The University of Adelaide
You are here
Text size: S | M | L
Printer Friendly Version
March 2018

Search the School of Mathematical Sciences

Find in People Courses Events News Publications

Courses matching "The parametric h-principle for minimal surfaces in"

Algebraic curves

The course is an introduction to algebraic geometry and complex analytic geometry with a focus on nonsingular algebraic curves in the complex projective plane. The high point of the course is the proof of the Riemann-Roch theorem and some of its applications. The course starts with the basic theory of algebraic sets over an arbitrary field, Hilbert's Nullstellensatz, and the Hilbert basis theorem. We then move on to intersection theory for curves in the projective plane, the degree-genus formula, Riemann surfaces, divisors, and holomorphic differential forms. We show that a nonsingular planar curve has a complex structure, leading to the formulation and proof of Riemann-Roch. The special case of elliptic curves is highlighted throughout. Assumed knowledge: Complex Analysis III, Groups and Rings III, Topology and Analysis III. The main reference is "Complex algebraic curves" by F. Kirwan (London Mathematical Society Student Texts, volume 23). We will cover Chapters 2-6. Chapter 1 is introductory; it will not be covered in the lectures, but you are encouraged to read it. For the first part of the course, lecture notes on algebraic sets and Hilbert's Nullstellensatz will be supplied.

More about this course...

Events matching "The parametric h-principle for minimal surfaces in"

Finite Geometries: Classical Problems and Recent Developments
15:10 Fri 20 Jul, 2007 :: G04 Napier Building University of Adelaide :: Prof. Joseph A. Thas :: Ghent University, Belgium

In recent years there has been an increasing interest in finite projective spaces, and important applications to practical topics such as coding theory, cryptography and design of experiments have made the field even more attractive. In my talk some classical problems and recent developments will be discussed. First I will mention Segre's celebrated theorem and ovals and a purely combinatorial characterization of Hermitian curves in the projective plane over a finite field here, from the beginning, the considered pointset is contained in the projective plane over a finite field. Next, a recent elegant result on semiovals in PG(2,q), due to Gács, will be given. A second approach is where the object is described as an incidence structure satisfying certain properties; here the geometry is not a priori embedded in a projective space. This will be illustrated by a characterization of the classical inversive plane in the odd case. Another quite recent beautiful result in Galois geometry is the discovery of an infinite class of hemisystems of the Hermitian variety in PG(3,q^2), leading to new interesting classes of incidence structures, graphs and codes; before this result, just one example for GF(9), due to Segre, was known.
Fermat's Last Theorem and modular elliptic curves
15:10 Wed 5 Sep, 2007 :: G08 Mathematics Building University of Adelaide :: Dr Mark Kisin

I will give a historical talk, explaining the steps by which one can deduce Fermat's Last Theorem from a statement about modular forms and elliptic curves.
Adaptive Fast Convergence - Towards Optimal Reconstruction Guarantees for Phylogenetic Trees
16:00 Tue 1 Apr, 2008 :: School Board Room :: Schlomo Moran :: Computer Science Department, Technion, Haifa, Israel

One of the central challenges in phylogenetics is to be able to reliably resolve as much of the topology of the evolutionary tree from short taxon-sequences. In the past decade much attention has been focused on studying fast converging reconstruction algorithms, which guarantee (w.h.p) correct reconstruction of the entire tree from sequences of near-minimal length (assuming some accepted model of sequence evolution along the tree). The major drawback of these methods is that when the sequences are too short to correctly reconstruct the tree in its entirety, they do not provide any reconstruction guarantee for sufficiently long edges. Specifically, the presence of some very short edges in the model tree may prevent these algorithms from reconstructing even edges of moderate length.

In this talk we present a stronger reconstruction guarantee called "adaptive fast convergence", which provides guarantees for the correct reconstruction of all sufficiently long edges of the original tree. We then present a general technique, which (unlike previous reconstruction techniques) employs dynamic edge-contraction during the reconstruction of the tree. We conclude by demonstrating how this technique is used to achieve adaptive fast convergence.

Computational Methods for Phase Response Analysis of Circadian Clocks
15:10 Fri 18 Jul, 2008 :: G04 Napier Building University of Adelaide. :: Prof. Linda Petzold :: Dept. of Mechanical and Environmental Engineering, University of California, Santa Barbara

Circadian clocks govern daily behaviors of organisms in all kingdoms of life. In mammals, the master clock resides in the suprachiasmatic nucleus (SCN) of the hypothalamus. It is composed of thousands of neurons, each of which contains a sloppy oscillator - a molecular clock governed by a transcriptional feedback network. Via intercellular signaling, the cell population synchronizes spontaneously, forming a coherent oscillation. This multi-oscillator is then entrained to its environment by the daily light/dark cycle.

Both at the cellular and tissular levels, the most important feature of the clock is its ability not simply to keep time, but to adjust its time, or phase, to signals. We present the parametric impulse phase response curve (pIPRC), an analytical analog to the phase response curve (PRC) used experimentally. We use the pIPRC to understand both the consequences of intercellular signaling and the light entrainment process. Further, we determine which model components determine the phase response behavior of a single oscillator by using a novel model reduction technique. We reduce the number of model components while preserving the pIPRC and then incorporate the resultant model into a couple SCN tissue model. Emergent properties, including the ability of the population to synchronize spontaneously are preserved in the reduction. Finally, we present some mathematical tools for the study of synchronization in a network of coupled, noisy oscillators.

The Mechanics of Nanoscale Devices
15:10 Fri 10 Oct, 2008 :: G03 Napier Building University of Adelaide :: Associate Prof. John Sader :: Department of Mathematics and Statistics, The University of Melbourne

Nanomechanical sensors are often used to measure environmental changes with extreme sensitivity. Controlling the effects of surfaces and fluid dissipation presents significant challenges to achieving the ultimate sensitivity in these devices. In this talk, I will give an overview of theoretical/experimental work we are undertaking to explore the underlying physical processes in these systems. The talk will be general and aimed at introducing some recent developments in the field of nanomechanical sensors.
Lagrangian fibrations on holomorphic symplectic manifolds I: Holomorphic Lagrangian fibrations
13:10 Fri 5 Jun, 2009 :: School Board Room :: Dr Justin Sawon :: Colorado State University

A compact K{\"a}hler manifold $X$ is a holomorphic symplectic manifold if it admits a non-degenerate holomorphic two-form $\sigma$. According to a theorem of Matsushita, fibrations on $X$ must be of a very restricted type: the fibres must be Lagrangian with respect to $\sigma$ and the generic fibre must be a complex torus. Moreover, it is expected that the base of the fibration must be complex projective space, and this has been proved by Hwang when $X$ is projective. The simplest example of these {\em Lagrangian fibrations\/} are elliptic K3 surfaces. In this talk we will explain the role of elliptic K3s in the classification of K3 surfaces, and the (conjectural) generalization to higher dimensions.
Quadrature domains, p-Laplacian growth, and bubbles contracting in Hele-Shaw cells with a power-law fluid.
15:10 Mon 15 Jun, 2009 :: Napier LG24 :: Dr Scott McCue :: Queensland University Technology

The classical Hele-Shaw flow problem is related to Laplacian growth and null-quadrature domains. A generalisation is constructed for power-law fluids, governed by the p-Laplace equation, and a number of results are established that are analogous to the classical case. Both fluid clearance and bubble extinction is considered, and by considering two extremes of extinction behaviour, a rather complete asymptotic description of possible behaviours is found.
Lagrangian fibrations on holomorphic symplectic manifolds III: Holomorphic coisotropic reduction
13:10 Fri 26 Jun, 2009 :: School Board Room :: Dr Justin Sawon :: Colorado State University

Given a certain kind of submanifold $Y$ of a symplectic manifold $(X,\omega)$ we can form its coisotropic reduction as follows. The null directions of $\omega|_Y$ define the characteristic foliation $F$ on $Y$. The space of leaves $Y/F$ then admits a symplectic form, descended from $\omega|_Y$. Locally, the coisotropic reduction $Y/F$ looks just like a symplectic quotient. This construction also work for holomorphic symplectic manifolds, though one of the main difficulties in practice is ensuring that the leaves of the foliation are compact. We will describe a criterion for compactness, and apply coisotropic reduction to produce a classification result for Lagrangian fibrations by Jacobians.
Unsolvable problems in mathematics
15:10 Fri 3 Jul, 2009 :: Badger Labs G13 Macbeth Lecture Theatre :: Prof Greg Hjorth :: University of Melbourne

In the 1900 International Congress of Mathematicians David Hilbert proposed a list of 23 landmark mathematical problems. The first of these problems was shown by Paul Cohen in 1963 to be undecidable—which is to say, in informal language, that it was in principle completely unsolvable. The tenth problem was shown by Yuri Matiyasevich to be unsolvable in 1970. These developments would very likely have been profoundly surprising, perhaps even disturbing, to Hilbert. I want to review some of the general history of unsolvable problems. As much as reasonably possible in the time allowed, I hope to give the audience a sense of why the appearance of unsolvable problems in mathematics was inevitable, and perhaps even desirable.
Stable commutator length
13:40 Fri 25 Sep, 2009 :: Napier 102 :: Prof Danny Calegari :: California Institute of Technology

Stable commutator length answers the question: "what is the simplest surface in a given space with prescribed boundary?" where "simplest" is interpreted in topological terms. This topological definition is complemented by several equivalent definitions - in group theory, as a measure of non-commutativity of a group; and in linear programming, as the solution of a certain linear optimization problem. On the topological side, scl is concerned with questions such as computing the genus of a knot, or finding the simplest 4-manifold that bounds a given 3-manifold. On the linear programming side, scl is measured in terms of certain functions called quasimorphisms, which arise from hyperbolic geometry (negative curvature) and symplectic geometry (causal structures). In these talks we will discuss how scl in free and surface groups is connected to such diverse phenomena as the existence of closed surface subgroups in graphs of groups, rigidity and discreteness of symplectic representations, bounding immersed curves on a surface by immersed subsurfaces, and the theory of multi- dimensional continued fractions and Klein polyhedra. Danny Calegari is the Richard Merkin Professor of Mathematics at the California Institute of Technology, and is one of the recipients of the 2009 Clay Research Award for his work in geometric topology and geometric group theory. He received a B.A. in 1994 from the University of Melbourne, and a Ph.D. in 2000 from the University of California, Berkeley under the joint supervision of Andrew Casson and William Thurston. From 2000 to 2002 he was Benjamin Peirce Assistant Professor at Harvard University, after which he joined the Caltech faculty; he became Richard Merkin Professor in 2007.
A solution to the Gromov-Vaserstein problem
15:10 Fri 29 Jan, 2010 :: Engineering North N 158 Chapman Lecture Theatre :: Prof Frank Kutzschebauch :: University of Berne, Switzerland

