Recent Publications of IGA members


Refereed publications (2023) :

  1. A. Fino, T. Leistner, A. Taghavi-Chabert, Almost Robinson geometries, Letters in Mathematical Physics 113, 56 (2023) 104pp
  2. A. Fino, T. Leistner, A. Taghavi-Chabert, Optical geometries, Annali della Scuola Normale Superiore di Pisa, 46 pp, [arxiv:2009.10012]
  3. T. Leistner and T. Munn, Completeness of certain compact Lorentzian locally s\ ymmetric spaces, Comptes Rendus - Serie Mathematique, 6 pages, [arXiv:2211.02380]
  4. I. Anderson, T. Leistner, A. Lischewski, and P. Nurowski, Conformal Walker metrics and linear Fefferman-Graham equations, Communications in Analysis and Geometry, 37 pages, [arXiv:1609.02371],
  5. D. Alekseevsky, V. Cortés and T. Leistner, Geometry and holonomy of indecomposable cones, Revista Matemática Iberoamericana VOL. 39, NO. 3, (2023) 1105–1141.[arXiv:1902.02493]
  6. D. Alekseevsky, V. Cortés and T. Leistner, Semi-Riemannian cones with paralle\ l null planes, evelopments in Lorentzian Geometry. GELOMA 2021, Springer Proceedings in Mathematics and Statistics , vol. 389, pp1-11. arxiv:1902.02493.
  7. S. Barwick, Wen-Ai Jackson, P. Wild, A characterisation of 𝔽q-conics of PG(2,q3). Discrete Math. 346 (2023), no. 4, Paper No. 113282.
  8. S. Barwick, A. Hui, Wen-Ai Jackson, A geometric description of the Figueroa plane. Des. Codes Cryptogr. 91 (2023), no. 5, 1581–1593.
  9. D. Baraglia, Non-trivial smooth families of K3 surfaces, Math. Ann. (published online) [2102.06354].
  10. D. Baraglia, P. Hekmati, Equivariant Seiberg-Witten-Floer cohomology, Algebr. Geom. Topol. (to appear) [2108.06855].
  11. D. Baraglia, Tautological classes of definite 4-manifolds, Geom. Topol. (to appear).
  12. D. Baraglia, Hokuto Konno, A note on the Nielsen realization problem for K3 \ surfaces, Proc. Amer. Math. Soc. (to appear)
  13. D. Roberts, "Substructural fixed-point theorems and the diagonal argument: theme and variations", Compositionality Volume 5, Issue 8 (2023) 16pp

Refereed publications (2022) :

  1. Fei Han and V. Mathai, T-duality, vertical holonomy line bundles and loop Hori formulae, Reviews in Mathematical Physics 34 no.7 (2022) 2250019, 25pp [2202.09908]
  2. Fei Han and V. Mathai, Witten Genus and Elliptic genera for proper actions Communications in Mathematical Physics 389, (2022) 1215-1239
  3. H. Guo, and V. Mathai, Higher localised A-hat genera for proper actions and applications Journal of Functional Analysis 283 no. 12 (2022) 109695 59pp
  4. H. Guo, and V. Mathai, An equivariant Poincare duality for proper cocompact actions by matrix groups, Journal of Noncommutative Geometry 16 no. 4 (2022) 1397-1410
  5. Franc Forstneric and Finnur Larusson, Holomorphic Legendrian curves in projectivised cotangent bundles, Indiana University Mathematics Journal, 71 (2022), no. 1, 93-124. .
  6. L. Arosio, and F. Lárusson, Dynamics of generic endomorphisms of Oka-Stein manifolds. Math. Z. 300 (2022), no. 3, 2467-2484.
  7. F. Kutzschebauch, F. Lárusson, and G. W. Schwarz, Equivariant Oka theory: Survey of recent progress, Complex Analysis and its Synergies, vol. 8 no 3 (2022) article 15.
  8. M. Eastwood and T. Moy, Spinors in five-dimensional contact geometry. SIGMA, 18 (2022), Paper No. 031.
  9. M. Eastwood, L. Zalabová; Special metrics and scales in parabolic geometry. Ann. Global Anal. Geom. 62 (2022), no. 3, 635-659
  10. D. Baraglia; P. Hekmati, A foliated Hitchin-Kobayashi correspondence. Adv. Math. 408 (2022), Paper No. 108661.
  11. D. Baraglia and H. Konno, On the Bauer-Furuta and Seiberg-Witten invariants of families of 4-manifolds, J. Topol. Vol. 15 no. 2, 505-586 (2022).
  12. D. Roberts, Many finite-dimensional lifting bundle gerbes are torsion, Bulletin of the AustMS 105 , no. 2, (2022) 323 - 338 [2104.0793],
  13. L. MacDonald, A characteristic map for the holonomy groupoid of a foliation, Mathematische Zeitschrift, 300, 1093–1115 (2022)
  14. O. Milatovic and H. Saratchandran, Essential self-adjointness of perturbed \ biharmonic operators via conformally transformed metrics, Potential Analysis. 56, (2022) 623-647
  15. O. Milatovic and H. Saratchandran, Generalized Ornstein-Uhlenbeck semigroups in weighted Lp-spaces on Riemannian manifolds. J. Funct. Anal. 283 (2022), no. 8, Paper No. 109623, 62 pp.
  16. N. Buchdahl, G. Schumacher, An analytic application of Geometric Invariant Theory II: Coarse moduli spaces. J. Geom. Phys. 175 (2022), Paper No. 104467.
  17. N. Buchdahl, G. Schumacher, Polystable bundles and representations of their automorphisms. Complex Manifolds 9 (2022), no. 1, 78-113.

