey a number of different free boundary problems involving slow viscous (Stokes) flows in which surface tension is active on the free boundary. Both steady and unsteady flows will be considered. Motivating applications range from industrial processes such as viscous sintering (where end-products are formed as a result of the surface-tension-driven densification of a compact of smaller particles that are heated in order that they coalesce) to biological phenomena such as understanding how organisms swim (i.e. propel themselves) at low Reynolds numbers. Common to our approach to all these problems will be an analytical/theoretical treatment of model problems via complex variable methods -- techniques well-known at infinite Reynolds numbers but used much less often in the Stokes regime. These model problems can give helpful insights into the behaviour of the true physical systems.
Hunting Non-linear Mathematical Butterflies
15:10 Fri 23 Jan, 2009 :: Napier LG29 :: Prof Nalini Joshi :: University of Sydney

The utility of mathematical models relies on their ability to predict the future from a known set of initial states. But there are non-linear systems, like the weather, where future behaviours are unpredictable unless their initial state is known to infinite precision. This is the butterfly effect. I will show how to analyse functions to overcome this problem for the classical Painleve equations, differential equations that provide archetypical non-linear models of modern physics.
String structures and characteristic classes for loop group bundles
13:10 Fri 1 May, 2009 :: School Board Room :: Mr Raymond Vozzo :: University of Adelaide

The Chern-Weil homomorphism gives a geometric method for calculating characteristic classes for principal bundles. In infinite dimensions, however, the standard theory fails due to analytical problems. In this talk I shall give a geometric method for calculating characteristic classes for principal bundle with structure group the loop group of a compact group which side-steps these complications. This theory is inspired in some sense by results on the string class (a certain cohomology class on the base of a loop group bundle) which I shall outline.
Nonlinear diffusion-driven flow in a stratified viscous fluid
15:00 Fri 26 Jun, 2009 :: Macbeth Lecture Theatre :: Associate Prof Michael Page :: Monash University

In 1970, two independent studies (by Wunsch and Phillips) of the behaviour of a linear density-stratified viscous fluid in a closed container demonstrated a slow flow can be generated simply due to the container having a sloping boundary surface This remarkable motion is generated as a result of the curvature of the lines of constant density near any sloping surface, which in turn enables a zero normal-flux condition on the density to be satisfied along that boundary. When the Rayleigh number is large (or equivalently Wunsch's parameter $R$ is small) this motion is concentrated in the near vicinity of the sloping surface, in a thin `buoyancy layer' that has many similarities to an Ekman layer in a rotating fluid.

A number of studies have since considered the consequences of this type of `diffusively-driven' flow in a semi-infinite domain, including in the deep ocean and with turbulent effects included. More recently, Page & Johnson (2008) described a steady linear theory for the broader-scale mass recirculation in a closed container and demonstrated that, unlike in previous studies, it is possible for the buoyancy layer to entrain fluid from that recirculation. That work has since been extended (Page & Johnson, 2009) to the nonlinear regime of the problem and some of the similarities to and differences from the linear case will be described in this talk. Simple and elegant analytical solutions in the limit as $R \to 0$ still exist in some situations, and they will be compared with numerical simulations in a tilted square container at small values of $R$. Further work on both the unsteady flow properties and the flow for other geometrical configurations will also be described.

The Monster
12:10 Thu 10 Sep, 2009 :: Napier 210 :: Dr David Parrott :: University of Adelaide

The simple groups are the building blocks of all finite groups. The classification of finite simple groups is a towering achievement of 20th century mathematics. In addition to 18 infinite families of finite simple groups, there are 26 sporadic groups. The biggest sporadic group, dubbed The Monster, has about 10^54 elements. The talk will give a glimpse of this deep area of mathematics.
Critical sets of products of linear forms
13:10 Mon 14 Dec, 2009 :: School Board Room :: Dr Graham Denham :: University of Western Ontario, Canada

Suppose $f_1,f_2,\ldots,f_n$ are linear polynomials in $\ell$ variables and $\lambda_1,\lambda_2,\ldots,\lambda_n$ are nonzero complex numbers. The product $$ \Phi_\lambda=\Prod_{i=1}^n f_1^{\lambda_i}, $$ called a master function, defines a (multivalued) function on $\ell$-dimensional complex space, or more precisely, on the complement of a set of hyperplanes. Then it is easy to ask (but harder to answer) what the set of critical points of a master function looks like, in terms of some properties of the input polynomials and $\lambda_i$'s. In my talk I will describe the motivation for considering such a question. Then I will indicate how the geometry and combinatorics of hyperplane arrangements can be used to provide at least a partial answer.
A solution to the Gromov-Vaserstein problem
15:10 Fri 29 Jan, 2010 :: Engineering North N 158 Chapman Lecture Theatre :: Prof Frank Kutzschebauch :: University of Berne, Switzerland

Any matrix in $SL_n (\mathbb C)$ can be written as a product of elementary matrices using the Gauss elimination process. If instead of the field of complex numbers, the entries in the matrix are elements of a more general ring, this becomes a delicate question. In particular, rings of complex-valued functions on a space are interesting cases. A deep result of Suslin gives an affirmative answer for the polynomial ring in $m$ variables in case the size $n$ of the matrix is at least 3. In the topological category, the problem was solved by Thurston and Vaserstein. For holomorphic functions on $\mathbb C^m$, the problem was posed by Gromov in the 1980s. We report on a complete solution to Gromov's problem. A main tool is the Oka-Grauert-Gromov h-principle in complex analysis. Our main theorem can be formulated as follows: In the absence of obvious topological obstructions, the Gauss elimination process can be performed in a way that depends holomorphically on the matrix. This is joint work with Bj\"orn Ivarsson.
Finite and infinite words in number theory
15:10 Fri 12 Feb, 2010 :: Napier LG28 :: Dr Amy Glen :: Murdoch University

A 'word' is a finite or infinite sequence of symbols (called 'letters') taken from a finite non-empty set (called an 'alphabet'). In mathematics, words naturally arise when one wants to represent elements from some set (e.g., integers, real numbers, p-adic numbers, etc.) in a systematic way. For instance, expansions in integer bases (such as binary and decimal expansions) or continued fraction expansions allow us to associate with every real number a unique finite or infinite sequence of digits.

In this talk, I will discuss some old and new results in Combinatorics on Words and their applications to problems in Number Theory. In particular, by transforming inequalities between real numbers into (lexicographic) inequalities between infinite words representing their binary expansions, I will show how combinatorial properties of words can be used to completely describe the minimal intervals containing all fractional parts {x*2^n}, for some positive real number x, and for all non-negative integers n. This is joint work with Jean-Paul Allouche (Universite Paris-Sud, France).

Infinite numbers: what are they and what are they good for?
13:10 Wed 17 Mar, 2010 :: Napier 210 :: A/Prof Finnur Larusson :: University of Adelaide

The sequence first, second, third,... can be continued with infinite ordinal numbers. I will explain what these infinite numbers are and how they can be used -- and sometimes must be used! -- to prove facts about ordinary, finite numbers.
Loop groups and characteristic classes
13:10 Fri 23 Apr, 2010 :: School Board Room :: Dr Raymond Vozzo :: University of Adelaide

Suppose $G$ is a compact Lie group, $LG$ its (free) loop group and $\Omega G \subseteq LG$ its based loop group. Let $P \to M$ be a principal bundle with structure group one of these loop groups. In general, differential form representatives of characteristic classes for principal bundles can be easily obtained using the Chern-Weil homomorphism, however for infinite-dimensional bundles such as $P$ this runs into analytical problems and classes are more difficult to construct. In this talk I will explain some new results on characteristic classes for loop group bundles which demonstrate how to construct certain classes---which we call string classes---for such bundles. These are obtained by making heavy use of a certain $G$-bundle associated to any loop group bundle (which allows us to avoid the problems of dealing with infinite-dimensional bundles). We shall see that the free loop group case naturally involves equivariant cohomology.
A polyhedral model for boron nitride nanotubes
15:10 Fri 3 Sep, 2010 :: Napier G04 :: Dr Barry Cox :: University of Adelaide