Any matrix in $SL_n (\mathbb C)$ can be written as a product of elementary matrices using the Gauss elimination process. If instead of the field of complex numbers, the entries in the matrix are elements of a more general ring, this becomes a delicate question. In particular, rings of complex-valued functions on a space are interesting cases. A deep result of Suslin gives an affirmative answer for the polynomial ring in $m$ variables in case the size $n$ of the matrix is at least 3. In the topological category, the problem was solved by Thurston and Vaserstein. For holomorphic functions on $\mathbb C^m$, the problem was posed by Gromov in the 1980s. We report on a complete solution to Gromov's problem. A main tool is the Oka-Grauert-Gromov h-principle in complex analysis. Our main theorem can be formulated as follows: In the absence of obvious topological obstructions, the Gauss elimination process can be performed in a way that depends holomorphically on the matrix. This is joint work with Bj\"orn Ivarsson.
Finite and infinite words in number theory
15:10 Fri 12 Feb, 2010 :: Napier LG28 :: Dr Amy Glen :: Murdoch University

A 'word' is a finite or infinite sequence of symbols (called 'letters') taken from a finite non-empty set (called an 'alphabet'). In mathematics, words naturally arise when one wants to represent elements from some set (e.g., integers, real numbers, p-adic numbers, etc.) in a systematic way. For instance, expansions in integer bases (such as binary and decimal expansions) or continued fraction expansions allow us to associate with every real number a unique finite or infinite sequence of digits.

In this talk, I will discuss some old and new results in Combinatorics on Words and their applications to problems in Number Theory. In particular, by transforming inequalities between real numbers into (lexicographic) inequalities between infinite words representing their binary expansions, I will show how combinatorial properties of words can be used to completely describe the minimal intervals containing all fractional parts {x*2^n}, for some positive real number x, and for all non-negative integers n. This is joint work with Jean-Paul Allouche (Universite Paris-Sud, France).

The Jeffery–Hamel similarity solution and its relation to flow in a diverging channel
15:10 Fri 19 Mar, 2010 :: Santos Lecture Theatre :: Dr Phil Haines :: University of Adelaide

Jeffery–Hamel flows describe the steady two-dimensional flow of an incompressible viscous fluid between plane walls separated by an angle $\alpha$. They are often used to approximate the flow in domains of finite radial extent. However, whilst the base Jeffery–Hamel solution is characterised by a subcritical pitchfork bifurcation, studies in expanding channels of finite length typically find symmetry breaking via a supercritical bifurcation.

We use the finite element method to calculate solutions for flow in a two-dimensional wedge of finite length bounded by arcs of constant radii, $R_1$ and $R_2$. We present a comprehensive picture of the bifurcation structure and nonlinear states for a net radial outflow of fluid. We find a series of nested neutral curves in the Reynolds number-$\alpha$ plane corresponding to pitchfork bifurcations that break the midplane symmetry of the flow. We show that these finite domain bifurcations remain distinct from the similarity solution bifurcation even in the limit $R_2/R_1 \rightarrow \infty$.

We also discuss a class of stable steady solutions apparently related to a steady, spatially periodic, wave first observed by Tutty (1996). These solutions remain disconnected in our domain in the sense that they do not arise via a local bifurcation of the Stokes flow solution as the Reynolds number is increased.

Eynard-Orantin invariants and enumerative geometry
13:10 Fri 6 Aug, 2010 :: Ingkarni Wardli B20 (Suite 4) :: Dr Paul Norbury :: University of Melbourne

As a tool for studying enumerative problems in geometry Eynard and Orantin associate multilinear differentials to any plane curve. Their work comes from matrix models but does not require matrix models (for understanding or calculations). In some sense they describe deformations of complex structures of a curve and conjectural relationships to deformations of Kahler structures of an associated object. I will give an introduction to their invariants via explicit examples, mainly to do with the moduli space of Riemann surfaces, in which the plane curve has genus zero.
Counting lattice points in polytopes and geometry
15:10 Fri 6 Aug, 2010 :: Napier G04 :: Dr Paul Norbury :: University of Melbourne

Counting lattice points in polytopes arises in many areas of pure and applied mathematics. A basic counting problem is this: how many different ways can one give change of 1 dollar into 5,10, 20 and 50 cent coins? This problem counts lattice points in a tetrahedron, and if there also must be exactly 10 coins then it counts lattice points in a triangle. The number of lattice points in polytopes can be used to measure the robustness of a computer network, or in statistics to test independence of characteristics of samples. I will describe the general structure of lattice point counts and the difficulty of calculations. I will then describe a particular lattice point count in which the structure simplifies considerably allowing one to calculate easily. I will spend a brief time at the end describing how this is related to the moduli space of Riemann surfaces.
Compound and constrained regression analyses for EIV models
15:05 Fri 27 Aug, 2010 :: Napier LG28 :: Prof Wei Zhu :: State University of New York at Stony Brook

In linear regression analysis, randomness often exists in the independent variables and the resulting models are referred to errors-in-variables (EIV) models. The existing general EIV modeling framework, the structural model approach, is parametric and dependent on the usually unknown underlying distributions. In this work, we introduce a general non-parametric EIV modeling framework, the compound regression analysis, featuring an intuitive geometric representation and a 1-1 correspondence to the structural model. Properties, examples and further generalizations of this new modeling approach are discussed in this talk.
A polyhedral model for boron nitride nanotubes
15:10 Fri 3 Sep, 2010 :: Napier G04 :: Dr Barry Cox :: University of Adelaide

The conventional rolled-up model of nanotubes does not apply to the very small radii tubes, for which curvature effects become significant. In this talk an existing geometric model for carbon nanotubes proposed by the authors, which accommodates this deficiency and which is based on the exact polyhedral cylindrical structure, is extended to a nanotube structure involving two species of atoms in equal proportion, and in particular boron nitride nanotubes. This generalisation allows the principle features to be included as the fundamental assumptions of the model, such as equal bond length but distinct bond angles and radii between the two species. The polyhedral model is based on the five simple geometric assumptions: (i) all bonds are of equal length, (ii) all bond angles for the boron atoms are equal, (iii) all boron atoms lie at an equal distance from the nanotube axis, (iv) all nitrogen atoms lie at an equal distance from the nanotube axis, and (v) there exists a fixed ratio of pyramidal height H, between the boron species compared with the corresponding height in a symmetric single species nanotube. Working from these postulates, expressions are derived for the various structural parameters such as radii and bond angles for the two species for specific values of the chiral vector numbers (n,m). The new model incorporates an additional constant of proportionality H, which we assume applies to all nanotubes comprising the same elements and is such that H = 1 for a single species nanotube. Comparison with `ab initio' studies suggest that this assumption is entirely reasonable, and in particular we determine the value H = 0.56\pm0.04 for boron nitride, based on computational results in the literature. This talk relates to work which is a couple of years old and given time at the end we will discuss some newer results in geometric models developed with our former student Richard Lee (now also at the University of Adelaide as a post doc) and some work-in-progress on carbon nanocones. Note: pyramidal height is our own terminology and will be explained in the talk.
Principal Component Analysis Revisited
15:10 Fri 15 Oct, 2010 :: Napier G04 :: Assoc. Prof Inge Koch :: University of Adelaide

Since the beginning of the 20th century, Principal Component Analysis (PCA) has been an important tool in the analysis of multivariate data. The principal components summarise data in fewer than the original number of variables without losing essential information, and thus allow a split of the data into signal and noise components. PCA is a linear method, based on elegant mathematical theory. The increasing complexity of data together with the emergence of fast computers in the later parts of the 20th century has led to a renaissance of PCA. The growing numbers of variables (in particular, high-dimensional low sample size problems), non-Gaussian data, and functional data (where the data are curves) are posing exciting challenges to statisticians, and have resulted in new research which extends the classical theory. I begin with the classical PCA methodology and illustrate the challenges presented by the complex data that we are now able to collect. The main part of the talk focuses on extensions of PCA: the duality of PCA and the Principal Coordinates of Multidimensional Scaling, Sparse PCA, and consistency results relating to principal components, as the dimension grows. We will also look at newer developments such as Principal Component Regression and Supervised PCA, nonlinear PCA and Functional PCA.
Slippery issues in nano- and microscale fluid flows
11:10 Tue 30 Nov, 2010 :: Innova teaching suite B21 :: Dr Shaun C. Hendy :: Victoria University of Wellington

The no-slip boundary condition was considered to have been experimentally established for the flow of simple liquids over solid surfaces in the early 20th century. Nonetheless the refinement of a number of measurement techniques has recently led to the observation of nano- and microscale violations of the no-slip boundary condition by simple fluids flowing over non-wetting surfaces. However it is important to distinguish between intrinsic slip, which arises solely from the chemical interaction between the liquid and a homogeneous, atomically flat surface and effective slip, typically measured in macroscopic experiments, which emerges from the interaction of microscopic chemical heterogeneity, roughness and contaminants. Here we consider the role of both intrinsic and effective slip boundary conditions in nanoscale and microscale fluid flows using a theoretical approach, complemented by molecular dynamics simulations, and experimental evidence where available. Firstly, we consider nanoscale flows in small capillaries, including carbon nanotubes, where we have developed and solved a generalised Lucas-Washburn equation that incorporates slip to describe the uptake of droplets. We then consider the general problem of relating effective slip to microscopic intrinsic slip and roughness, and discuss several cases where we have been able to solve this problem analytically. Finally, we look at applications of these results to carbon nanotube growth, self-cleaning surfaces, catalysis, and putting insulation in your roof.
Surface quotients of hyperbolic buildings
13:10 Fri 18 Mar, 2011 :: Mawson 208 :: Dr Anne Thomas :: University of Sydney