Refereed publications (2021) :

  1. H. Guo, P. Hochs and V. Mathai, Coarse geometry and Callias quantisation, Transactions of the American Mathematical Society, 374 (2021), no. 4, 2479–2520.
  2. Jaklyn Crilly and V. Mathai, Exotic Courant algebroids and T-duality, Journal of Geometry and Physics, 163 (2021) 104155 12 pp.
  3. L. MacDonald, V. Mathai, H. Saratchandran, On the Chern character in Higher Twisted K-theory and spherical T-duality, Communications in Mathematical Physics 385 (2021) 331-368. [2007.02507]
  4. A. Linshaw and V. Mathai, T-duality and the exotic chiral de Rham complex, Communications in Mathematical Physics, 385 (2021) 1133-1161. [2008.00632]
  5. Chi-Kwong Fok and V. Mathai, The ring structure of twisted equivariant KK-theory for noncompact Lie groups, Communications in Mathematical Physics, 385 (2021) 633-666. [1903.05298]
  6. V. Mathai and G. Wilkin, Fractional Quantum Numbers, Complex Orbifolds and Noncommutative Geometry, Journal of Physics A: Mathematical and Theoretical Special issue, Noncommutative Geometry in Physics, 54 (2021) 314001, 18pp
  7. H. Guo, P. Hochs and V. Mathai, Positive scalar curvature and an equivariant Callias-type index theorem for proper actions, Annals of K-theory, 6 no.2 (2021) 319–356. [2001.07336]
  8. H. Guo, P. Hochs and V. Mathai, Equivariant Callias index theory via coarse geometry, Annales de l’institut Fourier, 71 (2021) no. 6, 2387-2430. [1902.07391]
  9. Fei Han and V. Mathai, T-Duality, Jacobi Forms and Witten Gerbe Modules, 25 no. 5 (2021) 1235-1266 [2001.00322]
  10. Hao Guo, Index of Equivariant Callias-Type Operators and Invariant Metrics of Positive Scalar Curvature, J. Geom. Anal. 31, (2021) 1-34. [1803.05558]
  11. J. Mickelsson, M.K. Murray, Non-associative magnetic translations from parallel transport in projective Hilbert bundles. J. Geom. Phys. 163 (2021), 104152, 7 pp
  12. M. K. Murray and P. Norbury, JNR Monopoles, Quarterly Journal of Mathematics 72, Issue 1-2, (2021) 387–405.
  13. D. Baraglia, Constraints on families of smooth 4-manifolds from Bauer-Furuta invariants, Algebr. Geom. Topol. 21 (2021) 317-349.
  14. Guanheng Chen, On cobordism maps on periodic Floer homology, Algebr. Geom. Topol. 21 (2021) no. 1, 1-103.
  15. A. Alarcon, F. Forstneric, and F. Larusson. Holomorphic Legendrian curves in CP3 and superminimal surfaces in S4. Geometry and Topology. 25 (2021), no. 7, 3507-3553.
  16. Frank Kutzschebauch, Finnur Larusson, and Gerald W. Schwarz Gromov's Oka principle for equivariant maps, Journal of Geometric Analysis, 31 (2021), no. 6, 6102–6127..
  17. T. Leistner, Semi-Riemannian cones, Geometry, Lie Theory and Applications: The Abel Symposium 2019, Springer 2022, https://link.springer.com/book/9783030812959
  18. K. Francis-Staite, T. Leistner, Conformal properties of indefinite bi-invariant metrics, Transformation Groups, 26, (2021) 859-892 [1901.04682]
  19. S.G. Barwick; Hui, Alice M. W.; Jackson, Wen-Ai; Schillewaert, Jeroen; Characterising the secant lines of Q(4,q),q even. J. Combin. Theory Ser. A 182 (2021), 105476.
  20. S.G. Barwick, Jackson, Wen-Ai; Wild, Peter; The Bose representation of PG(2,q3) in PG(8,q). Australas. J. Combin. 79 (2021), 31–54.
  21. H. Saratchandran, Essential self-adjointness of perturbed quadharmonic operators on Riemannian manifolds with an application to the separation problem, Math. Nachr. 294 no. 5 (2021) 997-1044..
  22. D. Roberts and A. Schmeding, Extending Whitney's extension theorem: nonlinear function spaces, Annales de l'Institut Fourier, 71 (2021) no. 3, 1241-1286 [1801.04126]
  23. B. Nagy and D.M. Roberts (Re)constructing code loops, Am. Math. Mon., 128 Issue 2 (2021) 151–161, arXiv:1903.02748
  24. D. Roberts, The elementary construction of formal anafunctors, Categories and General Algebraic Structures 15 no. 1 (2021) 183-229
  25. N. Buchdahl, G. Schumacher, An analytic application of Geometric Invariant Theory, J. Geom. Phys. 165 (2021), 104237
  26. B. McMillan , Geometry and conservation laws for a class of second-order parabolic equations II: Conservation Laws, SIGMA, 17 (2021), No. 047, 24 pp.
  27. L. MacDonald, The Holonomy Groupoids of Singularly Foliated Bundles, SIGMA 17 (2021), 043, 34 pp.
  28. L. MacDonald, Hierarchies of holonomy groupoids for foliated bundles. Ann. Global Anal. Geom. 60 (2021), no. 3, 609-646.