The conventional rolled-up model of nanotubes does not apply to the very small radii tubes, for which curvature effects become significant. In this talk an existing geometric model for carbon nanotubes proposed by the authors, which accommodates this deficiency and which is based on the exact polyhedral cylindrical structure, is extended to a nanotube structure involving two species of atoms in equal proportion, and in particular boron nitride nanotubes. This generalisation allows the principle features to be included as the fundamental assumptions of the model, such as equal bond length but distinct bond angles and radii between the two species. The polyhedral model is based on the five simple geometric assumptions: (i) all bonds are of equal length, (ii) all bond angles for the boron atoms are equal, (iii) all boron atoms lie at an equal distance from the nanotube axis, (iv) all nitrogen atoms lie at an equal distance from the nanotube axis, and (v) there exists a fixed ratio of pyramidal height H, between the boron species compared with the corresponding height in a symmetric single species nanotube. Working from these postulates, expressions are derived for the various structural parameters such as radii and bond angles for the two species for specific values of the chiral vector numbers (n,m). The new model incorporates an additional constant of proportionality H, which we assume applies to all nanotubes comprising the same elements and is such that H = 1 for a single species nanotube. Comparison with `ab initio' studies suggest that this assumption is entirely reasonable, and in particular we determine the value H = 0.56\pm0.04 for boron nitride, based on computational results in the literature. This talk relates to work which is a couple of years old and given time at the end we will discuss some newer results in geometric models developed with our former student Richard Lee (now also at the University of Adelaide as a post doc) and some work-in-progress on carbon nanocones. Note: pyramidal height is our own terminology and will be explained in the talk.
Principal Component Analysis Revisited
15:10 Fri 15 Oct, 2010 :: Napier G04 :: Assoc. Prof Inge Koch :: University of Adelaide

Since the beginning of the 20th century, Principal Component Analysis (PCA) has been an important tool in the analysis of multivariate data. The principal components summarise data in fewer than the original number of variables without losing essential information, and thus allow a split of the data into signal and noise components. PCA is a linear method, based on elegant mathematical theory. The increasing complexity of data together with the emergence of fast computers in the later parts of the 20th century has led to a renaissance of PCA. The growing numbers of variables (in particular, high-dimensional low sample size problems), non-Gaussian data, and functional data (where the data are curves) are posing exciting challenges to statisticians, and have resulted in new research which extends the classical theory. I begin with the classical PCA methodology and illustrate the challenges presented by the complex data that we are now able to collect. The main part of the talk focuses on extensions of PCA: the duality of PCA and the Principal Coordinates of Multidimensional Scaling, Sparse PCA, and consistency results relating to principal components, as the dimension grows. We will also look at newer developments such as Principal Component Regression and Supervised PCA, nonlinear PCA and Functional PCA.
Queues with skill based routing under FCFS–ALIS regime
15:10 Fri 11 Feb, 2011 :: B17 Ingkarni Wardli :: Prof Gideon Weiss :: The University of Haifa, Israel

We consider a system where jobs of several types are served by servers of several types, and a bipartite graph between server types and job types describes feasible assignments. This is a common situation in manufacturing, call centers with skill based routing, matching of parent-child in adoption or matching in kidney transplants etc. We consider the case of first come first served policy: jobs are assigned to the first available feasible server in order of their arrivals. We consider two types of policies for assigning customers to idle servers - a random assignment and assignment to the longest idle server (ALIS) We survey some results for four different situations:

  • For a loss system we find conditions for reversibility and insensitivity.
  • For a manufacturing type system, in which there is enough capacity to serve all jobs, we discuss a product form solution and waiting times.
  • For an infinite matching model in which an infinite sequence of customers of IID types, and infinite sequence of servers of IID types are matched according to first come first, we obtain a product form stationary distribution for this system, which we use to calculate matching rates.
  • For a call center model with overload and abandonments we make some plausible observations.

This talk surveys joint work with Ivo Adan, Rene Caldentey, Cor Hurkens, Ed Kaplan and Damon Wischik, as well as work by Jeremy Visschers, Rishy Talreja and Ward Whitt.

What is a p-adic number?
12:10 Mon 28 Feb, 2011 :: 5.57 Ingkarni Wardli :: Alexander Hanysz :: University of Adelaide

The p-adic numbers are: (a) something that visiting seminar speakers invoke when the want to frighten the audience; (b) a fascinating and useful concept in modern algebra; (c) alphabetically just before q-adic numbers? In this talk I hope to convince the audience that option (b) is worth considering. I will begin by reviewing how we get from integers via rational numbers to the real number system. Then we'll look at how this process can be "twisted" to produce something new.
Operator algebra quantum groups
13:10 Fri 1 Apr, 2011 :: Mawson 208 :: Dr Snigdhayan Mahanta :: University of Adelaide

Woronowicz initiated the study of quantum groups using C*-algebras. His framework enabled him to deal with compact (linear) quantum groups. In this talk we shall introduce a notion of quantum groups that can handle infinite dimensional examples like SU(\infty). We shall also study some quantum homogeneous spaces associated to this group and compute their K-theory groups. This is joint work with V. Mathai.
Algebraic hypersurfaces arising from Gorenstein algebras
15:10 Fri 8 Apr, 2011 :: 7.15 Ingkarni Wardli :: Associate Prof Alexander Isaev :: Australian National University

To every Gorenstein algebra of finite dimension greater than 1 over a field of characteristic zero, and a projection on its maximal ideal with range equal to the annihilator of the ideal, one can associate a certain algebraic hypersurface lying in the ideal. Such hypersurfaces possess remarkable properties. They can be used, for instance, to help decide whether two given Gorenstein algebras are isomorphic, which for the case of complex numbers leads to interesting consequences in singularity theory. Also, for the case of real numbers such hypersurfaces naturally arise in CR-geometry. In my talk I will discuss these hypersurfaces and some of their applications.
The Cauchy integral formula
12:10 Mon 9 May, 2011 :: 5.57 Ingkarni Wardli :: Stephen Wade :: University of Adelaide

In this talk I will explain a simple method used for calculating the Hilbert transform of an analytic function, and provide some assurance that this isn't a bad thing to do in spite of the somewhat ominous presence of infinite areas. As it turns out this type of integral is not without an application, as will be demonstrated by one application to a problem in fluid mechanics.
The (dual) local cyclic homology valued Chern-Connes character for some infinite dimensional spaces
13:10 Fri 29 Jul, 2011 :: B.19 Ingkarni Wardli :: Dr Snigdhayan Mahanta :: School of Mathematical Sciences

I will explain how to construct a bivariant Chern-Connes character on the category of sigma-C*-algebras taking values in Puschnigg's local cyclic homology. Roughly, setting the first (resp. the second) variable to complex numbers one obtains the K-theoretic (resp. dual K-homological) Chern-Connes character in one variable. We shall focus on the dual K-homological Chern-Connes character and investigate it in the example of SU(infty).
The real thing
12:10 Wed 3 Aug, 2011 :: Napier 210 :: Dr Paul McCann :: School of Mathematical Sciences

Let x be a real number. This familiar and seemingly innocent assumption opens up a world of infinite variety and information. We use some simple techniques (powers of two, geometric series) to examine some interesting consequences of generating random real numbers, and encounter both the best flash drive and the worst flash drive you will ever meet. Come "hold infinity in the palm of your hand", and contemplate eternity for about half an hour. Almost nothing is assumed, almost everything is explained, and absolutely all are welcome.
Horocycle flows at prime times
13:10 Wed 10 Aug, 2011 :: B.19 Ingkarni Wardli :: Prof Peter Sarnak :: Institute for Advanced Study, Princeton