Let I(p,v) be Bourdon's building, the unique simply-connected 2-complex such that all 2-cells are regular right-angled hyperbolic p-gons, and the link at each vertex is the complete bipartite graph K_{v,v}. We investigate and mostly determine the set of triples (p,v,g) for which there is a discrete group acting on I(p,v) so that the quotient is a compact orientable surface of genus g. Surprisingly, the existence of such a quotient depends upon the value of v. The remaining cases lead to open questions in tessellations of surfaces and in number theory. We use elementary group theory, combinatorics, algebraic topology and number theory. This is joint work with David Futer.
How round is your triangle, square, pentagon, ...?
12:10 Wed 6 Apr, 2011 :: Napier 210 :: Dr Barry Cox :: University of Adelaide

Most of us are familiar with the problem of making circular holes in wood or other material. For smaller diameter holes we typically use a drill, and for larger diameter holes a spade-bit, hole-saw or plunge router may be used. However for some applications, like mortise-and-tenon joints, what is needed is a tool that will produce a hole with a cross-section that is something other than a circle. In this talk we look at curves that may be used as the basis for a device that will produce holes with a cross-section of an equilateral triangle, square, or any regular polygon. Along the way we will touch on areas of engineering, algebra, geometry, calculus, Gothic art and architecture.
A strong Oka principle for embeddings of some planar domains into CxC*, I
13:10 Fri 6 May, 2011 :: Mawson 208 :: Mr Tyson Ritter :: University of Adelaide

The Oka principle refers to a collection of results in complex analysis which state that there are only topological obstructions to solving certain holomorphically defined problems involving Stein manifolds. For example, a basic version of Gromov's Oka principle states that every continuous map from a Stein manifold into an elliptic complex manifold is homotopic to a holomorphic map. In these two talks I will discuss a new result showing that if we restrict the class of source manifolds to circular domains and fix the target as CxC* we can obtain a much stronger Oka principle: every continuous map from a circular domain S into CxC* is homotopic to a proper holomorphic embedding. This result has close links with the long-standing and difficult problem of finding proper holomorphic embeddings of Riemann surfaces into C^2, with additional motivation from other sources.
A strong Oka principle for embeddings of some planar domains into CxC*, II
13:10 Fri 13 May, 2011 :: Mawson 208 :: Mr Tyson Ritter :: University of Adelaide

The Oka principle refers to a collection of results in complex analysis which state that there are only topological obstructions to solving certain holomorphically defined problems involving Stein manifolds. For example, a basic version of Gromov's Oka principle states that every continuous map from a Stein manifold into an elliptic complex manifold is homotopic to a holomorphic map. In these two talks I will discuss a new result showing that if we restrict the class of source manifolds to circular domains and fix the target as CxC* we can obtain a much stronger Oka principle: every continuous map from a circular domain S into CxC* is homotopic to a proper holomorphic embedding. This result has close links with the long-standing and difficult problem of finding proper holomorphic embeddings of Riemann surfaces into C^2, with additional motivation from other sources.
Object oriented data analysis
14:10 Thu 30 Jun, 2011 :: 7.15 Ingkarni Wardli :: Prof Steve Marron :: The University of North Carolina at Chapel Hill

Object Oriented Data Analysis is the statistical analysis of populations of complex objects. In the special case of Functional Data Analysis, these data objects are curves, where standard Euclidean approaches, such as principal components analysis, have been very successful. Recent developments in medical image analysis motivate the statistical analysis of populations of more complex data objects which are elements of mildly non-Euclidean spaces, such as Lie Groups and Symmetric Spaces, or of strongly non-Euclidean spaces, such as spaces of tree-structured data objects. These new contexts for Object Oriented Data Analysis create several potentially large new interfaces between mathematics and statistics. Even in situations where Euclidean analysis makes sense, there are statistical challenges because of the High Dimension Low Sample Size problem, which motivates a new type of asymptotics leading to non-standard mathematical statistics.
AustMS/AMSI Mahler Lecture: Chaos, quantum mechanics and number theory
18:00 Tue 9 Aug, 2011 :: Napier 102 :: Prof Peter Sarnak :: Institute for Advanced Study, Princeton

The correspondence principle in quantum mechanics is concerned with the relation between a mechanical system and its quantization. When the mechanical system are relatively orderly ("integrable"), then this relation is well understood. However when the system is chaotic much less is understood. The key features already appear and are well illustrated in the simplest systems which we will review. For chaotic systems defined number-theoretically, much more is understood and the basic problems are connected with central questions in number theory. The Mahler lectures are a biennial activity organised by the Australian Mathematical Society with the assistance of the Australian Mathematical Sciences Institute.
K3 surfaces: a crash course
13:10 Fri 12 Aug, 2011 :: B.19 Ingkarni Wardli :: A/Prof Nicholas Buchdahl :: University of Adelaide

Everything you have ever wanted to know about K3 surfaces! Two talks: 1:10 pm to 3:00 pm.
Space of 2D shapes and the Weil-Petersson metric: shapes, ideal fluid and Alzheimer's disease
13:10 Fri 25 Nov, 2011 :: B.19 Ingkarni Wardli :: Dr Sergey Kushnarev :: National University of Singapore

The Weil-Petersson metric is an exciting metric on a space of simple plane curves. In this talk the speaker will introduce the shape space and demonstrate the connection with the Euler-Poincare equations on the group of diffeomorphisms (EPDiff). A numerical method for finding geodesics between two shapes will be demonstrated and applied to the surface of the hippocampus to study the effects of Alzheimer's disease. As another application the speaker will discuss how to do statistics on the shape space and what should be done to improve it.
Noncritical holomorphic functions of finite growth on algebraic Riemann surfaces
13:10 Fri 3 Feb, 2012 :: B.20 Ingkarni Wardli :: Prof Franc Forstneric :: University of Ljubljana

Given a compact Riemann surface X and a point p in X, we construct a holomorphic function without critical points on the punctured (algebraic) Riemann surface R=X-p which is of finite order at the point p. In the case at hand this improves the 1967 theorem of Gunning and Rossi to the effect that every open Riemann surface admits a noncritical holomorphic function, but without any particular growth condition. (Joint work with Takeo Ohsawa.)
Plurisubharmonic subextensions as envelopes of disc functionals
13:10 Fri 2 Mar, 2012 :: B.20 Ingkarni Wardli :: A/Prof Finnur Larusson :: University of Adelaide

I will describe new joint work with Evgeny Poletsky. We prove a disc formula for the largest plurisubharmonic subextension of an upper semicontinuous function on a domain $W$ in a Stein manifold to a larger domain $X$ under suitable conditions on $W$ and $X$. We introduce a related equivalence relation on the space of analytic discs in $X$ with boundary in $W$. The quotient is a complex manifold with a local biholomorphism to $X$, except it need not be Hausdorff. We use our disc formula to generalise Kiselman's minimum principle. We show that his infimum function is an example of a plurisubharmonic subextension.
Forecasting electricity demand distributions using a semiparametric additive model
15:10 Fri 16 Mar, 2012 :: B.21 Ingkarni Wardli :: Prof Rob Hyndman :: Monash University

Electricity demand forecasting plays an important role in short-term load allocation and long-term planning for future generation facilities and transmission augmentation. Planners must adopt a probabilistic view of potential peak demand levels, therefore density forecasts (providing estimates of the full probability distributions of the possible future values of the demand) are more helpful than point forecasts, and are necessary for utilities to evaluate and hedge the financial risk accrued by demand variability and forecasting uncertainty. Electricity demand in a given season is subject to a range of uncertainties, including underlying population growth, changing technology, economic conditions, prevailing weather conditions (and the timing of those conditions), as well as the general randomness inherent in individual usage. It is also subject to some known calendar effects due to the time of day, day of week, time of year, and public holidays. I will describe a comprehensive forecasting solution designed to take all the available information into account, and to provide forecast distributions from a few hours ahead to a few decades ahead. We use semi-parametric additive models to estimate the relationships between demand and the covariates, including temperatures, calendar effects and some demographic and economic variables. Then we forecast the demand distributions using a mixture of temperature simulation, assumed future economic scenarios, and residual bootstrapping. The temperature simulation is implemented through a new seasonal bootstrapping method with variable blocks. The model is being used by the state energy market operators and some electricity supply companies to forecast the probability distribution of electricity demand in various regions of Australia. It also underpinned the Victorian Vision 2030 energy strategy.
Mathematical modelling of the surface adsorption for methane on carbon nanostructures
12:10 Mon 30 Apr, 2012 :: 5.57 Ingkarni Wardli :: Mr Olumide Adisa :: University of Adelaide

In this talk, methane (CH4) adsorption is investigated on both graphite and in the region between two aligned single-walled carbon nanotubes, which we refer to as the groove site. The Lennard–Jones potential function and the continuous approximation is exploited to determine surface binding energies between a single CH4 molecule and graphite and between a single CH4 and two aligned single-walled carbon nanotubes. The modelling indicates that for a CH4 molecule interacting with graphite, the binding energy of the system is minimized when the CH4 carbon is 3.83 angstroms above the surface of the graphitic carbon, while the binding energy of the CH4–groove site system is minimized when the CH4 carbon is 5.17 angstroms away from the common axis shared by the two aligned single-walled carbon nanotubes. These results confirm the current view that for larger groove sites, CH4 molecules in grooves are likely to move towards the outer surfaces of one of the single-walled carbon nanotubes. The results presented in this talk are computationally efficient and are in good agreement with experiments and molecular dynamics simulations, and show that CH4 adsorption on graphite and groove surfaces is more favourable at lower temperatures and higher pressures.
Acyclic embeddings of open Riemann surfaces into new examples of elliptic manifolds
13:10 Fri 4 May, 2012 :: Napier LG28 :: Dr Tyson Ritter :: University of Adelaide