Refereed publications (2020) :

  1. Fei Han and V. Mathai, Exotic Twisted Equivariant K-Theory, J. Geom. Phys. 158(2020) 103930 14pp [1712.06267]
  2. M. Hallam and V. Mathai, Positive scalar curvature metrics via end-periodic manifolds, Ann. K-theory 5 no. 3 (2020) 639-676. [1706.09354]
  3. V. Mathai and J. Rosenberg, The Riemann-Roch theorem on higher dimensional complex noncommutative tori, J. Geom. Phys. 147 (2020) 103534, 9 pp, [1907.10200]
  4. M. T. Benameur and V. Mathai, Proof of the magnetic gap-labelling conjecture for principal solenoidal tori, J. Funct. Anal. 278 (2020) 108323, 8 pp, [1806.06302]
  5. V. Mathai, W. Zhang, F. Han, G. Yu (Editors), Index Theory, Duality and Related Fields, Special Issue of J. Geom. Phys. (2020)
  6. P. Hochs, Hang Wang, An equivariant orbifold index for proper actions J. Geom. Phys. 154 (2020) 103710, 11 pp.
  7. P. Hochs, Y. Song and S. Yu, A geometric realisation of tempered representations restricted to maximal compact subgroups, Math. Ann., 378, (2020) 97–152 ArXiv:1705.0208
  8. K. E. Becker, M. K. Murray, D. Stevenson, The Weyl map and bundle gerbes, J. Geom. Phys. 149 (2020) 103572, 19 pp.
  9. P. Hekmati, M. Murray, R. Szabo, R. Vozzo, Sign choices for orientifolds, Commun. Math. Phys. 378, (2020) 1843–1873
  10. D. Calderbank, M. Eastwood, V. Matveev, K. Neusser, C-projective geometry, Mem. Amer. Math. Soc., vol 267, no. 1299, (2020) 137pp [1512.04516]
  11. M. Eastwood, P. Nurowski, Aerodynamics of Flying Saucers. Comm. Math. Phys. 375 (2020), no. 3, 2367-2387.
  12. M. Eastwood, P. Nurowski, Aerobatics of Flying Saucers. Comm. Math. Phys. 375 (2020), no. 3, 2335-2365.
  13. L. Arosio and F. Larusson, Generic aspects of holomophic dynamics on highly flexible complex manifolds, Annali di Matematica Pura ed Applicata, 199, (2020) 1697-1711
  14. Differential Geometry in the Large, EDITORS:Owen Dearricott, Wilderich Tuschmann, Yuri Nikolayevsky, Thomas Leistner, Diarmuid Crowley. London Mathematical Society Lecture Note Series.
  15. I.M. Anderson, T. Leistner and P. Nurowski, Explicit ambient metrics and holonomy, J. Diff. Geom. 114, No. 2 (2020), 193-242. [1501.00852]
  16. S.G. Barwick, Jackson, Wen-Ai Sets of class [q+1,2q+1,3q+1]3 in PG(4,q). Discrete Math. 343 (2020), no. 9, 111993, 8 pp.
  17. S. G. Barwick, W-A. Jackson, A characterisation of Baer subplanes. J. Geom. 111 (2020), paper no. 2, 25 pp.
  18. S. G. Barwick, A. Hui, W-A. Jackson, Characterising elliptic solids of Q(4,q), q even. Discrete Math. 343 (2020), no. 6, 111857.
  19. S. G. Barwick, A. Hui, W-A. Jackson, J. Schillewaert, Characterising hyperbolic hyperplanes of a non-singular quadric in PG(4,q). Des. Codes Cryptogr. 88 (2020), no. 1, 33-39.
  20. S. G. Barwick, W-A. Jackson, P. Wild, 2-Special normal rational curves in PG(4,q). J. Geom. 111 (2020), no. 1, Paper No. 3, 12 pp.
  21. D. Baraglia and H. Konno, A gluing formula for families Seiberg-Witten invariants, Geom. Top. 24 (2020) 1381-1456..
  22. G.C. Thiang, Edge-following topological states, J. Geom. Phys. 156 (2020) 103796 [arXiv:1908.09559]
  23. M. Ludewig, G.C. Thiang, Good Wannier bases in Hilbert modules associated to topological insulators, J. Math. Phys. 61 (2020), no. 6, 061902, 22 pp. [arXiv:2001.08339]
  24. M. Ludewig, S. Roos, The Chiral Anomaly of the Free Fermion in Functorial Field Theory. Ann. Henri Poincare 21, (2020) 1191-1233.
  25. L. Macdonald, Equivariant KK-theory for non-Hausdorff groupoids, J. Geom. Phys. 154 (2020) 103709
  26. L. Macdonald and A. Rennie, The Godbillon-Vey invariant and equivariant KK-theory. Ann. K-theory 5 (2020), No. 2, 249-294.
  27. D. M. Roberts Topological sectors for heterotic M5-brane charges under Hypothesis H, J. High Energ. Phys. (2020) article no. 52, 17pp arXiv:2003.09832. ECMS publicity
  28. N. Buchdahl, G. Schumacher, L2-cohomology for affine spaces and an application to monads. Rocky Mountain Journal of Mathematics, 50(5),(2020) 1599-1616.
  29. B. McMillan, Geometry and conservation laws for a class of second-order parabolic equations I: Geometry, J. Geom. Phys. 157 (2020), 103824, 29pp
  30. B. Moore, A proof of the Landsberg-Schaar relation by finite methods. Ramanujan J. 53 (2020), no. 3, 653–665.