The distribution of individual orbits of unipotent flows in homogeneous spaces are well understood thanks to the work work of Marina Ratner. It is conjectured that this property is preserved on restricting the times from the integers to primes, this being important in the study of prime numbers as well as in such dynamics. We review progress in understanding this conjecture, starting with Dirichlet (a finite system), Vinogradov (rotation of a circle or torus), Green and Tao (translation on a nilmanifold) and Ubis and Sarnak (horocycle flows in the semisimple case).
Estimating transmission parameters for the swine flu pandemic
15:10 Fri 23 Sep, 2011 :: 7.15 Ingkarni Wardli :: Dr Kathryn Glass :: Australian National University

Following the onset of a new strain of influenza with pandemic potential, policy makers need specific advice on how fast the disease is spreading, who is at risk, and what interventions are appropriate for slowing transmission. Mathematical models play a key role in comparing interventions and identifying the best response, but models are only as good as the data that inform them. In the early stages of the 2009 swine flu outbreak, many researchers estimated transmission parameters - particularly the reproduction number - from outbreak data. These estimates varied, and were often biased by data collection methods, misclassification of imported cases or as a result of early stochasticity in case numbers. I will discuss a number of the pitfalls in achieving good quality parameter estimates from early outbreak data, and outline how best to avoid them. One of the early indications from swine flu data was that children were disproportionately responsible for disease spread. I will introduce a new method for estimating age-specific transmission parameters from both outbreak and seroprevalence data. This approach allows us to take account of empirical data on human contact patterns, and highlights the need to allow for asymmetric mixing matrices in modelling disease transmission between age groups. Applied to swine flu data from a number of different countries, it presents a consistent picture of higher transmission from children.
The entropy of an overlapping dynamical system
15:10 Fri 23 Mar, 2012 :: Napier G03 :: Prof Michael Barnsley :: Australian National University

The term "overlapping" refers to a certain fairly simple type of piecewise continuous function from the unit interval to itself and also to a fairly simple type of iterated function system (IFS) on the unit interval. A correspondence between these two classes of objects is used to: 1. find a necessary and sufficient condition for a fractal transformation from the attractor of one overlapping IFS to the attractor of another overlapping IFS to be a homeomorphism and 2. find a formula for the topological entropy of the dynamical system associated with an overlapping function. These results suggest a new method for analysing clocks, weather systems and prime numbers.
Mathematical modelling of the surface adsorption for methane on carbon nanostructures
12:10 Mon 30 Apr, 2012 :: 5.57 Ingkarni Wardli :: Mr Olumide Adisa :: University of Adelaide

In this talk, methane (CH4) adsorption is investigated on both graphite and in the region between two aligned single-walled carbon nanotubes, which we refer to as the groove site. The Lennard–Jones potential function and the continuous approximation is exploited to determine surface binding energies between a single CH4 molecule and graphite and between a single CH4 and two aligned single-walled carbon nanotubes. The modelling indicates that for a CH4 molecule interacting with graphite, the binding energy of the system is minimized when the CH4 carbon is 3.83 angstroms above the surface of the graphitic carbon, while the binding energy of the CH4–groove site system is minimized when the CH4 carbon is 5.17 angstroms away from the common axis shared by the two aligned single-walled carbon nanotubes. These results confirm the current view that for larger groove sites, CH4 molecules in grooves are likely to move towards the outer surfaces of one of the single-walled carbon nanotubes. The results presented in this talk are computationally efficient and are in good agreement with experiments and molecular dynamics simulations, and show that CH4 adsorption on graphite and groove surfaces is more favourable at lower temperatures and higher pressures.
Geometric modular representation theory
13:10 Fri 1 Jun, 2012 :: Napier LG28 :: Dr Anthony Henderson :: University of Sydney

Representation theory is one of the oldest areas of algebra, but many basic questions in it are still unanswered. This is especially true in the modular case, where one considers vector spaces over a field F of positive characteristic; typically, complications arise for particular small values of the characteristic. For example, from a vector space V one can construct the symmetric square S^2(V), which is one easy example of a representation of the group GL(V). One would like to say that this representation is irreducible, but that statement is not always true: if F has characteristic 2, there is a nontrivial invariant subspace. Even for GL(V), we do not know the dimensions of all irreducible representations in all characteristics. In this talk, I will introduce some of the main ideas of geometric modular representation theory, a more recent approach which is making progress on some of these old problems. Essentially, the strategy is to re-formulate everything in terms of homology of various topological spaces, where F appears only as the field of coefficients and the spaces themselves are independent of F; thus, the modular anomalies in representation theory arise because homology with modular coefficients is detecting something about the topology that rational coefficients do not. In practice, the spaces are usually varieties over the complex numbers, and homology is replaced by intersection cohomology to take into account the singularities of these varieties.
Comparison of spectral and wavelet estimators of transfer function for linear systems
12:10 Mon 18 Jun, 2012 :: B.21 Ingkarni Wardli :: Mr Mohd Aftar Abu Bakar :: University of Adelaide

We compare spectral and wavelet estimators of the response amplitude operator (RAO) of a linear system, with various input signals and added noise scenarios. The comparison is based on a model of a heaving buoy wave energy device (HBWED), which oscillates vertically as a single mode of vibration linear system. HBWEDs and other single degree of freedom wave energy devices such as the oscillating wave surge convertors (OWSC) are currently deployed in the ocean, making single degree of freedom wave energy devices important systems to both model and analyse in some detail. However, the results of the comparison relate to any linear system. It was found that the wavelet estimator of the RAO offers no advantage over the spectral estimators if both input and response time series data are noise free and long time series are available. If there is noise on only the response time series, only the wavelet estimator or the spectral estimator that uses the cross-spectrum of the input and response signals in the numerator should be used. For the case of noise on only the input time series, only the spectral estimator that uses the cross-spectrum in the denominator gives a sensible estimate of the RAO. If both the input and response signals are corrupted with noise, a modification to both the input and response spectrum estimates can provide a good estimator of the RAO. However, a combination of wavelet and spectral methods is introduced as an alternative RAO estimator. The conclusions apply for autoregressive emulators of sea surface elevation, impulse, and pseudorandom binary sequences (PRBS) inputs. However, a wavelet estimator is needed in the special case of a chirp input where the signal has a continuously varying frequency.
AFL Tipping isn't all about numbers and stats...or is it.....
12:10 Mon 6 Aug, 2012 :: B.21 Ingkarni Wardli :: Ms Jessica Tan :: University of Adelaide

The result of an AFL game is always unpredictable - we all know that. Hence why we discuss the weekend's upsets and the local tipping competition as part of the "water-cooler and weekend" conversation on a Monday morning. Different people use various weird and wonderful techniques or criteria to predict the winning team. With readily available data, I will investigate and compare various strategies and define a measure of the hardness of a round (full acknowledgements will be made in my presentation). Hopefully this will help me for next year's tipping competition...
Hodge numbers and cohomology of complex algebraic varieties
13:10 Fri 10 Aug, 2012 :: Engineering North 218 :: Prof Gus Lehrer :: University of Sydney

Let $X$ be a complex algebraic variety defined over the ring $\mathfrak{O}$ of integers in a number field $K$ and let $\Gamma$ be a group of $\mathfrak{O}$-automorphisms of $X$. I shall discuss how the counting of rational points over reductions mod $p$ of $X$, and an analysis of the Hodge structure of the cohomology of $X$, may be used to determine the cohomology as a $\Gamma$-module. This will include some joint work with Alex Dimca and with Mark Kisin, and some classical unsolved problems.
Complex analysis in low Reynolds number hydrodynamics
15:10 Fri 12 Oct, 2012 :: B.20 Ingkarni Wardli :: Prof Darren Crowdy :: Imperial College London