In complex geometry a manifold is Stein if there are, in a certain sense, "many" holomorphic maps from the manifold into C^n. While this has long been well understood, a fruitful definition of the dual notion has until recently been elusive. In Oka theory, a manifold is Oka if it satisfies several equivalent definitions, each stating that the manifold has "many" holomorphic maps into it from C^n. Related to this is the geometric condition of ellipticity due to Gromov, who showed that it implies a complex manifold is Oka. We present recent contributions to three open questions involving elliptic and Oka manifolds. We show that affine quotients of C^n are elliptic, and combine this with an example of Margulis to construct new elliptic manifolds of interesting homotopy types. It follows that every open Riemann surface properly acyclically embeds into an elliptic manifold, extending an existing result for open Riemann surfaces with abelian fundamental group.
Evaluation and comparison of the performance of Australian and New Zealand intensive care units
14:10 Fri 25 May, 2012 :: 7.15 Ingkarni Wardli :: Dr Jessica Kasza :: The University of Adelaide

Recently, the Australian Government has emphasised the need for monitoring and comparing the performance of Australian hospitals. Evaluating the performance of intensive care units (ICUs) is of particular importance, given that the most severe cases are treated in these units. Indeed, ICU performance can be thought of as a proxy for the overall performance of a hospital. We compare the performance of the ICUs contributing to the Australian and New Zealand Intensive Care Society (ANZICS) Adult Patient Database, the largest of its kind in the world, and identify those ICUs with unusual performance. It is well-known that there are many statistical issues that must be accounted for in the evaluation of healthcare provider performance. Indicators of performance must be appropriately selected and estimated, investigators must adequately adjust for casemix, statistical variation must be fully accounted for, and adjustment for multiple comparisons must be made. Our basis for dealing with these issues is the estimation of a hierarchical logistic model for the in-hospital death of each patient, with patients clustered within ICUs. Both patient- and ICU-level covariates are adjusted for, with a random intercept and random coefficient for the APACHE III severity score. Given that we expect most ICUs to have similar performance after adjustment for these covariates, we follow Ohlssen et al., JRSS A (2007), and estimate a null model that we expect the majority of ICUs to follow. This methodology allows us to rigorously account for the aforementioned statistical issues, and accurately identify those ICUs contributing to the ANZICS database that have comparatively unusual performance. This is joint work with Prof. Patty Solomon and Assoc. Prof. John Moran.
Model turbulent floods based upon the Smagorinski large eddy closure
12:10 Mon 4 Jun, 2012 :: 5.57 Ingkarni Wardli :: Mr Meng Cao :: University of Adelaide

Rivers, floods and tsunamis are often very turbulent. Conventional models of such environmental fluids are typically based on depth-averaged inviscid irrotational flow equations. We explore changing such a base to the turbulent Smagorinski large eddy closure. The aim is to more appropriately model the fluid dynamics of such complex environmental fluids by using such a turbulent closure. Large changes in fluid depth are allowed. Computer algebra constructs the slow manifold of the flow in terms of the fluid depth h and the mean turbulent lateral velocities u and v. The major challenge is to deal with the nonlinear stress tensor in the Smagorinski closure. The model integrates the effects of inertia, self-advection, bed drag, gravitational forcing and turbulent dissipation with minimal assumptions. Although the resultant model is close to established models, the real outcome is creating a sound basis for the modelling so others, in their modelling of more complex situations, can systematically include more complex physical processes.
Differential topology 101
13:10 Fri 17 Aug, 2012 :: Engineering North 218 :: Dr Nicholas Buchdahl :: University of Adelaide

Much of my recent research been directed at a problem in the theory of compact complex surfaces---trying to fill in a gap in the Enriques-Kodaira classification. Attempting to classify some collection of mathematical objects is a very common activity for pure mathematicians, and there are many well-known examples of successful classification schemes; for example, the classification of finite simple groups, and the classification of simply connected topological 4-manifolds. The aim of this talk will be to illustrate how techniques from differential geometry can be used to classify compact surfaces. The level of the talk will be very elementary, and the material is all very well known, but it is sometimes instructive to look back over simple cases of a general problem with the benefit of experience to gain greater insight into the more general and difficult cases.
Boundary-layer transition and separation over asymmetrically textured spherical surfaces
12:30 Mon 27 Aug, 2012 :: B.21 Ingkarni Wardli :: Mr Adam Tunney :: University of Adelaide

The game of cricket is unique among ball sports by the ignorant exploitation of \thetitle in the practice of swing bowling, often referred to as a "mysterious art". I will talk a bit about the Magnus effect exploited in inferior sports, the properties of a cricket ball that allow swing bowling, and the explanation of three modes of swing (conventional, contrast and reverse). Following that there will be some discussion on how I plan to use mathematics to turn this "art" into science.
Holomorphic flexibility properties of compact complex surfaces
13:10 Fri 31 Aug, 2012 :: Engineering North 218 :: A/Prof Finnur Larusson :: University of Adelaide

I will describe recent joint work with Franc Forstneric (arXiv, July 2012). We introduce a new property, called the stratified Oka property, which fits into a hierarchy of anti-hyperbolicity properties that includes the Oka property. We show that stratified Oka manifolds are strongly dominable by affine spaces. It follows that Kummer surfaces are strongly dominable. We determine which minimal surfaces of class VII are Oka (assuming the global spherical shell conjecture). We deduce that the Oka property and several other anti-hyperbolicity properties are in general not closed in families of compact complex manifolds. I will summarise what is known about how the Oka property fits into the Enriques-Kodaira classification of surfaces.
Geometric quantisation in the noncompact setting
13:10 Fri 14 Sep, 2012 :: Engineering North 218 :: Dr Peter Hochs :: Leibniz University, Hannover

Traditionally, the geometric quantisation of an action by a compact Lie group on a compact symplectic manifold is defined as the equivariant index of a certain Dirac operator. This index is a well-defined formal difference of finite-dimensional representations, since the Dirac operator is elliptic and the manifold and the group in question are compact. From a mathematical and physical point of view however, it is very desirable to extend geometric quantisation to noncompact groups and manifolds. Defining a suitable index is much harder in the noncompact setting, but several interesting results in this direction have been obtained. I will review the difficulties connected to noncompact geometric quantisation, and some of the solutions that have been proposed so far, mainly in connection to the "quantisation commutes with reduction" principle. (An introduction to this principle will be given in my talk at the Colloquium on the same day.)
Quantisation commutes with reduction
15:10 Fri 14 Sep, 2012 :: B.20 Ingkarni Wardli :: Dr Peter Hochs :: Leibniz University Hannover

The "Quantisation commutes with reduction" principle is an idea from physics, which has powerful applications in mathematics. It basically states that the ways in which symmetry can be used to simplify a physical system in classical and quantum mechanics, are compatible. This provides a strong link between the areas in mathematics used to describe symmetry in classical and quantum mechanics: symplectic geometry and representation theory, respectively. It has been proved in the 1990s that quantisation indeed commutes with reduction, under the important assumption that all spaces and symmetry groups involved are compact. This talk is an introduction to this principle and, if time permits, its mathematical relevance.
Complex analysis in low Reynolds number hydrodynamics
15:10 Fri 12 Oct, 2012 :: B.20 Ingkarni Wardli :: Prof Darren Crowdy :: Imperial College London

It is a well-known fact that the methods of complex analysis provide great advantage in studying physical problems involving a harmonic field satisfying Laplace's equation. One example is in ideal fluid mechanics (infinite Reynolds number) where the absence of viscosity, and the assumption of zero vorticity, mean that it is possible to introduce a so-called complex potential -- an analytic function from which all physical quantities of interest can be inferred. In the opposite limit of zero Reynolds number flows which are slow and viscous and the governing fields are not harmonic it is much less common to employ the methods of complex analysis even though they continue to be relevant in certain circumstances. This talk will give an overview of a variety of problems involving slow viscous Stokes flows where complex analysis can be usefully employed to gain theoretical insights. A number of example problems will be considered including the locomotion of low-Reynolds-number micro-organisms and micro-robots, the friction properties of superhydrophobic surfaces in microfluidics and problems of viscous sintering and the manufacture of microstructured optic fibres (MOFs).
Twistor space for rolling bodies
12:10 Fri 15 Mar, 2013 :: Ingkarni Wardli B19 :: Prof Pawel Nurowski :: University of Warsaw

We consider a configuration space of two solids rolling on each other without slipping or twisting, and identify it with an open subset U of R^5, equipped with a generic distribution D of 2-planes. We will discuss symmetry properties of the pair (U,D) and will mention that, in the case of the two solids being balls, when changing the ratio of their radii, the dimension of the group of local symmetries unexpectedly jumps from 6 to 14. This occurs for only one such ratio, and in such case the local group of symmetries of the pair (U,D) is maximal. It is maximal not only among the balls with various radii, but more generally among all (U,D)s corresponding to configuration spaces of two solids rolling on each other without slipping or twisting. This maximal group is isomorphic to the split real form of the exceptional Lie group G2. In the remaining part of the talk we argue how to identify the space U from the pair (U,D) defined above with the bundle T of totally null real 2-planes over a 4-manifold equipped with a split signature metric. We call T the twistor bundle for rolling bodies. We show that the rolling distribution D, can be naturally identified with an appropriately defined twistor distribution on T. We use this formulation of the rolling system to find more surfaces which, when rigidly rolling on each other without slipping or twisting, have the local group of symmetries isomorphic to the exceptional group G2.
An Oka principle for equivariant isomorphisms
12:10 Fri 3 May, 2013 :: Ingkarni Wardli B19 :: A/Prof Finnur Larusson :: University of Adelaide

I will discuss new joint work with Frank Kutzschebauch (Bern) and Gerald Schwarz (Brandeis). Let $G$ be a reductive complex Lie group acting holomorphically on Stein manifolds $X$ and $Y$, which are locally $G$-biholomorphic over a common categorical quotient $Q$. When is there a global $G$-biholomorphism $X\to Y$? In a situation that we describe, with some justification, as generic, we prove that the obstruction to solving this local-to-global problem is topological and provide sufficient conditions for it to vanish. Our main tool is the equivariant version of Grauert's Oka principle due to Heinzner and Kutzschebauch. We prove that $X$ and $Y$ are $G$-biholomorphic if $X$ is $K$-contractible, where $K$ is a maximal compact subgroup of $G$, or if there is a $G$-diffeomorphism $X\to Y$ over $Q$, which is holomorphic when restricted to each fibre of the quotient map $X\to Q$. When $G$ is abelian, we obtain stronger theorems. Our results can be interpreted as instances of the Oka principle for sections of the sheaf of $G$-biholomorphisms from $X$ to $Y$ over $Q$. This sheaf can be badly singular, even in simply defined examples. Our work is in part motivated by the linearisation problem for actions on $\C^n$. It follows from one of our main results that a holomorphic $G$-action on $\C^n$, which is locally $G$-biholomorphic over a common quotient to a generic linear action, is linearisable.
A strong Oka principle for proper immersions of finitely connected planar domains into CxC*
12:10 Fri 31 May, 2013 :: Ingkarni Wardli B19 :: Dr Tyson Ritter :: University of Adelaide