Refereed publications (2019) :

  1. Fei Han and V. Mathai, Projective Elliptic genera and Elliptic Pseudodifferential genera, Adv. Math. 358, (2019), 106860 25 pp [1903.07035]
  2. V. Mathai and G. Wilkin, Fractional quantum numbers via complex orbifolds, Lett. Math. Phys. 109, no. 11 (2019), 2473-2484 [1811.11748]
  3. Hao Guo, V. Mathai and Hang Wang, Positive scalar curvature and Poincaré duality for proper actions, J. Noncommut. Geom., 13 no.4 (2019) 1381-1433. [1609.01404]
  4. V. Mathai and G. C. Thiang, Topological phases on the hyperbolic plane: fractional bulk-boundary correspondence, Adv. Theor. Math. Phys. 23 no. 3 (2019) 803-840, [1712.02952]
  5. G. Landi, V. Mathai, N. Higson, G. Yu (Editors), NCG 2017: Connes' 70th birthday celebration, Special Issue of J. Geom. Phys. (2019).
  6. P. Hochs, Y. Song and S. Yu, A geometric formula for multiplicities of K-types of tempered representations, Trans. Amer. Math. Soc, 372(12) (2019), 8553-8586. ArXiv:1805.02297.
  7. P. Hochs and A. Roberts, Normal forms and invariant manifolds for nonlinear, non-autonomous PDEs, viewed as ODEs in infinite dimensions, J. Differential Equations, 267(12) (2019), 7263-7312.
  8. P. Hochs and H. Wang, Orbital integrals and K-theory classes, Ann. K-theory, 4(2) (2019), 185-209, ArXiv:1803.07208.
  9. P. Hekmati, M. K. Murray, R. J. Szabo and R. F. Vozzo, Real bundle gerbes, orientifolds and twisted KR-homology Adv. Theor. Math. Phys. 23 no. 8 (2019) 2093-2159.
  10. F. Larusson and Tuyen Truong, Approximation and interpolation of regular maps from affine varieties to algebraic manifolds, Math. Scand. 125 (2019), no. 2, 199-209.
  11. L. Arosio and F. Larusson, Chaotic holomorphic automorphisms of Stein manifolds with the volume density property, J. Geom. Anal. no.2 (2019) 1744-1762.
  12. F. Forstneric and F. Larusson, The parametric h-principle for minimal surfaces in R^n and null curves in C^n, Comm. Anal. Geom. 27 no. 1 (2019) 1-45.
  13. M. Eastwood, and J. Slovak, Conformally Fedosov manifolds. Adv. Math. 349 (2019), 839-868.
  14. A. Gover and T. Leistner, Invariant prolongation of the Killing tensor equation, Ann. Mat. Pura Appl., 198, no.1 (2019) 307-334. [1802.05866]
  15. T. Leistner and A. Lischewski, Hyperbolic evolution equations, Lorentzian holonomy, and Riemannian generalised Killing spinors, J. Geom. Anal. 29, no. 1, (2019) pp 33-82 [1702.01951]
  16. Oliver Baues Wolfgang Globke Abdelghani Zeghib, Isometry Lie algebras of indefinite homogeneous spaces of finite volume, Proc. L.M.S. 119 no. 4 (2019) 1115 - 1148..
  17. D. Burde, W. Globke, A. Minchenko, Etale representations for reductive algebraic groups with factors Sp(n) or SO(n), Transformation Groups 24 no. 3 (2019) 769 - 780. [1706.08735]
  18. S. G. Barwick, Ruled quintic surfaces in PG(6,q), Innovations in Incidence Geom. 17 (2019), No. 1, 25-41
  19. S. G. Barwick and Wen-Ai Jackson, The exterior splash in PG(6,q): transversals, Innovations in Incidence Geom. 17 (2019), No. 1, 1-24
  20. D. Baraglia and Z. Huang, Special Kahler geometry of the Hitchin system and topological recursion, Adv. Theor. Math. Phys. 23 no. 8 (2019) 1981-2024.
  21. D. Baraglia, Obstructions to smooth group actions on 4-manifolds from families Seiberg-Witten theory, Adv. Math. 354, (2019) 106730
  22. D. Baraglia and L. Schaposnik, Cayley and Langlands type correspondences for orthogonal Higgs bundles, Trans. Amer. Math. Soc. 371 no. 10, (2019) 7451-7492.
  23. D. Baraglia, M. Kamgarpour, R. Varma, Complete integrability of the parahoric Hitchin system, Int. Math. Res. Not. 2019, no. 21, (2019), Pages 6499-6528,
  24. K. Gomi and G.C. Thiang, Crystallographic bulk-edge correspondence: glide reflections and twisted mod 2 indices, Lett. Math. Phys. 109, no. 4 (2019) 857-904.. Free access [1804.03945]
  25. K. Gomi, G.C. Thiang, Crystallographic T-duality, J. Geom. Phys. 139 (2019), 50-77. Free access
  26. K. Yamamoto, G. C. Thiang, P. Pirro, K-W. Kim, K. Everschor-Sitte, E. Saitoh, Topological characterization of classical waves: The topological origin of magnetostatic surface spin waves, Phys. Rev. Lett. 122, 217201 (2019).
  27. Alex Chi-Kwong Fok, Equivariant formality in K-theory, New York J. Math. 25 (2019) 315-327. [1704.04796]
  28. Johnny Lim, Analytic Pontryagin duality, J. Geom. Phys. 145 (2019) 103483
  29. M. Ludewig, Strong short-time asymptotics and convolution approximation of the heat kernel. Ann. Global Anal. Geom. 55 no. 2 (2019) 371-394.