It is a well-known fact that the methods of complex analysis provide great advantage in studying physical problems involving a harmonic field satisfying Laplace's equation. One example is in ideal fluid mechanics (infinite Reynolds number) where the absence of viscosity, and the assumption of zero vorticity, mean that it is possible to introduce a so-called complex potential -- an analytic function from which all physical quantities of interest can be inferred. In the opposite limit of zero Reynolds number flows which are slow and viscous and the governing fields are not harmonic it is much less common to employ the methods of complex analysis even though they continue to be relevant in certain circumstances. This talk will give an overview of a variety of problems involving slow viscous Stokes flows where complex analysis can be usefully employed to gain theoretical insights. A number of example problems will be considered including the locomotion of low-Reynolds-number micro-organisms and micro-robots, the friction properties of superhydrophobic surfaces in microfluidics and problems of viscous sintering and the manufacture of microstructured optic fibres (MOFs).
Mathematics in Popular Culture: the Good, the Bad and the Ugly
12:30 Mon 22 Oct, 2012 :: B.21 Ingkarni Wardli :: Mr Patrick Korbel :: University of Adelaide

A slightly unusual (for this School at least) and hopefully entertaining look at representations of mathematics and mathematicians in popular culture. Do these representations affect people's perceptions of mathematics and its mysterious practitioners? What examples of positive and negative representations are there? Should we care and should it affect our enjoyment those texts? All these questions and many more will remain hopelessly unanswered as we try to cover examples such as Numb3rs, Mean Girls, A Beautiful Mind, Good Will Hunting, 21, The Simpsons and Futurama. Feel free to come prepared with your own examples of egregious crimes against mathematics or refreshing beacons of hope.
Thin-film flow in helically-wound channels with small torsion
15:10 Fri 26 Oct, 2012 :: B.21 Ingkarni Wardli :: Dr Yvonne Stokes :: University of Adelaide

The study of flow in open helically-wound channels has application to many natural and industrial flows. We will consider laminar flow down helically-wound channels of rectangular cross section and with small torsion, in which the fluid depth is small. Assuming a steady-state flow that is independent of position along the axis of the channel, the flow solution may be determined in the two-dimensional cross section of the channel. A thin-film approximation yields explicit expressions for the fluid velocity in terms of the free-surface shape. The latter satisfies an interesting non-linear ordinary differential equation that, for a channel of rectangular cross section, has an analytical solution. The predictions of the thin-film model are shown to be in good agreement with much more computationally intensive solutions of the small-helix-torsion Navier-Stokes equations. This work has particular relevance to spiral particle separators used in the minerals processing industry. Early work on modelling of particle-laden thin-film flow in spiral channels will also be discussed.
Thin-film flow in helically-wound channels with small torsion
15:10 Fri 26 Oct, 2012 :: B.21 Ingkarni Wardli :: Dr Yvonne Stokes :: University of Adelaide

The study of flow in open helically-wound channels has application to many natural and industrial flows. We will consider laminar flow down helically-wound channels of rectangular cross section and with small torsion, in which the fluid depth is small. Assuming a steady-state flow that is independent of position along the axis of the channel, the flow solution may be determined in the two-dimensional cross section of the channel. A thin-film approximation yields explicit expressions for the fluid velocity in terms of the free-surface shape. The latter satisfies an interesting non-linear ordinary differential equation that, for a channel of rectangular cross section, has an analytical solution. The predictions of the thin-film model are shown to be in good agreement with much more computationally intensive solutions of the small-helix-torsion Navier-Stokes equations. This work has particular relevance to spiral particle separators used in the minerals processing industry. Early work on modelling of particle-laden thin-film flow in spiral channels will also be discussed.
A stability theorem for elliptic Harnack inequalities
15:10 Fri 5 Apr, 2013 :: B.18 Ingkarni Wardli :: Prof Richard Bass :: University of Connecticut

Harnack inequalities are an important tool in probability theory, analysis, and partial differential equations. The classical Harnack inequality is just the one you learned in your graduate complex analysis class, but there have been many extensions, to different spaces, such as manifolds, fractals, infinite graphs, and to various sorts of elliptic operators. A landmark result was that of Moser in 1961, where he proved the Harnack inequality for solutions to a class of partial differential equations. I will talk about the stability of Harnack inequalities. The main result says that if the Harnack inequality holds for an operator on a space, then the Harnack inequality will also hold for a large class of other operators on that same space. This provides a generalization of the result of Moser.
What in the world is a chebfun?
12:10 Mon 15 Apr, 2013 :: B.19 Ingkarni Wardli :: Hayden Tronnolone :: University of Adelaide

Good question. Many functions encountered in practice can be well-approximated by a linear combination of Chebyshev polynomials, which then allows the use of some powerful numerical techniques. I will give a very brief overview of the theory behind some of these methods, demonstrate how they may be implemented using the MATLAB package known as Chebfun, and answer the question posed in the title along the way. No knowledge of approximation theory or MATLAB is required, however, you will need to accept the transliteration "Chebyshev".
The boundary conditions for macroscale modelling of a discrete diffusion system with periodic diffusivity
12:10 Mon 29 Apr, 2013 :: B.19 Ingkarni Wardli :: Chen Chen :: University of Adelaide

Many mathematical and engineering problems have a multiscale nature. There are a vast of theories supporting multiscale modelling on infinite domain, such as homogenization theory and centre manifold theory. To date, there are little consideration of the correct boundary conditions to be used at the edge of macroscale model. In this seminar, I will present how to derive macroscale boundary conditions for the diffusion system.
Filtering Theory in Modelling the Electricity Market
12:10 Mon 6 May, 2013 :: B.19 Ingkarni Wardli :: Ahmed Hamada :: University of Adelaide

In mathematical finance, as in many other fields where applied mathematics is a powerful tool, we assume that a model is good enough when it captures different sources of randomness affecting the quantity of interests, which in this case is the electricity prices. The power market is very different from other markets in terms of the randomness sources that can be observed in the prices feature and evolution. We start from suggesting a new model that simulates the electricity prices, this new model is constructed by adding a periodicity term, a jumps terms and a positives mean reverting term. The later term is driven by a non-observable Markov process. So in order to prices some financial product, we have to use some of the filtering theory to deal with the non-observable process, these techniques are gaining very much of interest from practitioners and researchers in the field of financial mathematics.
Random Wanderings on a Sphere...
11:10 Tue 17 Sep, 2013 :: Ingkarni Wardli Level 5 Room 5.57 :: A/Prof Robb Muirhead :: University of Adelaide

This will be a short talk (about 30 minutes) about the following problem. (Even if I tell you all I know about it, it won't take very long!) Imagine the earth is a unit sphere in 3-dimensions. You're standing at a fixed point, which we may as well take to be the North Pole. Suddenly you get moved to another point on the sphere by a random (uniform) orthogonal transormation. Where are you now? You're not at a point which is uniformly distributed on the surface of the sphere (so, since most of the earth's surface is water, you're probably drowning). But then you get moved again by the same orthogonal transformation. Where are you now? And what happens to your location it this happens repeatedly? I have only a partial answwer to this question, for 2 and 3 transformations. (There's nothing special about 3 dimensions here--results hold for all dimensions which are at least 3.) I don't know of any statistical application for this! This work was motivated by a talk I heard, given by Tom Marzetta (Bell Labs) at a conference at MIT. Although I know virtually nothing about signal processing, I gather Marzetta was trying to encode signals using powers of ranfom orthogonal matrices. After carrying out simulations, I think he decided it wasn't a good idea.
Controlling disease, one household at a time.
12:10 Mon 23 Sep, 2013 :: B.19 Ingkarni Wardli :: Michael Lydeamore :: University of Adelaide

Pandemics and Epidemics have always caused significant disruption to society. Attempting to model each individual in any reasonable sized population is unfeasible at best, but we can get surprisingly good results just by looking at a single household in a population. In this talk, I'll try to guide you through the logic I've discovered this year, and present some of the key results we've obtained so far, as well as provide a brief indication of what's to come.
The irrational line on the torus
12:35 Mon 23 Sep, 2013 :: B.19 Ingkarni Wardli :: Kelli Francis-Staite :: University of Adelaide