Gromov, in his seminal 1989 paper on the Oka principle, proved that every continuous map from a Stein manifold into an elliptic manifold is homotopic to a holomorphic map. In previous work we showed that, given a continuous map from X to the elliptic manifold CxC*, where X is a finitely connected planar domain without isolated boundary points, a stronger Oka property holds whereby the map is homotopic to a proper holomorphic embedding. If the planar domain is additionally permitted to have isolated boundary points the problem becomes more difficult, and it is not yet clear whether a strong Oka property for embeddings into CxC* continues to hold. We will discuss recent results showing that every continuous map from a finitely connected planar domain into CxC* is homotopic to a proper immersion that, in most cases, identifies at most finitely many pairs of distinct points. This is joint work with Finnur Larusson.
Birational geometry of M_g
12:10 Fri 21 Jun, 2013 :: Ingkarni Wardli B19 :: Dr Jarod Alper :: Australian National University

In 1969, Deligne and Mumford introduced a beautiful compactification of the moduli space of smooth curves which has proved extremely influential in geometry, topology and physics. Using recent advances in higher dimensional geometry and the minimal model program, we study the birational geometry of M_g. In particular, in an effort to understand the canonical model of M_g, we study the log canonical models as well as the associated divisorial contractions and flips by interpreting these models as moduli spaces of particular singular curves.
Invariant Theory: The 19th Century and Beyond
15:10 Fri 21 Jun, 2013 :: B.18 Ingkarni Wardli :: Dr Jarod Alper :: Australian National University

A central theme in 19th century mathematics was invariant theory, which was viewed as a bridge between geometry and algebra. David Hilbert revolutionized the field with two seminal papers in 1890 and 1893 with techniques such as Hilbert's basis theorem, Hilbert's Nullstellensatz and Hilbert's syzygy theorem that spawned the modern field of commutative algebra. After Hilbert's groundbreaking work, the field of invariant theory remained largely inactive until the 1960's when David Mumford revitalized the field by reinterpreting Hilbert's ideas in the context of algebraic geometry which ultimately led to the influential construction of the moduli space of smooth curves. Today invariant theory remains a vital research area with connections to various mathematical disciplines: representation theory, algebraic geometry, commutative algebra, combinatorics and nonlinear differential operators. The goal of this talk is to provide an introduction to invariant theory with an emphasis on Hilbert's and Mumford's contributions. Time permitting, I will explain recent research with Maksym Fedorchuk and David Smyth which exploits the ideas of Hilbert, Mumford as well as Kempf to answer a classical question concerning the stability of algebraic curves.
Geometry of moduli spaces
12:10 Fri 30 Aug, 2013 :: Ingkarni Wardli B19 :: Prof Georg Schumacher :: University of Marburg

We discuss the concept of moduli spaces in complex geometry. The main examples are moduli of compact Riemann surfaces, moduli of compact projective varieties and moduli of holomorphic vector bundles, whose points correspond to isomorphism classes of the given objects. Moduli spaces carry a natural topology, whereas a complex structure that reflects the variation of the structure in a family exists in general only under extra conditions. In a similar way, a natural hermitian metric (Weil-Petersson metric) on moduli spaces that induces a symplectic structure can be constructed from the variation of distinguished metrics on the fibers. In this way, various questions concerning the underlying symplectic structure, the curvature of the Weil-Petersson metric, hyperbolicity of moduli spaces, and construction of positive/ample line bundles on compactified moduli spaces can be answered.
Geodesic completeness of compact pp-waves
12:10 Fri 18 Oct, 2013 :: Ingkarni Wardli B19 :: Dr Thomas Leistner :: University of Adelaide

A semi-Riemannian manifold is geodesically complete (or for short, complete) if all its maximal geodesics are defined on the real line. Whereas for Riemannian metrics the compactness of the manifold implies completeness, there are compact Lorentzian manifolds that are not complete (e.g. the Clifton-Pohl torus). Several rather strong conditions have been found in the literature under which a compact Lorentzian manifold is complete, including being homogeneous (Marsden) or of constant curvature (Carriere, Klingler), or admitting a timelike Killing vector field (Romero, Sanchez). We will consider pp-waves, which are Lorentzian manifold with a parallel null vector field and a highly degenerate curvature tensor, but which do not satisfy any of the above conditions. We will show that a compact pp-wave is universally covered by a vector space, determine the metric on the universal cover and consequently show that they are geodesically complete.
Classification Using Censored Functional Data
15:10 Fri 18 Oct, 2013 :: B.18 Ingkarni Wardli :: A/Prof Aurore Delaigle :: University of Melbourne

We consider classification of functional data. This problem has received a lot of attention in the literature in the case where the curves are all observed on the same interval. A difficulty in applications is that the functional curves can be supported on quite different intervals, in which case standard methods of analysis cannot be used. We are interested in constructing classifiers for curves of this type. More precisely, we consider classification of functions supported on a compact interval, in cases where the training sample consists of functions observed on other intervals, which may differ among the training curves. We propose several methods, depending on whether or not the observable intervals overlap by a significant amount. In the case where these intervals differ a lot, our procedure involves extending the curves outside the interval where they were observed. We suggest a new nonparametric approach for doing this. We also introduce flexible ways of combining potential differences in shapes of the curves from different populations, and potential differences between the endpoints of the intervals where the curves from each population are observed.
The geometry of rolling surfaces and non-holonomic mechanics
15:10 Fri 1 Nov, 2013 :: B.18 Ingkarni Wardli :: Prof Robert Bryant :: Duke University

In mechanics, the system of a sphere rolling over a plane without slipping or twisting is a fundamental example of what is called a non-holonomic mechanical system, the study of which belongs to the subject of control theory. The more general case of one surface rolling over another without slipping or twisting is, similarly, of great interest for both practical and theoretical reasons. In this talk, which is intended for a general mathematical audience (i.e., no familiarity with control theory or differential geometry will be assumed), I will describe some of the basic features of this problem, a bit of its history, and some of the surprising developments that its study reveals, such as the unexpected appearance of the exceptional group G_2.
Weak Stochastic Maximum Principle (SMP) and Applications
15:10 Thu 12 Dec, 2013 :: B.21 Ingkarni Wardli :: Dr Harry Zheng :: Imperial College, London

In this talk we discuss a weak necessary and sufficient SMP for Markov modulated optimal control problems. Instead of insisting on the maximum condition of the Hamiltonian, we show that 0 belongs to the sum of Clarke's generalized gradient of the Hamiltonian and Clarke's normal cone of the control constraint set at the optimal control. Under a joint concavity condition on the Hamiltonian the necessary condition becomes sufficient. We give examples to demonstrate the weak SMP and its applications in quadratic loss minimization.
Holomorphic null curves and the conformal Calabi-Yau problem
12:10 Tue 28 Jan, 2014 :: Ingkarni Wardli B20 :: Prof Franc Forstneric :: University of Ljubljana

I shall describe how methods of complex analysis can be used to give new results on the conformal Calabi-Yau problem concerning the existence of bounded metrically complete minimal surfaces in real Euclidean 3-space R^3. We shall see in particular that every bordered Riemann surface admits a proper complete holomorphic immersion into the ball of C^2, and a proper complete embedding as a holomorphic null curve into the ball of C^3. Since the real and the imaginary parts of a holomorphic null curve in C^3 are conformally immersed minimal surfaces in R^3, we obtain a bounded complete conformal minimal immersion of any bordered Riemann surface into R^3. The main advantage of our methods, when compared to the existing ones in the literature, is that we do not need to change the conformal type of the Riemann surface. (Joint work with A. Alarcon, University of Granada.)
Geometric quantisation in the noncompact setting
12:10 Fri 7 Mar, 2014 :: Ingkarni Wardli B20 :: Peter Hochs :: University of Adelaide

Geometric quantisation is a way to construct quantum mechanical phase spaces (Hilbert spaces) from classical mechanical phase spaces (symplectic manifolds). In the presence of a group action, the quantisation commutes with reduction principle states that geometric quantisation should be compatible with the ways the group action can be used to simplify (reduce) the classical and quantum phase spaces. This has deep consequences for the link between symplectic geometry and representation theory. The quantisation commutes with reduction principle has been given explicit meaning, and been proved, in cases where the symplectic manifold and the group acting on it are compact. There have also been results where just the group, or the orbit space of the action, is assumed to be compact. These are important and difficult, but it is somewhat frustrating that they do not even apply to the simplest example from the physics point of view: a free particle in Rn. This talk is about a joint result with Mathai Varghese where the group, manifold and orbit space may all be noncompact.
Hydrodynamics and rheology of self-propelled colloids
15:10 Fri 8 Aug, 2014 :: B17 Ingkarni Wardli :: Dr Sarthok Sircar :: University of Adelaide

The sub-cellular world has many components in common with soft condensed matter systems (polymers, colloids and liquid crystals). But it has novel properties, not present in traditional complex fluids, arising from a rich spectrum of non-equilibrium behavior: flocking, chemotaxis and bioconvection. The talk is divided into two parts. In the first half, we will (get an idea on how to) derive a hydrodynamic model for self-propelled particles of an arbitrary shape from first principles, in a sufficiently dilute suspension limit, moving in a 3-dimensional space inside a viscous solvent. The model is then restricted to particles with ellipsoidal geometry to quantify the interplay of the long-range excluded volume and the short-range self-propulsion effects. The expression for the constitutive stresses, relating the kinetic theory with the momentum transport equations, are derived using a combination of the virtual work principle (for extra elastic stresses) and symmetry arguments (for active stresses). The second half of the talk will highlight on my current numerical expertise. In particular we will exploit a specific class of spectral basis functions together with RK4 time-stepping to determine the dynamical phases/structures as well as phase-transitions of these ellipsoidal clusters. We will also discuss on how to define the order (or orientation) of these clusters and understand the other rheological quantities.
Quasimodes that do not Equidistribute
13:10 Tue 19 Aug, 2014 :: Ingkarni Wardli B17 :: Shimon Brooks :: Bar-Ilan University