Refereed publications (2018) :

  1. M-T. Benameur, V. Mathai, Gap-labelling conjecture with non-zero magnetic field, Adv. Math. 325, (2018) 116-164, [1508.01064]
  2. V. Mathai, G. Thiang, P. Hekmati, H. Bursztyn, P. Bouwknegt, D. Baraglia, (Editors) String geometries, Dualities and Topological Matter, Special Issue of J. Geom. Phys., 132 (2018) 306 pp.
  3. V. Mathai and J. Rosenberg, Group dualities, T-dualities, and twisted K-theory, J. Lond. Math. Soc., 97, no. 1 (2018) 1-23, Free Access [1603.00969]
    JLMS certificate
  4. A. Linshaw and V. Mathai, T-duality of singular spacetime compactifications in an H-flux, J. Geom. Phys., 129, no. 7 (2018) 269-278, Free Access [1710.09927]
  5. K. Hannabuss, V. Mathai, G. C. Thiang, T-duality simplifies bulk-boundary correspondence: the noncommutative case, Lett. Math. Phys., 108, no. 5 (2018) 1163-1201, Free access [1603.00116]
  6. Fei Han and V. Mathai, T-duality in an H-flux: exchange of momentum and winding, Commun. Math. Phys., 363, no. 1 (2018) 333-350. [1710.07274]
  7. P.Bouwknegt, J.Evslin and V. Mathai, Spherical T-duality and the spherical Fourier-Mukai transform, J. Geom. Phys., 133 (2018), 303-314, [1502.04444]
  8. P. Hochs and H. Wang, Shelstad's character identity from the point of view of index theory, Bull. London Math. Soc., 50,no. 5 (2018) 759-771, [1711.00992].
  9. P. Hochs and H. Wang, A fixed point theorem on noncompact manifolds, Ann. K-theory, 3 no. 2 (2018), 235-286 [1512.07812]
  10. P. Hochs and Y. Song, An equivariant index for proper actions II: properties and applications, J. Noncommut. Geom., 12, no. 1 (2018) 157-193. [1602.02836]
  11. P. Hochs and H. Wang, A fixed point formula and Harish-Chandra's character formula, Proc. London Math. Soc., 116, no. 1, (2018), 1-32, [1701.08479].
  12. P. Hochs, J. Kaad and A. Schemaitat, Algebraic K-theory and a semi-finite Fuglede-Kadison determinant, Ann. K-theory, 3 no. 2 (2018), 193-206 [1608.07395]
  13. F. Kutzschebauch, F. Larusson, and G. W. Schwarz, An equivariant parametric Oka principle for bundles of homogeneous spaces, Math. Ann. 370, no. 1-2, (2018) 819-839
  14. F. Forstneric and F. Larusson, The Oka principle for holomorphic Legendrian curves in C^{2n+1}, Math. Zeit. 288, no. 1-2 (2018) 643-663
  15. T. Leistner and H. Baum, Lorentzian Geometry: Holonomy, Spinors, and Cauchy Problems, in Geometric Flows and the Geometry of Space-time, edited by Vicente Cortes, Klaus Kroncke and Jan Louis, vol 2 in Tutorials, Schools, and Workshops in the Mathematical Sciences, Birkhauser/Springer, 2018, pp 1-76.
  16. M. Eastwood, A geometric proof of the Poincare-Birkhoff-Witt Theorem. Sao Paulo J. Math. Sci. 12 (2018), no. 2, 246-251.
  17. M. Eastwood and A. Gover, Volume growth and puncture repair in conformal geometry. J. Geom. Phys. 127 (2018), 128-132.
  18. M. Eastwood, J. Slovak, Calculus on symplectic manifolds. Arch. Math. (Brno) 54 (2018), no. 5, 265-280.
  19. D. Stevenson, Stability for inner fibrations revisited, Theory Appl. Categ. 33, (2018), No. 19, 523-536 pp.
  20. O. Baues, W. Globke, Rigidity of compact pseudo-Riemannian homogeneous spaces for solvable Lie groups, Int. Math. Res. Not. 2018 no. 10, (2018) 3199-322 [arXiv:1507.02575]
  21. D. Baraglia, M. Kamgarpour, On the image of the parabolic Hitchin map, Q. J. Math. 69, no. 2, (2018) 681-708
  22. D. Baraglia, I. Biswas, L. Schaposnik, Brauer group of moduli of Higgs bundles and connections, pp 387-399, in Geometry and Physics: Volume 2: A Festschrift in Honour of Nigel Hitchin, edited by J.E. Andersen, A. Dancer, O. Garcia-Prada, Oxford University Press (2018).
  23. D. Baraglia, Monodromy of the SL(n) and GL(n) Hitchin fibrations, Math. Ann. 370, no.3-4, (2018) 1681-1716.
  24. D. Baraglia, L. Schaposnik, Monodromy of rank 2 twisted Hitchin systems and real character varieties. Trans. Amer. Math. Soc. 370 (2018), 5491-5534.
  25. R. Ponge, H. Wang, Noncommutative geometry and conformal geometry I. Local index formula and conformal invariants. J. Noncommut. Geom. 12 no.4 (2018) 1573-1639. [1411.3701]
  26. J. Carlson and Alex Chi-Kwong Fok, Equivariant formality of isotropy actions, J. Lond. Math. Soc. 97 no. 3 (2018) 470-494
  27. Alex Chi-Kwong Fok, Equivariant twisted Real K-theory of compact Lie groups, J. Geom. Phys. 124 (2018) 325-349. [1503.00957]
  28. D.M. Roberts, R. Vozzo, Smooth loop stacks of differentiable stacks and gerbes, Cah. Topol. Geom. Differ. Categ. , Volume LIX no. 2 (2018) 95-141 [1602.07973]
  29. N. Buchdahl, A. Teleman, M. Toma, On the Donaldson-Uhlenbeck compactification of instanton moduli spaces on class VII surfaces. Q. J. Math. 69 (2018), no. 4, 1423-1473.