The torus is very common example of a surface in R^3, but it's a lot more interesting than just a donut! I will introduce some standard mathematical descriptions of the torus, a bit of number theory, and finally what the irrational line on the torus is. Why is this interesting? Well despite donuts being yummy to eat, the irrational line on the torus gives a range of pathological counter-examples. In Differential Geometry, it is an example of a manifold that is a subset of another manifold, but not a submanifold. In Lie theory, it is an example of a subgroup of a Lie group which is not a Lie subgroup. If that wasn't enough of a mouthful, I may also provide some sweet incentives to come along! Does anyone know the location of a good donut store?
Dynamics and the geometry of numbers
14:10 Fri 27 Sep, 2013 :: Horace Lamb Lecture Theatre :: Prof Akshay Venkatesh :: Stanford University

It was understood by Minkowski that one could prove interesting results in number theory by considering the geometry of lattices in R^n. (A lattice is simply a grid of points.) This technique is called the "geometry of numbers." We now understand much more about analysis and dynamics on the space of all lattices, and this has led to a deeper understanding of classical questions. I will review some of these ideas, with emphasis on the dynamical aspects.
A few flavours of optimal control of Markov chains
11:00 Thu 12 Dec, 2013 :: B18 :: Dr Sam Cohen :: Oxford University

In this talk we will outline a general view of optimal control of a continuous-time Markov chain, and how this naturally leads to the theory of Backward Stochastic Differential Equations. We will see how this class of equations gives a natural setting to study these problems, and how we can calculate numerical solutions in many settings. These will include problems with payoffs with memory, with random terminal times, with ergodic and infinite-horizon value functions, and with finite and infinitely many states. Examples will be drawn from finance, networks and electronic engineering.
The density property for complex manifolds: a strong form of holomorphic flexibility
12:10 Fri 24 Jan, 2014 :: Ingkarni Wardli B20 :: Prof Frank Kutzschebauch :: University of Bern

Compared with the real differentiable case, complex manifolds in general are more rigid, their groups of holomorphic diffeomorphisms are rather small (in general trivial). A long known exception to this behavior is affine n-space C^n for n at least 2. Its group of holomorphic diffeomorphisms is infinite dimensional. In the late 1980s Andersen and Lempert proved a remarkable theorem which stated in its generalized version due to Forstneric and Rosay that any local holomorphic phase flow given on a Runge subset of C^n can be locally uniformly approximated by a global holomorphic diffeomorphism. The main ingredient in the proof was formalized by Varolin and called the density property: The Lie algebra generated by complete holomorphic vector fields is dense in the Lie algebra of all holomorphic vector fields. In these manifolds a similar local to global approximation of Andersen-Lempert type holds. It is a precise way of saying that the group of holomorphic diffeomorphisms is large. In the talk we will explain how this notion is related to other more recent flexibility notions in complex geometry, in particular to the notion of a Oka-Forstneric manifold. We will give examples of manifolds with the density property and sketch applications of the density property. If time permits we will explain criteria for the density property developed by Kaliman and the speaker.
Integrability of infinite-dimensional Lie algebras and Lie algebroids
12:10 Fri 7 Feb, 2014 :: Ingkarni Wardli B20 :: Christoph Wockel :: Hamburg University

Lie's Third Theorem states that each finite-dimensional Lie algebra is the Lie algebra of a Lie group (we also say "integrates to a Lie group"). The corresponding statement for infinite-dimensional Lie algebras or Lie algebroids is false and we will explain geometrically why this is the case. The underlying pattern is that of integration of central extensions of Lie algebras and Lie algebroids. This also occurs in other contexts, and we will explain some aspects of string group models in these terms. In the end we will sketch how the non-integrability of Lie algebras and Lie algebroids can be overcome by passing to higher categorical objects (such as smooth stacks) and give a panoramic (but still conjectural) perspective on the precise relation of the various integrability problems.
The phase of the scattering operator from the geometry of certain infinite dimensional Lie groups
12:10 Fri 14 Mar, 2014 :: Ingkarni Wardli B20 :: Jouko Mickelsson :: University of Helsinki

This talk is about some work on the phase of the time evolution operator in QED and QCD, related to the geometry of certain infinite-dimensional groups (essentially modelled by PSDO's).
What Technical Performance Measures are Critical to Evaluate Geothermal Developments?
12:10 Mon 17 Mar, 2014 :: B.19 Ingkarni Wardli :: Jo Varney :: University of Adelaide

Josephine Varney, Nigel Bean and Betina Bendall. When geologists, geophysicists and engineers study geothermal developments, each group has their own set of technical performance measures. While these performance measures tell each group something important about the geothermal development, there is often difficulty in translating these technical performance measures into financial performance measures for investors. In this paper, we argue that brine effectiveness is the best, simple financial performance measure for a geothermal investor. This is because it is a good, yet simple indicator of ROI (return on investment); and importantly, links well production to power plant production, hence describes the geothermal development in a holistic sense.
A generalised Kac-Peterson cocycle
11:10 Thu 17 Apr, 2014 :: Ingkarni Wardli B20 :: Pedram Hekmati :: University of Adelaide

The Kac-Peterson cocycle appears in the study of highest weight modules of infinite dimensional Lie algebras and determines a central extension. The vanishing of its cohomology class is tied to the existence of a cubic Dirac operator whose square is a quadratic Casimir element. I will introduce a closely related Lie algebra cocycle that comes about when constructing spin representations and gives rise to a Banach Lie group with a highly nontrivial topology. I will also explain how to make sense of the cubic Dirac operator in this setting and discuss its relation to twisted K-theory. This is joint work with Jouko Mickelsson.
A geometric model for odd differential K-theory
12:10 Fri 9 May, 2014 :: Ingkarni Wardli B20 :: Raymond Vozzo :: University of Adelaide

Odd K-theory has the interesting property that-unlike even K-theory-it admits an infinite number of inequivalent differential refinements. In this talk I will give a description of odd differential K-theory using infinite rank bundles and explain why it is the correct differential refinement. This is joint work with Michael Murray, Pedram Hekmati and Vincent Schlegel.
Oka properties of groups of holomorphic and algebraic automorphisms of complex affine space
12:10 Fri 6 Jun, 2014 :: Ingkarni Wardli B20 :: Finnur Larusson :: University of Adelaide

I will discuss new joint work with Franc Forstneric. The group of holomorphic automorphisms of complex affine space C^n, n>1, is huge. It is not an infinite-dimensional manifold in any recognised sense. Still, our work shows that in some ways it behaves like a finite-dimensional Oka manifold.
Complexifications, Realifications, Real forms and Complex Structures
12:10 Mon 23 Jun, 2014 :: B.19 Ingkarni Wardli :: Kelli Francis-Staite :: University of Adelaide

Italian mathematicians Niccolò Fontana Tartaglia and Gerolamo Cardano introduced complex numbers to solve polynomial equations such as x^2+1=0. Solving a standard real differential equation often uses complex eigenvalues and eigenfunctions. In both cases, the solution space is expanded to include the complex numbers, solved, and then translated back to the real case. My talk aims to explain the process of complexification and related concepts. It will give vocabulary and some basic results about this important process. And it will contain cute cat pictures.
Mathematics: a castle in the sky?
14:10 Mon 25 Aug, 2014 :: Ingkarni Wardli 715 Conference Room :: Dr. David Roberts :: School of Mathematical Sciences

At university you are exposed to more rigorous mathematics than at school, exemplified by definitions such as those of real numbers individually or as a whole. However, what does mathematics ultimately rest on? Definitions depend on things defined earlier, and this process must stop at some point. Mathematicians expended a lot of energy in the late 19th and early 20th centuries trying to pin down the absolutely fundamental ideas of mathematics, with unexpected results. The results of these efforts are called foundations and are still an area of active research today. This talk will explain what foundations are, some of the historical setting in which they arose, and several of the various systems on which mathematics can be built -- and why most of the mathematics you will do only uses a tiny portion of it!
Exploration vs. Exploitation with Partially Observable Gaussian Autoregressive Arms
15:00 Mon 29 Sep, 2014 :: Engineering North N132 :: Julia Kuhn :: The University of Queensland & The University of Amsterdam

