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Introduction

Why look at special Lagrangian / coassociative submanifolds?

they are minimal submanifolds

nice moduli space of deformations

the SYZ conjecture: “mirror symmetry is T-duality” nice geometric
picture of mirror symmetry X ,X̃ are dual special Lagrangian fibrations
over the same base

Dualities in M-theory: SYZ-like conjectures involving coassociative
fibrations of G2-manifolds.
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Minimal submanifolds

Let (X , g) be a Riemannian manifold

Definition
A compact oriented submanifold S → X is called a minimal submanifold if
it is a stationary point for the volume functional

vol(S) =

�

S
dvolS
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A classical result

Theorem
Let X be Kähler. Any compact complex submanifold of X is minimal

Ex: A non-singular algebraic variety in CPn is a minimal submanifold

Harvey and Lawson found a generalization of this result using calibrations
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Calibrations

Let (X , g) be a Riemannian manifold.

Definition
A calibration φ on X is a p-form such that

φ is closed: dφ = 0,

for any x ∈ X and oriented p-dimensional subspace V ⊆ TxX , we
have φ|V = λdvol , where λ ≤ 1 and dvol is the volume form on V

with respect to g .

Subspaces such that λ = 1 are called calibrated subspaces.
An oriented p-submanifold S ⊆ X is a calibrated submanifold of X with
respect to φ if the tangent spaces of S are calibrated subspaces:
φ|S = dvolS .
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Calibrations

Theorem
Let S be a compact calibrated submanifold. S has minimal volume

amongst all submanifolds representing the same homology class.

Proof.

Let S
�
be a compact submanifold with [S ] = [S �]. Then since φ is closed

vol(S) =

�

S
φ =

�

S �
φ ≤

�

S �
dvolS � = vol(S �).
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Calibrations

Why is this useful?

The minimal submanifold equation f : S → X is second order in f

The calibrated submanifold condition f
∗φ = dvolS is first order in f .
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Some examples

(X , ω) Kähler, then ωk is a calibration =⇒ complex submanifolds

Calabi-Yau: special Lagrangians (soon)

G2-manifolds: associative and coassociative submanifolds (next time:
coassociative)

Spin(7)-manifolds: Cayley submanifolds

Special Lagrangian and coassociative have a nice deformation theory
(unobstructed). Associative and Cayley do not (obstructed). (See:
McLean)
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Calabi-Yau manifolds

Definition

A Calabi-Yau manifold is a Riemannian manifold with holonomy in SU(n).

On a Kähler manifold X with trivial canonical bundle (K =
�n,0

T
∗
X ),

every Kähler class admits a unique Calabi-Yau metric.
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SU(n)-structures

Reduction of structure to SU(n) can be defined using only

A non-degenerate 2-form ω

A complex n-form Ω = Ω1 + iΩ2 which is locally decomposable:
Ω = θ1 ∧ · · · ∧ θn

such that:

ω ∧ Ω = 0,

Ω ∧ Ω = ωn or iωn,

ω(I , ) is positive with respect to the almost complex structure
determined by Ω.
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Integrability

The SU(n)-structure is torsion free if and only if dω = 0, dΩ = 0.

In this case there is a torsion free SU(n)-connection ∇ such that ∇ω = 0,
∇Ω = 0.

Precisely the requirement for a Calabi-Yau manifold.
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Special Lagrangians

The form Ω1 = Re(Ω) is a calibration.

Definition
A submanifold L → X of a Calabi-Yau manifold is special Lagrangian if it
is a calibrated submanifold with respect to Ω1.

Note: can replace Ω by e
−iθΩ and Ω1 by cos(θ)Ω1 + sin(θ)Ω2.

Equivalent condition: ω|L = 0, Ω2|L = 0 (hence the “Lagrangian” part of
the name)
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Special Lagrangians

what makes special Lagrangians so special?

Lagrangians are squishy - it is possible to deform a Lagrangian in many
ways

special Lagrangians are much more rigid - we will see that compact ones
have a finite dimensional moduli space of deformations of dimension b

1.

special Lagrangian tori exist in b
1(T n) = n dimensional families - just the

right number for a torus fibration

David Baraglia (ANU) Moduli of special Lagrangian and coassociative submanifolds July 18, 2010 17 / 31



Special Lagrangians

what makes special Lagrangians so special?

Lagrangians are squishy - it is possible to deform a Lagrangian in many
ways

special Lagrangians are much more rigid - we will see that compact ones
have a finite dimensional moduli space of deformations of dimension b

1.

special Lagrangian tori exist in b
1(T n) = n dimensional families - just the

right number for a torus fibration

David Baraglia (ANU) Moduli of special Lagrangian and coassociative submanifolds July 18, 2010 17 / 31



Special Lagrangians

what makes special Lagrangians so special?

Lagrangians are squishy - it is possible to deform a Lagrangian in many
ways

special Lagrangians are much more rigid - we will see that compact ones
have a finite dimensional moduli space of deformations of dimension b

1.

special Lagrangian tori exist in b
1(T n) = n dimensional families - just the

right number for a torus fibration

David Baraglia (ANU) Moduli of special Lagrangian and coassociative submanifolds July 18, 2010 17 / 31



Special Lagrangians

what makes special Lagrangians so special?