The QUE Conjecture of Rudnick-Sarnak asserts that eigenfunctions of the Laplacian on Riemannian manifolds of negative curvature should equidistribute in the large eigenvalue limit. For a number of reasons, it is expected that this property may be related to the (conjectured) small multiplicities in the spectrum. One way to study this relationship is to ask about equidistribution for "quasimodes"-or approximate eigenfunctions- in place of highly-degenerate eigenspaces. We will discuss the case of surfaces of constant negative curvature; in particular, we will explain how to construct some examples of sufficiently weak quasimodes that do not satisfy QUE, and show how they fit into the larger theory.
Translating solitons for mean curvature flow
12:10 Fri 19 Sep, 2014 :: Ingkarni Wardli B20 :: Julie Clutterbuck :: Monash University

Mean curvature flow gives a deformation of a submanifold in the direction of its mean curvature vector. Singularities may arise, and can be modelled by special solutions of the flow. I will describe the special solutions that move by only a translation under the flow, and give some explicit constructions of such surfaces. This is based on joint work with Oliver Schnuerer and Felix Schulze.
To Complex Analysis... and beyond!
12:10 Mon 29 Sep, 2014 :: B.19 Ingkarni Wardli :: Brett Chenoweth :: University of Adelaide

In the undergraduate complex analysis course students learn about complex valued functions on domains in C (the complex plane). Several interesting and surprising results come about from this study. In my talk I will introduce a more general setting where complex analysis can be done, namely Riemann surfaces (complex manifolds of dimension 1). I will then prove that all non-compact Riemann surfaces are Stein; which loosely speaking means that their function theory is similar to that of C.
Exploration vs. Exploitation with Partially Observable Gaussian Autoregressive Arms
15:00 Mon 29 Sep, 2014 :: Engineering North N132 :: Julia Kuhn :: The University of Queensland & The University of Amsterdam

We consider a restless bandit problem with Gaussian autoregressive arms, where the state of an arm is only observed when it is played and the state-dependent reward is collected. Since arms are only partially observable, a good decision policy needs to account for the fact that information about the state of an arm becomes more and more obsolete while the arm is not being played. Thus, the decision maker faces a tradeoff between exploiting those arms that are believed to be currently the most rewarding (i.e. those with the largest conditional mean), and exploring arms with a high conditional variance. Moreover, one would like the decision policy to remain tractable despite the infinite state space and also in systems with many arms. A policy that gives some priority to exploration is the Whittle index policy, for which we establish structural properties. These motivate a parametric index policy that is computationally much simpler than the Whittle index but can still outperform the myopic policy. Furthermore, we examine the many-arm behavior of the system under the parametric policy, identifying equations describing its asymptotic dynamics. Based on these insights we provide a simple heuristic algorithm to evaluate the performance of index policies; the latter is used to optimize the parametric index.
Modelling segregation distortion in multi-parent crosses
15:00 Mon 17 Nov, 2014 :: 5.57 Ingkarni Wardli :: Rohan Shah (joint work with B. Emma Huang and Colin R. Cavanagh) :: The University of Queensland

Construction of high-density genetic maps has been made feasible by low-cost high-throughput genotyping technology; however, the process is still complicated by biological, statistical and computational issues. A major challenge is the presence of segregation distortion, which can be caused by selection, difference in fitness, or suppression of recombination due to introgressed segments from other species. Alien introgressions are common in major crop species, where they have often been used to introduce beneficial genes from wild relatives. Segregation distortion causes problems at many stages of the map construction process, including assignment to linkage groups and estimation of recombination fractions. This can result in incorrect ordering and estimation of map distances. While discarding markers will improve the resulting map, it may result in the loss of genomic regions under selection or containing beneficial genes (in the case of introgression). To correct for segregation distortion we model it explicitly in the estimation of recombination fractions. Previously proposed methods introduce additional parameters to model the distortion, with a corresponding increase in computing requirements. This poses difficulties for large, densely genotyped experimental populations. We propose a method imposing minimal additional computational burden which is suitable for high-density map construction in large multi-parent crosses. We demonstrate its use modelling the known Sr36 introgression in wheat for an eight-parent complex cross.
Nonlinear analysis over infinite dimensional spaces and its applications
12:10 Fri 6 Feb, 2015 :: Ingkarni Wardli B20 :: Tsuyoshi Kato :: Kyoto University

In this talk we develop moduli theory of holomorphic curves over infinite dimensional manifolds consisted by sequences of almost Kaehler manifolds. Under the assumption of high symmetry, we verify that many mechanisms of the standard moduli theory over closed symplectic manifolds also work over these infinite dimensional spaces. As an application, we study deformation theory of discrete groups acting on trees. There is a canonical way, up to conjugacy to embed such groups into the automorphism group over the infinite projective space. We verify that for some class of Hamiltonian functions, the deformed groups must be always asymptotically infinite.
Minimal Surfaces and their Application to Soap Films
12:10 Mon 13 Apr, 2015 :: Napier LG29 :: Jonathon Pantelis :: University of Adelaide

We all have some idea about what a surface is. We can classify surfaces depending on a range of properties or characteristics. Discussed in this seminar are Minimal Surfaces, a particular class of surface. We will find out what it means for a surface to be minimal and take a look at what these things look like. We will also see how to create them, and also how they relate to soap films.
Instantons and Geometric Representation Theory
12:10 Thu 23 Jul, 2015 :: Engineering and Maths EM212 :: Professor Richard Szabo :: Heriot-Watt University

We give an overview of the various approaches to studying supersymmetric quiver gauge theories on ALE spaces, and their conjectural connections to two-dimensional conformal field theory via AGT-type dualities. From a mathematical perspective, this is formulated as a relationship between the equivariant cohomology of certain moduli spaces of sheaves on stacks and the representation theory of infinite-dimensional Lie algebras. We introduce an orbifold compactification of the minimal resolution of the A-type toric singularity in four dimensions, and then construct a moduli space of framed sheaves which is conjecturally isomorphic to a Nakajima quiver variety. We apply this construction to derive relations between the equivariant cohomology of these moduli spaces and the representation theory of the affine Lie algebra of type A.
Gromov's method of convex integration and applications to minimal surfaces
12:10 Fri 7 Aug, 2015 :: Ingkarni Wardli B17 :: Finnur Larusson :: The University of Adelaide

We start by considering an applied problem. You are interested in buying a used car. The price is tempting, but the car has a curious defect, so it is not clear whether you can even take it for a test drive. This problem illustrates the key idea of Gromov's method of convex integration. We introduce the method and some of its many applications, including new applications in the theory of minimal surfaces, and end with a sketch of ongoing joint work with Franc Forstneric.
Non-crossing quantiles
15:10 Fri 14 Aug, 2015 :: Ingkarni Wardli B21 :: Dr Yanan Fan :: UNSW

Quantile regression has received increased attention in the statistics community in recent years. However, since the quantile regression curves are estimated separately, the curves can cross, leading to invalid response distribution. Many authors have proposed remedies for this in the context of frequentist estimation. In this talk, I will explain some of the existing approaches, and then describe a new Bayesian semi-parametric approach for fitting non-crossing quantile regression models simultaneously.
Bezout's Theorem
12:10 Mon 7 Sep, 2015 :: Benham Labs G10 :: David Bowman :: University of Adelaide

Generically, a line intersects a parabola at two distinct points. Bezout’s theorem generalises this idea to the intersection of two arbitrary polynomial plane curves. We discuss exceptional cases and how they are corrected by introducing the notion of multiplicity and by extending the plane to projective space. We shall also discuss applications, time permitting.
Oka principles and the linearization problem
12:10 Fri 8 Jan, 2016 :: Engineering North N132 :: Gerald Schwarz :: Brandeis University

Let G be a reductive complex Lie group (e.g., SL(n,C)) and let X and Y be Stein manifolds (closed complex submanifolds of some C^n). Suppose that G acts freely on X and Y. Then there are quotient Stein manifolds X/G and Y/G and quotient mappings p_X:X-> X/G and p_Y: Y-> Y/G such that X and Y are principal G-bundles over X/G and Y/G. Let us suppose that Q=X/G ~= Y/G so that X and Y have the same quotient Q. A map Phi: X\to Y of principal bundles (over Q) is simply an equivariant continuous map commuting with the projections. That is, Phi(gx)=g Phi(x) for all g in G and x in X, and p_X=p_Y o Phi. The famous Oka Principle of Grauert says that any Phi as above embeds in a continuous family Phi_t: X -> Y, t in [0,1], where Phi_0=Phi, all the Phi_t satisfy the same conditions as Phi does and Phi_1 is holomorphic. This is rather amazing. We consider the case where G does not necessarily act freely on X and Y. There is still a notion of quotient and quotient mappings p_X: X-> X//G and p_Y: Y-> Y//G where X//G and Y//G are now Stein spaces and parameterize the closed G-orbits in X and Y. We assume that Q~= X//G~= Y//G and that we have a continuous equivariant Phi such that p_X=p_Y o Phi. We find conditions under which Phi embeds into a continuous family Phi_t such that Phi_1 is holomorphic. We give an application to the Linearization Problem. Let G act holomorphically on C^n. When is there a biholomorphic map Phi:C^n -> C^n such that Phi^{-1} o g o Phi in GL(n,C) for all g in G? We find a condition which is necessary and sufficient for "most" G-actions. This is joint work with F. Kutzschebauch and F. Larusson.
Quantisation of Hitchin's moduli space
12:10 Fri 22 Jan, 2016 :: Engineering North N132 :: Siye Wu :: National Tsing Hua Univeristy

In this talk, I construct prequantum line bundles on Hitchin's moduli spaces of orientable and non-orientable surfaces and study the geometric quantisation and quantisation via branes by complexification of the moduli spaces.
The parametric h-principle for minimal surfaces in R^n and null curves in C^n
12:10 Fri 11 Mar, 2016 :: Ingkarni Wardli B17 :: Finnur Larusson :: University of Adelaide