We consider a restless bandit problem with Gaussian autoregressive arms, where the state of an arm is only observed when it is played and the state-dependent reward is collected. Since arms are only partially observable, a good decision policy needs to account for the fact that information about the state of an arm becomes more and more obsolete while the arm is not being played. Thus, the decision maker faces a tradeoff between exploiting those arms that are believed to be currently the most rewarding (i.e. those with the largest conditional mean), and exploring arms with a high conditional variance. Moreover, one would like the decision policy to remain tractable despite the infinite state space and also in systems with many arms. A policy that gives some priority to exploration is the Whittle index policy, for which we establish structural properties. These motivate a parametric index policy that is computationally much simpler than the Whittle index but can still outperform the myopic policy. Furthermore, we examine the many-arm behavior of the system under the parametric policy, identifying equations describing its asymptotic dynamics. Based on these insights we provide a simple heuristic algorithm to evaluate the performance of index policies; the latter is used to optimize the parametric index.
Nonlinear analysis over infinite dimensional spaces and its applications
12:10 Fri 6 Feb, 2015 :: Ingkarni Wardli B20 :: Tsuyoshi Kato :: Kyoto University

In this talk we develop moduli theory of holomorphic curves over infinite dimensional manifolds consisted by sequences of almost Kaehler manifolds. Under the assumption of high symmetry, we verify that many mechanisms of the standard moduli theory over closed symplectic manifolds also work over these infinite dimensional spaces. As an application, we study deformation theory of discrete groups acting on trees. There is a canonical way, up to conjugacy to embed such groups into the automorphism group over the infinite projective space. We verify that for some class of Hamiltonian functions, the deformed groups must be always asymptotically infinite.
Big things are weird
12:10 Mon 25 May, 2015 :: Napier LG29 :: Luke Keating-Hughes :: University of Adelaide

The pyramids of Giza, the depths of the Mariana trench, the massive Einstein Cross Quasar; all of these things are big and weird. Big weird things aren't just apparent in the physical world though, they appear in mathematics too! In this talk I will try to motivate a mathematical big thing and then show that it is weird. In particular, we will introduce the necessary topology and homotopy theory in order to show that although all finite dimensional spheres are (almost canonically) non-contractible spaces - an infinite dimensional sphere IS contractible! This result's significance will then be explained in the context of Kuiper's Theorem if time permits.
Instantons and Geometric Representation Theory
12:10 Thu 23 Jul, 2015 :: Engineering and Maths EM212 :: Professor Richard Szabo :: Heriot-Watt University

We give an overview of the various approaches to studying supersymmetric quiver gauge theories on ALE spaces, and their conjectural connections to two-dimensional conformal field theory via AGT-type dualities. From a mathematical perspective, this is formulated as a relationship between the equivariant cohomology of certain moduli spaces of sheaves on stacks and the representation theory of infinite-dimensional Lie algebras. We introduce an orbifold compactification of the minimal resolution of the A-type toric singularity in four dimensions, and then construct a moduli space of framed sheaves which is conjecturally isomorphic to a Nakajima quiver variety. We apply this construction to derive relations between the equivariant cohomology of these moduli spaces and the representation theory of the affine Lie algebra of type A.
Dirac operators and Hamiltonian loop group action
12:10 Fri 24 Jul, 2015 :: Engineering and Maths EM212 :: Yanli Song :: University of Toronto

A definition to the geometric quantization for compact Hamiltonian G-spaces is given by Bott, defined as the index of the Spinc-Dirac operator on the manifold. In this talk, I will explain how to generalize this idea to the Hamiltonian LG-spaces. Instead of quantizing infinite-dimensional manifolds directly, we use its equivalent finite-dimensional model, the quasi-Hamiltonian G-spaces. By constructing twisted spinor bundle and twisted pre-quantum bundle on the quasi-Hamiltonian G-space, we define a Dirac operator whose index are given by positive energy representation of loop groups. A key role in the construction will be played by the algebraic cubic Dirac operator for loop algebra. If time permitted, I will also explain how to prove the quantization commutes with reduction theorem for Hamiltonian LG-spaces under this framework.
Analytic complexity of bivariate holomorphic functions and cluster trees
12:10 Fri 2 Oct, 2015 :: Ingkarni Wardli B17 :: Timur Sadykov :: Plekhanov University, Moscow

The Kolmogorov-Arnold theorem yields a representation of a multivariate continuous function in terms of a composition of functions which depend on at most two variables. In the analytic case, understanding the complexity of such a representation naturally leads to the notion of the analytic complexity of (a germ of) a bivariate multi-valued analytic function. According to Beloshapka's local definition, the order of complexity of any univariate function is equal to zero while the n-th complexity class is defined recursively to consist of functions of the form a(b(x,y)+c(x,y)), where a is a univariate analytic function and b and c belong to the (n-1)-th complexity class. Such a represenation is meant to be valid for suitable germs of multi-valued holomorphic functions. A randomly chosen bivariate analytic functions will most likely have infinite analytic complexity. However, for a number of important families of special functions of mathematical physics their complexity is finite and can be computed or estimated. Using this, we introduce the notion of the analytic complexity of a binary tree, in particular, a cluster tree, and investigate its properties.
Real Lie Groups and Complex Flag Manifolds
12:10 Fri 9 Oct, 2015 :: Ingkarni Wardli B17 :: Joseph A. Wolf :: University of California, Berkeley

Let G be a complex simple direct limit group. Let G_R be a real form of G that corresponds to an hermitian symmetric space. I'll describe the corresponding bounded symmetric domain in the context of the Borel embedding, Cayley transforms, and the Bergman-Shilov boundary. Let Q be a parabolic subgroup of G. In finite dimensions this means that G/Q is a complex projective variety, or equivalently has a Kaehler metric invariant under a maximal compact subgroup of G. Then I'll show just how the bounded symmetric domains describe cycle spaces for open G_R orbits on G/Q. These cycle spaces include the complex bounded symmetric domains. In finite dimensions they are tightly related to moduli spaces for compact Kaehler manifolds and to representations of semisimple Lie groups; in infinite dimensions there are more problems than answers. Finally, time permitting, I'll indicate how some of this goes over to real and to quaternionic bounded symmetric domains.
Modelling Directionality in Stationary Geophysical Time Series
12:10 Mon 12 Oct, 2015 :: Benham Labs G10 :: Mohd Mahayaudin Mansor :: University of Adelaide

Many time series show directionality inasmuch as plots again-st time and against time-to-go are qualitatively different, and there is a range of statistical tests to quantify this effect. There are two strategies for allowing for directionality in time series models. Linear models are reversible if and only if the noise terms are Gaussian, so one strategy is to use linear models with non-Gaussian noise. The alternative is to use non-linear models. We investigate how non-Gaussian noise affects directionality in a first order autoregressive process AR(1) and compare this with a threshold autoregressive model with two thresholds. The findings are used to suggest possible improvements to an AR(9) model, identified by an AIC criterion, for the average yearly sunspot numbers from 1700 to 1900. The improvement is defined in terms of one-step-ahead forecast errors from 1901 to 2014.
Chern-Simons classes on loop spaces and diffeomorphism groups
12:10 Fri 16 Oct, 2015 :: Ingkarni Wardli B17 :: Steve Rosenberg :: Boston University

Not much is known about the topology of the diffeomorphism group Diff(M) of manifolds M of dimension four and higher. We'll show that for a class of manifolds of dimension 4k+1, Diff(M) has infinite fundamental group. This is proved by translating the problem into a question about Chern-Simons classes on the tangent bundle to the loop space LM. To build the CS classes, we use a family of metrics on LM associated to a Riemannian metric on M. The curvature of these metrics takes values in an algebra of pseudodifferential operators. The main technical step in the CS construction is to replace the ordinary matrix trace in finite dimensions with the Wodzicki residue, the unique trace on this algebra. The moral is that some techniques in finite dimensional Riemannian geometry can be extended to some examples in infinite dimensional geometry.
A fibered density property and the automorphism group of the spectral ball
12:10 Fri 15 Jan, 2016 :: Engineering North N132 :: Frank Kutzschebauch :: University of Bern