Lagrangians are squishy - it is possible to deform a Lagrangian in many
ways

special Lagrangians are much more rigid - we will see that compact ones
have a finite dimensional moduli space of deformations of dimension b

1.

special Lagrangian tori exist in b
1(T n) = n dimensional families - just the

right number for a torus fibration

David Baraglia (ANU) Moduli of special Lagrangian and coassociative submanifolds July 18, 2010 17 / 31



Contents

1 Introduction

2 Calibrations

3 Calabi-Yau manifolds

4 Special Lagrangians

5 Deformations of compact special Lagrangians

6 Special Lagrangian fibrations

David Baraglia (ANU) Moduli of special Lagrangian and coassociative submanifolds July 18, 2010 18 / 31



First order deformations

Let L → X be a compact special Lagrangian

then NL � T
∗
L:

X �→ iXω|L

given a normal vector field X , we can deform L in the direction X

Theorem (McLean)

A normal vector field X represents a first order deformation through

special Lagrangian submanifolds iff

iXω|L is a harmonic 1-form on L.
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Moduli space of deformations

No obstructions to extending a first order deformation to an actual family

We get a smooth moduli space M of deformations of L through special
Lagrangians

the tangent space TLM of M at L is naturally isomorphic to H1(L, R)

dim(M) = b
1(L)

notation: for X ∈ TLM let θX = iXω|L be the corresponding harmonic
form
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Moduli space metric

M has a natural metric:

Let X ,Y ∈ TLM

define gM on M:

gM(X ,Y ) =

�

L
θX ∧ �θY

called the L
2 moduli space metric
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Local moduli space structure

For small enough deformations we can canonically identify cohomology of
each submanifold with a fixed L ∈M

get a (locally defined) H
1(L, R)-valued 1-form α:

TM� X �→ α(X ) = [θX ] ∈ H
1(L, R)

Theorem

α is closed, so (locally) we have a function

u : M→ H
1(L, R)

such that α = du:

u∗(X ) = α(X ) = [θX ]

These are natural local affine coordinates u1, . . . , ub1(L) on M
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Local moduli space structure

So far we have used ω but not Ω2. Repeat for Ω2:

Have an isomorphism: NL →
�n−1

T
∗
L: X �→ iXΩ2

X is a first order deformation if and only if iXΩ2 is a harmonic
(n − 1)-form. In fact iXΩ = �θX .

By same reasoning we get local affine coordinates v : M→ H
n−1(L, R).
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Local moduli space structure

We have two sets of affine coordinates:
u : M→ H

1(L, R) and v : M→ H
n−1(L, R).

Combine them: F = (u, v) : M→ H
1(L, R)⊕ H

n−1(L, R).

Why do this?

The space V = H
1(L, R)⊕ H

n−1(L, R) has an obvious (n, n)-metric � , �
and symplectic structure w :

�(a, b), (c , d)� =
1

2

�

L
a ∧ d + b ∧ c

w((a, b), (c , d)) =

�

L
a ∧ d − b ∧ c .
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Local moduli space structure

Theorem (Hitchin)

F : M→ H
1(L, R)⊕ H

n−1(L, R) sends M to a Lagrangian submanifold.

Moreover the natural L
2

metric on M is the induced metric.

Let u1, . . . , um be coords for H
1(L, R), (m = b

1(L)).
Let vi , . . . , vm be dual coordinates for H

n−1(L, R).
The (n, n) metric has form

�
i duidvi .

M is a Lagrangian submanifold, so locally there is a function φ such that
vi = ∂φ

∂ui
.

Therefore the L
2-metric looks like

gM =
�

i ,j

∂2φ

∂ui∂uj
duiduj
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Local moduli space structure

M is a Lagrangian, but is it in some sense “special”?

Let W1 = du1 ∧ du2 ∧ · · · ∧ dum

W2 = dv1 ∧ · · · ∧ dvm.

Then some linear combination c1W1 + c2W2 vanishes on M if and only if
φ obeys the Monge-Ampère equation:

det(Hess(φ)) = const

However this does not hold for all moduli spaces.
More on this soon.
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Special Lagrangian fibrations

Suppose we have a fibration X → B by compact special Lagrangians.

The (non-singular) fibres must be tori (Liouville’s theorem on integrable
systems).

b
1(T n) = n, so all possible deformations are fibres of X → B. Neglecting

singularities, B identifies with the moduli of deformations: B �M

The corresponding harmonic 1-forms must be pointwise linearly
independent (since the normal vector fields are).

Conversely:

Theorem (Bryant)

Let g be a metric on T
n

such that every non-zero harmonic 1-form is

non-vanishing. Then (T n, g) appears as a fibre in a special Lagrangian

fibration. This is a local result: the total space need not be compact or

complete.
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Monge-Ampère revisited

Let M be the moduli spaces of deformations of L. Consider the enlarged
moduli space

M
c = M× H

1(L, R/Z)

special Lagrangians with flat U(1)-connections on them.

Then TL,∇M
c � H

1(L, R)⊕ H
1(L, R). Put the obvious almost complex

structure and metric.

Theorem
Mc

is Kähler. The fibres of Mc →M are Lagrangian.
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Monge-Ampère revisited

If u1, . . . , um are the local affine coords on M and x1, . . . , xm

corresponding coords on the fibres, let

Ω̃ = d(u1 + ix1) ∧ · · · ∧ d(un + ixn)

Theorem

Ω̃ together with the Kähler structure on Mc
defines a Calabi-Yau

structure if and only if φ obeys the Monge-Ampère equation.

Solutions of the Monge-Ampère equation define a special Lagrangian
fibration with flat fibres (semi-flat). Converse also true (up to
monodromy).

If we start with X a semi-flat fibration then Mc deserves to be called the
mirror of X
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THANK YOU
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