Refereed publications (2017) :

  1. V. Mathai and R.B. Melrose, Geometry of Pseudodifferential algebra bundles and Fourier Integral Operators, Duke Math. J., 166 no.10 (2017) 1859-1922, [1210.0990]
  2. V. Mathai and G. C. Thiang, Differential topology of semimetals, Commun. Math. Phys., 355, no. 2,(2017) 561-602. [1611.08961]
  3. V. Mathai and G. C. Thiang, Global topology of Weyl semimetals and Fermi arcs, J. Phys. A: Math. Theor. (Letter) 50 no. 11 (2017) 11LT01, 11pp Free Access [1607.02242]
    publicity at JPhys+, Highlights Certificate
  4. P. Hochs, V. Mathai, Quantising proper actions on Spinc-manifolds, Asian J. Math., 21 no. 4 (2017) 631-686, [1408.0085]
  5. P. Hochs and Y. Song, An equivariant index for proper actions I, J. Funct. Anal., 272 no. 2, (2017) 661-704 [1512.07575]
  6. P. Hochs and Y. Song, Equivariant indices of Spinc-Dirac operators for proper moment maps, Duke Math. J., 166, no. 6 (2017), 1125-1178, [1503.00801].
  7. P. Hochs and Y. Song, On the Vergne conjecture, Arch. Math., 108, no. 1 (2017) 99-112 [1509.02425].
  8. M. Murray, D. M. Roberts, C. Wockel, Quasi-periodic paths and a string 2-group model from the free loop group, J. Lie Theory, 27 (2017), No. 4, 1151-1177. [arXiv:1702.01514]
  9. M. Murray, D. M. Roberts, D. Stevenson, R. Vozzo, Equivariant bundle gerbes, Adv. Theor. Math. Phys., 21 (2017) no. 4, 921 - 975. [arXiv:1506.07931]
  10. D. Stevenson, Covariant model structures and simplicial localization, North-Western Eur. J. Math., 2017; 3:141-202
  11. A. Alarcon, F. Larusson, Representing de Rham cohomology classes on an open Riemann surface by holomorphic forms, Int. J. Math. 28 no. 9 (2017) 1740004, 12pp.
  12. F. Larusson and T. Truong, Algebraic subellipticity and dominability of blow-ups of affine spaces, Doc. Math. 22 (2017) 151-163.
  13. F. Kutzschebauch, F. Larusson, and G. W. Schwarz, Homotopy principles for equivariant isomorphisms, Trans. Amer. Math. Soc. 369 (2017), no. 10, 7251-7300.
  14. F. Kutzschebauch, F. Larusson, and G. W. Schwarz, Sufficient conditions for holomorphic linearisation, Transform. Groups 22, no. 2 (2017) 475-485.
  15. T. Leistner, P. Nurowski and K. Sagerschnig, New relations between G_2-geometries in dimensions 5 and 7, Int. J. Math. 28, no. 13, 1750094 (2017) 46 pp. [1601.03979]
  16. T. Leistner and A. Lischewski, The ambient obstruction tensor and conformal holonomy, Pac. J. Math. 290 (2017), No. 2, 403-436 [1511.07214]
  17. S. Barwick, W-A. Jackson, Hyper-reguli in PG(5,q). J. Geom. 108 (2017), no. 3, 1083-1084.
  18. S. Barwick, W-A. Jackson, The exterior splash in PG(6, q): carrier conics. Adv. Geom. 17 (2017), no. 4, 407-422.
  19. S. Barwick, W-A. Jackson, T. Penttila, New families of strongly regular graphs. Australas. J. Combin. 67 (2017), 486-507.
  20. W. Globke, Y. Nikolayevsky, Compact pseudo-Riemannian homogeneous Einstein manifolds of low dimension, Differ. Geom. Appl. 54, Part B (2017) 475-489
  21. D. Burde, W. Globke, Etale representations for reductive algebraic groups with one-dimensional center, J. Algebra, 487, 2017, 200-216.
  22. D. Baraglia; P. Hekmati, Arithmetic of singular character varieties and their E-polynomials, Proc. London Math. Soc. 114 no. 2 (2017) 293-332. [1602.06996]
  23. K. F. Chao and H. Wang: Langlands Functorality in K-theory for $C^*$-algebras. I. Base Change, J. Noncommut. Geom. 11 no. 11 (2017) 1001-1036.
  24. Tuyen Trung Truong, Automorphisms of blowups of threefolds being Fano or having Picard number 1, Ergodic Theory Dyn. Syst., 37, no. 7 (2017) 2255-2275 [1501.01515]
  25. Tuyen Trung Truong, Comments on Sampson's approach toward Hodge conjecture on Abelian varieties, Ann. Mat. Pura Appl. 196, No. 2, (2017) 533-538. [1409.0495]
  26. G.C. Thiang, K. Sato, K. Gomi, Fu-Kane-Mele monopoles in semimetals, Nuc. Phys. B, Section B 923C (2017) pp. 107-125. [arXiv:1705.06657]
  27. N. Buchdahl, A. Teleman and M. Toma, A continuity theorem for families of sheaves on complex surfaces. J. Topol. 10 (2017), no. 4, 995-1028.

Refereed publications (2016) :