The spectral ball is defined as the set of complex n by n matrices whose eigenvalues are all less than 1 in absolute value. Its group of holomorphic automorphisms has been studied over many decades in several papers and a precise conjecture about its structure has been formulated. In dimension 2 this conjecture was recently disproved by Kosinski. We not only disprove the conjecture in all dimensions but also give the best possible description of the automorphism group. Namely we explain how the invariant theoretic quotient map divides the automorphism group of the spectral ball into a finite dimensional part of symmetries which lift from the quotient and an infinite dimensional part which leaves the fibration invariant. We prove a precise statement as to how hopelessly huge this latter part is. This is joint work with R. Andrist.
The parametric h-principle for minimal surfaces in R^n and null curves in C^n
12:10 Fri 11 Mar, 2016 :: Ingkarni Wardli B17 :: Finnur Larusson :: University of Adelaide

I will describe new joint work with Franc Forstneric (arXiv:1602.01529). This work brings together four diverse topics from differential geometry, holomorphic geometry, and topology; namely the theory of minimal surfaces, Oka theory, convex integration theory, and the theory of absolute neighborhood retracts. Our goal is to determine the rough shape of several infinite-dimensional spaces of maps of geometric interest. It turns out that they all have the same rough shape.
How to count Betti numbers
12:10 Fri 6 May, 2016 :: Eng & Maths EM205 :: David Baraglia :: University of Adelaide

I will begin this talk by showing how to obtain the Betti numbers of certain smooth complex projective varieties by counting points over a finite field. For singular or non-compact varieties this motivates us to consider the "virtual Hodge numbers" encoded by the "Hodge-Deligne polynomial", a refinement of the topological Euler characteristic. I will then discuss the computation of Hodge-Deligne polynomials for certain singular character varieties (i.e. moduli spaces of flat connections).
Smooth mapping orbifolds
12:10 Fri 20 May, 2016 :: Eng & Maths EM205 :: David Roberts :: University of Adelaide

It is well-known that orbifolds can be represented by a special kind of Lie groupoid, namely those that are étale and proper. Lie groupoids themselves are one way of presenting certain nice differentiable stacks. In joint work with Ray Vozzo we have constructed a presentation of the mapping stack Hom(disc(M),X), for M a compact manifold and X a differentiable stack, by a Fréchet-Lie groupoid. This uses an apparently new result in global analysis about the map C^\infty(K_1,Y) \to C^\infty(K_2,Y) induced by restriction along the inclusion K_2 \to K_1, for certain compact K_1,K_2. We apply this to the case of X being an orbifold to show that the mapping stack is an infinite-dimensional orbifold groupoid. We also present results about mapping groupoids for bundle gerbes.
Chern-Simons invariants of Seifert manifolds via Loop spaces
14:10 Tue 28 Jun, 2016 :: Ingkarni Wardli B17 :: Ryan Mickler :: Northeastern University

Over the past 30 years the Chern-Simons functional for connections on G-bundles over three-manfolds has lead to a deep understanding of the geometry of three-manfiolds, as well as knot invariants such as the Jones polynomial. Here we study this functional for three-manfolds that are topologically given as the total space of a principal circle bundle over a compact Riemann surface base, which are known as Seifert manifolds. We show that on such manifolds the Chern-Simons functional reduces to a particular gauge-theoretic functional on the 2d base, that describes a gauge theory of connections on an infinite dimensional bundle over this base with structure group given by the level-k affine central extension of the loop group LG. We show that this formulation gives a new understanding of results of Beasley-Witten on the computability of quantum Chern-Simons invariants of these manifolds as well as knot invariants for knots that wrap a single fiber of the circle bundle. A central tool in our analysis is the Caloron correspondence of Murray-Stevenson-Vozzo.
Twists over etale groupoids and twisted vector bundles
12:10 Fri 22 Jul, 2016 :: Ingkarni Wardli B18 :: Elizabeth Gillaspy :: University of Colorado, Boulder

Given a twist over an etale groupoid, one can construct an associated C*-algebra which carries a good deal of geometric and physical meaning; for example, the K-theory group of this C*-algebra classifies D-brane charges in string theory. Twisted vector bundles, when they exist, give rise to particularly important elements in this K-theory group. In this talk, we will explain how to use the classifying space of the etale groupoid to construct twisted vector bundles, under some mild hypotheses on the twist and the classifying space. My hope is that this talk will be accessible to a broad audience; in particular, no prior familiarity with groupoids, their twists, or the associated C*-algebras will be assumed. This is joint work with Carla Farsi.
Geometry of pseudodifferential algebra bundles
12:10 Fri 16 Sep, 2016 :: Ingkarni Wardli B18 :: Mathai Varghese :: University of Adelaide

I will motivate the construction of pseudodifferential algebra bundles arising in index theory, and also outline the construction of general pseudodifferential algebra bundles (and the associated sphere bundles), showing that there are many that are purely infinite dimensional that do not come from usual constructions in index theory. I will also discuss characteristic classes of such bundles. This is joint work with Richard Melrose.
The mystery of colony collapse: Mathematics and honey bee loss
15:10 Fri 16 Sep, 2016 :: Napier G03 :: Prof Mary Myerscough :: University of Sydney

Honey bees are vital to the production of many foods which need to be pollinated by insects. Yet in many parts of the world honey bee colonies are in decline. A crucial contributor to hive well-being is the health, productivity and longevity of its foragers. When forager numbers are depleted due to stressors in the colony (such as disease or malnutrition) or in the environment (such as pesticides) there is a significant effect, not only on the amount of food (nectar and pollen) that can be collected but also on the colony's capacity to raise brood (eggs, larvae and pupae) to produce new adult bees to replace lost or aged bees. We use a set of differential equation models to explore the effect on the hive of high forager death rates. In particular we examine what happens when bees become foragers at a comparatively young age and how this can lead to a sudden rapid decline of adult bees and the death of the colony.
Segregation of particles in incompressible flows due to streamline topology and particle-boundary interaction
15:10 Fri 2 Dec, 2016 :: Ingkarni Wardli 5.57 :: Professor Hendrik C. Kuhlmann :: Institute of Fluid Mechanics and Heat Transfer, TU Wien, Vienna, Austria

The incompressible flow in a number of classical benchmark problems (e.g. lid-driven cavity, liquid bridge) undergoes an instability from a two-dimensional steady to a periodic three-dimensional flow, which is steady or in form of a traveling wave, if the Reynolds number is increased. In the supercritical regime chaotic as well as regular (quasi-periodic) streamlines can coexist for a range of Reynolds numbers. The spatial structures of the regular regions in three-dimensional Navier-Stokes flows has received relatively little attention, partly because of the high numerical effort required for resolving these structures. Particles whose density does not differ much from that of the liquid approximately follow the chaotic or regular streamlines in the bulk. Near the boundaries, however, their trajectories strongly deviate from the streamlines, in particular if the boundary (wall or free surface) is moving tangentially. As a result of this particle-boundary interaction particles can rapidly segregate and be attracted to periodic or quasi-periodic orbits, yielding particle accumulation structures (PAS). The mechanism of PAS will be explained and results from experiments and numerical modelling will be presented to demonstrate the generic character of the phenomenon.
What is index theory?
12:10 Tue 21 Mar, 2017 :: Inkgarni Wardli 5.57 :: Dr Peter Hochs :: School of Mathematical Sciences

Index theory is a link between topology, geometry and analysis. A typical theorem in index theory says that two numbers are equal: an analytic index and a topological index. The first theorem of this kind was the index theorem of Atiyah and Singer, which they proved in 1963. Index theorems have many applications in maths and physics. For example, they can be used to prove that a differential equation must have a solution. Also, they imply that the topology of a space like a sphere or a torus determines in what ways it can be curved. Topology is the study of geometric properties that do not change if we stretch or compress a shape without cutting or glueing. Curvature does change when we stretch something out, so it is surprising that topology can say anything about curvature. Index theory has many surprising consequences like this.
What are operator algebras and what are they good for?
15:10 Fri 12 May, 2017 :: Engineering South S111 :: Prof Aidan Sims :: University of Wollongong