I will describe new joint work with Franc Forstneric (arXiv:1602.01529). This work brings together four diverse topics from differential geometry, holomorphic geometry, and topology; namely the theory of minimal surfaces, Oka theory, convex integration theory, and the theory of absolute neighborhood retracts. Our goal is to determine the rough shape of several infinite-dimensional spaces of maps of geometric interest. It turns out that they all have the same rough shape.
Counting periodic points of plane Cremona maps
12:10 Fri 1 Apr, 2016 :: Eng & Maths EM205 :: Tuyen Truong :: University of Adelaide

In this talk, I will present recent results, join with Tien-Cuong Dinh and Viet-Anh Nguyen, on counting periodic points of plane Cremona maps (i.e. birational maps of P^2). The tools used include a Lefschetz fixed point formula of Saito, Iwasaki and Uehara for birational maps of surface whose fixed point set may contain curves; a bound on the arithmetic genus of curves of periodic points by Diller, Jackson and Sommerse; a result by Diller, Dujardin and Guedj on invariant (1,1) currents of meromorphic maps of compact Kahler surfaces; and a theory developed recently by Dinh and Sibony for non proper intersections of varieties. Among new results in the paper, we give a complete characterisation of when two positive closed (1,1) currents on a compact Kahler surface behave nicely in the view of Dinh and Sibony’s theory, even if their wedge intersection may not be well-defined with respect to the classical pluripotential theory. Time allows, I will present some generalisations to meromorphic maps (including an upper bound for the number of isolated periodic points which is sometimes overlooked in the literature) and open questions.
Algebraic structures associated to Brownian motion on Lie groups
13:10 Thu 16 Jun, 2016 :: Ingkarni Wardli B17 :: Steve Rosenberg :: University of Adelaide / Boston University

In (1+1)-d TQFT, products and coproducts are associated to pairs of pants decompositions of Riemann surfaces. We consider a toy model in dimension (0+1) consisting of specific broken paths in a Lie group. The products and coproducts are constructed by a Brownian motion average of holonomy along these paths with respect to a connection on an auxiliary bundle. In the trivial case over the torus, we (seem to) recover the Hopf algebra structure on the symmetric algebra. In the general case, we (seem to) get deformations of this Hopf algebra. This is a preliminary report on joint work with Michael Murray and Raymond Vozzo.
Multi-scale modeling in biofluids and particle aggregation
15:10 Fri 17 Jun, 2016 :: B17 Ingkarni Wardli :: Dr Sarthok Sircar :: University of Adelaide

In today's seminar I will give 2 examples in mathematical biology which describes the multi-scale organization at 2 levels: the meso/micro level and the continuum/macro level. I will then detail suitable tools in statistical mechanics to link these different scales. The first problem arises in mathematical physiology: swelling-de-swelling mechanism of mucus, an ionic gel. Mucus is packaged inside cells at high concentration (volume fraction) and when released into the extracellular environment, it expands in volume by two orders of magnitude in a matter of seconds. This rapid expansion is due to the rapid exchange of calcium and sodium that changes the cross-linked structure of the mucus polymers, thereby causing it to swell. Modeling this problem involves a two-phase, polymer/solvent mixture theory (in the continuum level description), together with the chemistry of the polymer, its nearest neighbor interaction and its binding with the dissolved ionic species (in the micro-scale description). The problem is posed as a free-boundary problem, with the boundary conditions derived from a combination of variational principle and perturbation analysis. The dynamics of neutral gels and the equilibrium-states of the ionic gels are analyzed. In the second example, we numerically study the adhesion fragmentation dynamics of rigid, round particles clusters subject to a homogeneous shear flow. In the macro level we describe the dynamics of the number density of these cluster. The description in the micro-scale includes (a) binding/unbinding of the bonds attached on the particle surface, (b) bond torsion, (c) surface potential due to ionic medium, and (d) flow hydrodynamics due to shear flow.
Hilbert schemes of points of some surfaces and quiver representations
12:10 Fri 23 Sep, 2016 :: Ingkarni Wardli B17 :: Ugo Bruzzo :: International School for Advanced Studies, Trieste

Hilbert schemes of points on the total spaces of the line bundles O(-n) on P1 (desingularizations of toric singularities of type (1/n)(1,1)) can be given an ADHM description, and as a result, they can be realized as varieties of quiver representations.
Energy quantisation for the Willmore functional
11:10 Fri 7 Oct, 2016 :: Ligertwood 314 Flinders Room :: Yann Bernard :: Monash University

We prove a bubble-neck decomposition and an energy quantisation result for sequences of Willmore surfaces immersed into R^(m>=3) with uniformly bounded energy and non-degenerating conformal structure. We deduce the strong compactness (modulo the action of the Moebius group) of closed Willmore surfaces of a given genus below some energy threshold. This is joint-work with Tristan Riviere (ETH Zuerich).
An equivariant parametric Oka principle for bundles of homogeneous spaces
12:10 Fri 3 Mar, 2017 :: Napier 209 :: Finnur Larusson :: University of Adelaide

I will report on new joint work with Frank Kutzschebauch and Gerald Schwarz (arXiv:1612.07372). Under certain conditions, every continuous section of a holomorphic fibre bundle can be deformed to a holomorphic section. In fact, the inclusion of the space of holomorphic sections into the space of continuous sections is a weak homotopy equivalence. What if a complex Lie group acts on the bundle and its sections? We have proved an analogous result for equivariant sections. The result has a wide scope. If time permits, I will describe some interesting special cases and mention two applications.
Minimal surfaces and complex analysis
12:10 Fri 24 Mar, 2017 :: Napier 209 :: Antonio Alarcon :: University of Granada

A surface in the Euclidean space R^3 is said to be minimal if it is locally area-minimizing, meaning that every point in the surface admits a compact neighborhood with the least area among all the surfaces with the same boundary. Although the origin of minimal surfaces is in physics, since they can be realized locally as soap films, this family of surfaces lies in the intersection of many fields of mathematics. In particular, complex analysis in one and several variables plays a fundamental role in the theory. In this lecture we will discuss the influence of complex analysis in the study of minimal surfaces.
Geometric structures on moduli spaces
12:10 Fri 31 Mar, 2017 :: Napier 209 :: Nicholas Buchdahl :: University of Adelaide

Moduli spaces are used to classify various kinds of objects, often arising from solutions of certain differential equations on manifolds; for example, the complex structures on a compact surface or the anti-self-dual Yang-Mills equations on an oriented smooth 4-manifold. Sometimes these moduli spaces carry important information about the underlying manifold, manifested most clearly in the results of Donaldson and others on the topology of smooth 4-manifolds. It is also the case that these moduli spaces themselves carry interesting geometric structures; for example, the Weil-Petersson metric on moduli spaces of compact Riemann surfaces, exploited to great effect by Maryam Mirzakhani. In this talk, I shall elaborate on the theme of geometric structures on moduli spaces, with particular focus on some recent-ish work done in conjunction with Georg Schumacher.
K-types of tempered representations
12:10 Fri 7 Apr, 2017 :: Napier 209 :: Peter Hochs :: University of Adelaide

Tempered representations of a reductive Lie group G are the irreducible unitary representations one needs in the Plancherel decomposition of L^2(G). They are relevant to harmonic analysis because of this, and also occur in the Langlands classification of the larger class of admissible representations. If K in G is a maximal compact subgroup, then there is a considerable amount of information in the restriction of a tempered representation to K. In joint work with Yanli Song and Shilin Yu, we give a geometric expression for the decomposition of such a restriction into irreducibles. The multiplicities of these irreducibles are expressed as indices of Dirac operators on reduced spaces of a coadjoint orbit of G corresponding to the representation. These reduced spaces are Spin-c analogues of reduced spaces in symplectic geometry, defined in terms of moment maps that represent conserved quantities. This result involves a Spin-c version of the quantisation commutes with reduction principle for noncompact manifolds. For discrete series representations, this was done by Paradan in 2003.
Hodge theory on the moduli space of Riemann surfaces
12:10 Fri 5 May, 2017 :: Napier 209 :: Jesse Gell-Redman :: University of Melbourne

The Hodge theorem on a closed Riemannian manifold identifies the deRham cohomology with the space of harmonic differential forms. Although there are various extensions of the Hodge theorem to singular or complete but non-compact spaces, when there is an identification of L^2 Harmonic forms with a topological feature of the underlying space, it is highly dependent on the nature of infinity (in the non-compact case) or the locus of incompleteness; no unifying theorem treats all cases. We will discuss work toward extending the Hodge theorem to singular Riemannian manifolds where the singular locus is an incomplete cusp edge. These can be pictured locally as a bundle of horns, and they provide a model for the behavior of the Weil-Petersson metric on the compactified Riemann moduli space near the interior of a divisor. Joint with J. Swoboda and R. Melrose.
Plumbing regular closed polygonal curves
12:10 Mon 22 May, 2017 :: Inkgarni Wardli Conference Room 715 :: Dr Barry Cox :: School of Mathematical Sciences

In 1980 the following puzzle appeared in Mathematics Magazine: A certain mathematician, in order to make ends meet, moonlights as an apprentice plumber. One night, as the mathematician contemplated a pile of straight pipes of equal lengths and right-angled elbows, the following question occurred to this mathematician: ``For which positive integers n could I form a closed polygonal curve using n such straight pipes and n elbows?'' It turns out that it is possible for any even number n greater than or equal to 4 and any odd number n greater than or equal to 7. However the case n=7 is particularly interesting because it can be done one of two ways and the problem is related to that of determining all the possible conformations of the molecule cyclo-heptane, although the angles in cyclo-heptane are not right angles. This raises the questions: ``Do the two solutions to the maths puzzle with right-angles correspond to the two principal conformations of cyclo-heptane?'', and ``How many solutions/conformations exist for other elbow angles?'' These and other issues will be discussed.
Holomorphic Legendrian curves
12:10 Fri 26 May, 2017 :: Napier 209 :: Franc Forstneric :: University of Ljubljana, Slovenia