  1. K. Hannabuss, V. Mathai, G. C. Thiang, T-duality trivializes bulk-boundary correspondence: the parametrised case, Adv. Theor. Math. Phys., 20 no. 5 (2016) 1193-1226, [1510.04785]
  2. V. Mathai, G.C. Thiang, T-duality simplifies bulk-boundary correspondence: some higher dimensional cases, Ann. Henri Poincare, 17 no. 12 (2016) 3399-3424, [1506.04492]
  3. V. Mathai, G.C. Thiang, T-duality simplifies bulk-boundary correspondence, Commun. Math. Phys., 345 no. 2, (2016) 675-701 , [1505.05250]
  4. P. Hochs, V. Mathai, Spin manifolds and proper group actions, Adv. Math., 292 (2016) 1-10, [1411.0781]
  5. P. Hochs, V. Mathai, Formal geometric quantisation for proper actions, J. Homotopy Relat. Struct. 11, no.3, (2016) 409-424, [1403.6542]
  6. P. Hochs and Y. Song, An equivariant index for proper actions III: the invariant and discrete series indices, Differ. Geom. Appl. 49 (2016) 1-22.
  7. M. Dunajski and M.G. Eastwood, Metrisability of three-dimensional path geometries, Eur. Jour. Math, 2, no. 3 (2016) 809-834
  8. M.G. Eastwood and K. Neusser, A canonical connection on sub-Riemannian contact manifolds. Arch. Math. (Brno) 52 (2016), no. 5, 277-289.
  9. R. Larkang and F. Larusson, Extending holomorphic maps from Stein manifolds into affine toric varieties, Proc. Amer. Math. Soc. 144 (2016) 4613-4626. .
  10. W. Globke, T. Leistner, Locally homogeneous pp-waves, J. Geom. Phys., 108 (2016) 83-101
  11. H. Baum, T. Leistner and A. Lischewski, Cauchy problems for Lorentzian manifolds with special holonomy, Differ. Geom. Appl., 45 (2016) 43-66, [arxiv:1411.3059]
  12. T. Leistner and D. Schliebner, Completeness of compact Lorentzian manifolds with Abelian holonomy, Math. Ann. 364, no. 3, (2016) 1469-1503, [1306.0120].
  13. S. Barwick and W. Jackson; Characterising pointsets in PG(4,q) that correspond to conics. Des. Codes Cryptogr. 80 (2016), no. 2, 317-332.
  14. S. Barwick and W. Jackson, Exterior splashes and linear sets of rank 3. Discrete Math. 339 (2016), no. 5, 1613-1623
  15. P. Hekmati, J. Mickelsson, Projective Families of Dirac Operators on a Banach Lie Groupoid, J. Noncommut. Geom., 10, no. 1, (2016) 1-23. [1404.1754]
  16. D. Baraglia; P. Hekmati, Moduli Spaces of Contact Instantons, Adv.Math., 294 (2016) pp. 562-595.
  17. D. Baraglia; Classification of the automorphism and isometry groups of Higgs bundle moduli spaces, Proc. London Math. Soc. 112 no. 3 (2016), no. 5, 827-854. [1411.2228]
  18. D. Baraglia; I. Biswas; L. Schaposnik, Automorphisms of C*-moduli spaces associated to a Riemann surface. SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), 007, 14 pages.
  19. D. Baraglia, L. P. Schaposnik, Real structures on moduli spaces of Higgs bundles, Adv. Theor. Math. Phys. 20 no. 3 (2016) 525-551. [1309.1195]
  20. D. M. Roberts, D. Stevenson, Simplicial principal bundles in parameterized spaces, New York J. Math. 22 (2016) 405-440. [1203.2460]