Back in the early 1900s when people were first grappling with the new ideas of quantum mechanics and looking for mathematical techniques to study them, they found themselves, unavoidably, dealing with what have now become known as operator algebras. As a research area, operator algebras has come a very long way since then, and has spread out to touch on many other areas of mathematics, as well as maintaining its links with mathematical physics. I'll try to convey roughly what operator algebras are, and describe some of the highlights of their career thus far, particularly the more recent ones.
Stokes' Phenomenon in Translating Bubbles
15:10 Fri 2 Jun, 2017 :: Ingkarni Wardli 5.57 :: Dr Chris Lustri :: Macquarie University

This study of translating air bubbles in a Hele-Shaw cell containing viscous fluid reveals the critical role played by surface tension in these systems. The standard zero-surface-tension model of Hele-Shaw flow predicts that a continuum of bubble solutions exists for arbitrary flow translation velocity. The inclusion of small surface tension, however, eliminates this continuum of solutions, instead producing a discrete, countably infinite family of solutions, each with distinct translation speeds. We are interested in determining this discrete family of solutions, and understanding why only these solutions are permitted. Studying this problem in the asymptotic limit of small surface tension does not seem to give any particular reason why only these solutions should be selected. It is only by using exponential asymptotic methods to study the Stokes’ structure hidden in the problem that we are able to obtain a complete picture of the bubble behaviour, and hence understand the selection mechanism that only permits certain solutions to exist. In the first half of my talk, I will explain the powerful ideas that underpin exponential asymptotic techniques, such as analytic continuation and optimal truncation. I will show how they are able to capture behaviour known as Stokes' Phenomenon, which is typically invisible to classical asymptotic series methods. In the second half of the talk, I will introduce the problem of a translating air bubble in a Hele-Shaw cell, and show that the behaviour can be fully understood by examining the Stokes' structure concealed within the problem. Finally, I will briefly showcase other important physical applications of exponential asymptotic methods, including submarine waves and particle chains.
Exact coherent structures in high speed flows
15:10 Fri 28 Jul, 2017 :: Ingkarni Wardli B17 :: Prof Philip Hall :: Monash University

In recent years, there has been much interest in the relevance of nonlinear solutions of the Navier-Stokes equations to fully turbulent flows. The solutions must be calculated numerically at moderate Reynolds numbers but in the limit of high Reynolds numbers asymptotic methods can be used to greatly simplify the computational task and to uncover the key physical processes sustaining the nonlinear states. In particular, in confined flows exact coherent structures defining the boundary between the laminar and turbulent attractors can be constructed. In addition, structures which capture the essential physical properties of fully turbulent flows can be found. The extension of the ideas to boundary layer flows and current work attempting to explain the law of the wall will be discussed.
Conway's Rational Tangle
12:10 Tue 15 Aug, 2017 :: Inkgarni Wardli 5.57 :: Dr Hang Wang :: School of Mathematical Sciences

Many researches in mathematics essentially feature some classification problems. In this context, invariants are created in order to associate algebraic quantities, such as numbers and groups, to elements of interested classes of geometric objects, such as surfaces. A key property of an invariant is that it does not change under ``allowable moves'' which can be specified in various geometric contexts. We demonstrate these lines of ideas by rational tangles, a notion in knot theory. A tangle is analogous to a link except that it has free ends. Conway's rational tangles are the simplest tangles that can be ``unwound'' under a finite sequence of two simple moves, and they arise as building blocks for knots. A numerical invariant will be introduced for Conway's rational tangles and it provides the only known example of a complete invariant in knot theory.
Compact pseudo-Riemannian homogeneous spaces
12:10 Fri 18 Aug, 2017 :: Engineering Sth S111 :: Wolfgang Globke :: University of Adelaide

A pseudo-Riemannian homogeneous space $M$ of finite volume can be presented as $M=G/H$, where $G$ is a Lie group acting transitively and isometrically on $M$, and $H$ is a closed subgroup of $G$. The condition that $G$ acts isometrically and thus preserves a finite measure on $M$ leads to strong algebraic restrictions on $G$. In the special case where $G$ has no compact semisimple normal subgroups, it turns out that the isotropy subgroup $H$ is a lattice, and that the metric on $M$ comes from a bi-invariant metric on $G$. This result allows us to recover Zeghib’s classification of Lorentzian compact homogeneous spaces, and to move towards a classification for metric index 2. As an application we can investigate which pseudo-Riemannian homogeneous spaces of finite volume are Einstein spaces. Through the existence questions for lattice subgroups, this leads to an interesting connection with the theory of transcendental numbers, which allows us to characterize the Einstein cases in low dimensions. This talk is based on joint works with Oliver Baues, Yuri Nikolayevsky and Abdelghani Zeghib.
Measuring the World's Biggest Bubble
13:10 Tue 19 Sep, 2017 :: Napier LG23 :: Prof Matt Roughan :: School of Mathematical Sciences

Recently I had a bit of fun helping Graeme Denton measure his Guinness World Record (GWR) Largest (Indoor) Soap Bubble. It was a lot harder than I initially thought it would be. Soap films are interesting mathematically -- in principle they form minimal surfaces, and have constant curvature. So it should have been fairly easy. But really big bubbles aren't ideal, so measuring the GWR bubble required a mix of maths and pragmatism. It's a good example of mathematical modeling in general, so I thought it was worth a few words. I'll tell you what we did, and how we estimated how big the bubble actually was. Some links:
Family gauge theory and characteristic classes of bundles of 4-manifolds
13:10 Fri 16 Mar, 2018 :: Barr Smith South Polygon Lecture theatre :: Hokuto Konno :: University of Tokyo

I will define a non-trivial characteristic class of bundles of 4-manifolds using families of Seiberg-Witten equations. The basic idea of the construction is to consider an infinite dimensional analogue of the Euler class used in the usual theory of characteristic classes. I will also explain how to prove the non-triviality of this characteristic class. If time permits, I will mention a relation between our characteristic class and positive scalar curvature metrics.
Complexity of 3-Manifolds
15:10 Fri 23 Mar, 2018 :: Horace Lamb 1022 :: A/Prof Stephan Tlllmann :: University of Sydney

In this talk, I will give a general introduction to complexity of 3-manifolds and explain the connections between combinatorics, algebra, geometry, and topology that arise in its study. The complexity of a 3-manifold is the minimum number of tetrahedra in a triangulation of the manifold. It was defined and first studied by Matveev in 1990. The complexity is generally difficult to compute, and various upper and lower bounds have been derived during the last decades using fundamental group, homology or hyperbolic volume. Effective bounds have only been found in joint work with Jaco, Rubinstein and, more recently, Spreer. Our bounds not only allowed us to determine the first infinite classes of minimal triangulations of closed 3-manifolds, but they also lead to a structure theory of minimal triangulations of 3-manifolds.

Publications matching "Infinite numbers: what are they and what are they "

Impinging laminar jets at moderate Reynolds numbers and separation distances
Bergthorson, J; Sone, K; Mattner, Trent; Dimotakis, P; Goodwin, D; Meiron, D, Physical Review E. (Statistical, Nonlinear, and Soft Matter Physics) 72 (066307-1–066307-12) 2005
Twisted index theory on good orbifolds, II: Fractional quantum numbers
Marcolli, M; Varghese, Mathai, Communications in Mathematical Physics 217 (55–87) 2001
Drawing with complex numbers
Eastwood, Michael; Penrose, R, Mathematical Intelligencer 22 (8–13) 2000

Advanced search options

You may be able to improve your search results by using the following syntax:

QueryMatches the following
Asymptotic EquationAnything with "Asymptotic" or "Equation".
+Asymptotic +EquationAnything with "Asymptotic" and "Equation".
+Stokes -"Navier-Stokes"Anything containing "Stokes" but not "Navier-Stokes".
Dynam*Anything containing "Dynamic", "Dynamical", "Dynamicist" etc.