I will present recent results on the existence and behaviour of noncompact holomorphic Legendrian curves in complex contact manifolds. We show that these curves are ubiquitous in \C^{2n+1} with the standard holomorphic contact form \alpha=dz+\sum_{j=1}^n x_jdy_j; in particular, every open Riemann surface embeds into \C^3 as a proper holomorphic Legendrian curves. On the other hand, for any integer n>= 1 there exist Kobayashi hyperbolic complex contact structures on \C^{2n+1} which do not admit any nonconstant Legendrian complex lines. Furthermore, we construct a holomorphic Darboux chart around any noncompact holomorphic Legendrian curve in an arbitrary complex contact manifold. As an application, we show that every bordered holomorphic Legendrian curve can be uniformly approximated by complete bounded Legendrian curves.
Curvature contraction of axially symmetric hypersurfaces in the sphere
12:10 Fri 4 Aug, 2017 :: Engineering Sth S111 :: James McCoy :: University of Wollongong

We show that convex surfaces in an ambient three-sphere contract to round points in finite time under fully nonlinear, degree one homogeneous curvature flows, with no concavity condition on the speed. The result extends to convex axially symmetric hypersurfaces of S^{n+1}. Using a different pinching function we also obtain the analogous results for contraction by Gauss curvature.
Conway's Rational Tangle
12:10 Tue 15 Aug, 2017 :: Inkgarni Wardli 5.57 :: Dr Hang Wang :: School of Mathematical Sciences

Many researches in mathematics essentially feature some classification problems. In this context, invariants are created in order to associate algebraic quantities, such as numbers and groups, to elements of interested classes of geometric objects, such as surfaces. A key property of an invariant is that it does not change under ``allowable moves'' which can be specified in various geometric contexts. We demonstrate these lines of ideas by rational tangles, a notion in knot theory. A tangle is analogous to a link except that it has free ends. Conway's rational tangles are the simplest tangles that can be ``unwound'' under a finite sequence of two simple moves, and they arise as building blocks for knots. A numerical invariant will be introduced for Conway's rational tangles and it provides the only known example of a complete invariant in knot theory.
Topology as a tool in algebra
15:10 Fri 8 Sep, 2017 :: Ingkarni Wardli B17 :: Dr Zsuzsanna Dancso :: University of Sydney

Topologists often use algebra in order to understand the shape of a space: invariants such as homology and cohomology are basic, and very successful, examples of this principle. Although topology is used as a tool in algebra less often, I will describe a recurring pattern on the border of knot theory and quantum algebra where this is possible. We will explore how the tangled topology of "flying circles in R^3" is deeply related to a famous problem in Lie theory: the Kashiwara-Vergne (KV) problem (first solved in 2006 by Alekseev-Meinrenken). I will explain how this relationship illuminates the intricate algebra of the KV problem.
Measuring the World's Biggest Bubble
13:10 Tue 19 Sep, 2017 :: Napier LG23 :: Prof Matt Roughan :: School of Mathematical Sciences

Recently I had a bit of fun helping Graeme Denton measure his Guinness World Record (GWR) Largest (Indoor) Soap Bubble. It was a lot harder than I initially thought it would be. Soap films are interesting mathematically -- in principle they form minimal surfaces, and have constant curvature. So it should have been fairly easy. But really big bubbles aren't ideal, so measuring the GWR bubble required a mix of maths and pragmatism. It's a good example of mathematical modeling in general, so I thought it was worth a few words. I'll tell you what we did, and how we estimated how big the bubble actually was. Some links:
An action of the Grothendieck-Teichmuller group on stable curves of genus zero
11:10 Fri 22 Sep, 2017 :: Engineering South S111 :: Marcy Robertson :: University of Melbourne

In this talk, we show that the group of homotopy automorphisms of the profinite completion of the framed little 2-discs operad is isomorphic to the (profinite) Grothendieck-Teichmuller group. We deduce that the Grothendieck-Teichmuller group acts nontrivially on an operadic model of the genus zero Teichmuller tower. This talk will be aimed at a general audience and will not assume previous knowledge of the Grothendieck-Teichmuller group or operads. This is joint work with Pedro Boavida and Geoffroy Horel.
Quantum Airy structures and topological recursion
13:10 Wed 14 Mar, 2018 :: Ingkarni Wardli B17 :: Gaetan Borot :: MPI Bonn

Quantum Airy structures are Lie algebras of quadratic differential operators -- their classical limit describes Lagrangian subvarieties in symplectic vector spaces which are tangent to the zero section and cut out by quadratic equations. Their partition function -- which is the function annihilated by the collection of differential operators -- can be computed by the topological recursion. I will explain how to obtain quantum Airy structures from spectral curves, and explain how we can retrieve from them correlation functions of semi-simple cohomological field theories, by exploiting the symmetries. This is based on joint work with Andersen, Chekhov and Orantin.
Computing trisections of 4-manifolds
13:10 Fri 23 Mar, 2018 :: Barr Smith South Polygon Lecture theatre :: Stephen Tillmann :: University of Sydney

Gay and Kirby recently generalised Heegaard splittings of 3-manifolds to trisections of 4-manifolds. A trisection describes a 4–dimensional manifold as a union of three 4–dimensional handlebodies. The complexity of the 4–manifold is captured in a collection of curves on a surface, which guide the gluing of the handelbodies. The minimal genus of such a surface is the trisection genus of the 4-manifold. After defining trisections and giving key examples and applications, I will describe an algorithm to compute trisections of 4–manifolds using arbitrary triangulations as input. This results in the first explicit complexity bounds for the trisection genus of a 4–manifold in terms of the number of pentachora (4–simplices) in a triangulation. This is joint work with Mark Bell, Joel Hass and Hyam Rubinstein. I will also describe joint work with Jonathan Spreer that determines the trisection genus for each of the standard simply connected PL 4-manifolds.
Complexity of 3-Manifolds
15:10 Fri 23 Mar, 2018 :: Horace Lamb 1022 :: A/Prof Stephan Tlllmann :: University of Sydney

In this talk, I will give a general introduction to complexity of 3-manifolds and explain the connections between combinatorics, algebra, geometry, and topology that arise in its study. The complexity of a 3-manifold is the minimum number of tetrahedra in a triangulation of the manifold. It was defined and first studied by Matveev in 1990. The complexity is generally difficult to compute, and various upper and lower bounds have been derived during the last decades using fundamental group, homology or hyperbolic volume. Effective bounds have only been found in joint work with Jaco, Rubinstein and, more recently, Spreer. Our bounds not only allowed us to determine the first infinite classes of minimal triangulations of closed 3-manifolds, but they also lead to a structure theory of minimal triangulations of 3-manifolds.

Publications matching "The parametric h-principle for minimal surfaces in"

Topological chaos in flows on surfaces of arbitrary genus
Finn, Matthew; Thiffeault, J, XXII International Congress of Theoretical and Applied Mechanics, Adelaide 24/08/08
Algebraic deformations of compact kahler surfaces II
Buchdahl, Nicholas, Mathematische Zeitschrift 258 (493–498) 2008
Holomorphic classification of four-dimensional surfaces in C3
Beloshapka, V; Ezhov, Vladimir; Schmalz, G, Izvestiya Mathematics 72 (413–427) 2008
Spectral curves and the mass of hyperbolic monopoles
Norbury, Paul; Romao, Nuno, Communications in Mathematical Physics 270 (295–333) 2007
Drought severity-area-frequency curves for NSW
Osti, Alexander; Wong, Hui; Metcalfe, Andrew; Lambert, Martin, 30th Hydrology and Water Resources Symposium, Launceston, Tasmania 04/12/06
Algebraic deformations of compact Khler surfaces
Buchdahl, Nicholas, Mathematische Zeitschrift 253 (453–459) 2006
Guide expansions for the recursive parametric solution of polynomial dynamical systems
Duff, G; Leipnik, R; Pearce, Charles, The ANZIAM Journal 47 (387–396) 2006
The elliptic curves in gauge theory, string theory, and cohomology
Sati, Hicham, The Journal of High Energy Physics (Print Edition) 3 (0–19) 2006
Lifting surfaces with circular planforms
Tuck, Ernest; Lazauskas, Leo, Journal of Ship Research 49 (274–278) 2005
Updating the parameters of a threshold scheme by minimal broadcast
Barwick, Susan; Jackson, Wen-Ai; Martin, K, IEEE Transactions on Information Theory 51 (620–633) 2005
Predicting the off-site deposition of spray drift from horticultural spraying through porous barriers on soil and plant surfaces.
Mercer, G; Roberts, Anthony John, 22nd Mathematics-In -Industry Study Group, Auckland, New Zealand 24/01/05
Monads and bundles on rational surfaces
Buchdahl, Nicholas, Rocky Mountain Journal of Mathematics 34 (513–540) 2004
Preferred parameterisations on homogeneous curves
Eastwood, Michael; Slovak, J, Commentationes Mathematicae Universitatis Carolinae 45 (597–606) 2004
A non-parametric hidden Markov model for climate state identification
Lambert, Martin; Whiting, Julian; Metcalfe, Andrew, Hydrology and Earth System Sciences 7 (652–667) 2003
Compact Khler surfaces with trivial canonical bundle
Buchdahl, Nicholas, Annals of Global Analysis and Geometry 23 (189–204) 2003
Ruled cubic surfaces in PG(4, q), Baer subplanes of PG(2, q2) and Hermitian curves
Casse, Rey; Quinn, Catherine, Discrete Mathematics 248 (17–25) 2002
Generalising a characterisation of Hermitian curves
Barwick, Susan; Quinn, Catherine, Journal of Geometry 70 (1–7) 2001
A Nakai-Moishezon criterion for non-Khler surfaces
Buchdahl, Nicholas, Annales de L Institut Fourier 50 (1533–1538) 2000
Numerical design tools for thermal replication of optical-quality surfaces
Stokes, Yvonne, Computers & Fluids 29 (401–414) 2000

Advanced search options

You may be able to improve your search results by using the following syntax:

QueryMatches the following
Asymptotic EquationAnything with "Asymptotic" or "Equation".
+Asymptotic +EquationAnything with "Asymptotic" and "Equation".
+Stokes -"Navier-Stokes"Anything containing "Stokes" but not "Navier-Stokes".
Dynam*Anything containing "Dynamic", "Dynamical", "Dynamicist" etc.