  21. D. M. Roberts, A bigroupoid's topology (or, Topologising the homotopy bigroupoid of a space). J. Homotopy Relat. Struct. 11, no.4, (2016) 923–942, [1302.7019]
  22. D. M. Roberts, On certain 2-categories admitting localisation by bicategories of fractions, Appl. Categor. Struct., 24 no. 4 (2016) 373-384. [1402.7108]
  23. V. Bardakov, S. Jablan, H. Wang, Monoid and group of pseudo braids. J. Knot Theory Ramifications 25 (2016), no. 9, 1641002, 13 pp.
  24. B.L. Wang and H. Wang, Localized Index and $L^2$-Lefschetz fixed point formula for orbifolds, J. Diff. Geom. , 102 no.2, (2016) 285 - 349. [1307.2088].
  25. R. Ponge, H. Wang, Index map, $\sigma$-connections, and Connes-Chern character in the setting of twisted spectral triples. Kyoto J. of Math. 56, no. 2 (2016), 347-399. [1310.6131]
  26. R. Ponge, H. Wang, Noncommutative geometry and conformal geometry II. Connes-Chern character and the local equivariant index theorem. J. Noncommut. Geom. 10, no. 1, (2016) 303-374. [1411.3703]
  27. Guo Chuan Thiang, On the K-theoretic classification of topological phases of matter, Ann. Henri Poincare 17, no. 4,(2016) 757-794, [1406.7366]
  28. Tuyen Trung Truong, Some dynamical properties of pseudo-automorphisms in dimension 3, Trans. Amer. Math. Soc. 368 (2016), no 1, 727-753.


Refereed publications (2015) :

  1. V. Mathai and Guo Chuan Thiang, T-duality and topological insulators, J. Phys. A: Math. Theor. (Fast Track Communication) 48 (2015) no.42, 42FT02, 10pp, [1503.01206]
    publicity at IOPSCIENCE
  2. M-T. Benameur and V. Mathai, Spectral sections, twisted rho invariants and positive scalar curvature, J. Noncommut. Geom., 9, no. 3, (2015) 821-850, [1309.5746]
  3. A. Linshaw and V. Mathai, Twisted Chiral De Rham Complex, Generalized Geometry, and T-duality, Commun. Math. Phys., 339, No. 2, (2015) 663-697, [1412.0166]
  4. V.Mathai and H.Sati, Higher abelian gauge theory associated to gerbes on noncommutative deformed M5-branes and S-duality, J. Geometry and Physics 92 (2015) 240-251, [1404.2257]
  5. P.Bouwknegt, J.Evslin and V.Mathai, Spherical T-duality, Commun. Math. Phys., 337, No. 2, (2015) 909-954. [1405.5844]
  6. P.Bouwknegt, J.Evslin and V.Mathai, Spherical T-duality II: An infinity of spherical T-duals for non-principal SU(2)-bundles, J. Geometry and Physics, 92 (2015) 46-54, [1409.1296]
  7. F. Han, V. Mathai, Exotic twisted equivariant cohomology of loop spaces, twisted Bismut-Chern character and T-duality, Commun. Math. Phys. 337, No. 1, (2015) 127-150. [1405.1320]
  8. P. Hochs, V. Mathai, Geometric quantization and families of inner products, Adv. Math. 282 (2015) 362-426, [1309.6760]
  9. P. Hochs, Quantisation of presymplectic manifolds, K-theory and group representations, Proc. Amer. Math. Soc. 143 (2015), 2675-2692 [1211.0107]
  10. P. Baird and M.G. Eastwood, On functions with a conjugate, Ann. Inst. Fourier 65 (2015) 277-314.
  11. F. Larusson, Absolute neighbourhood retracts and spaces of holomorphic maps from Stein manifolds to Oka manifolds, Proc. Amer. Math. Soc. 143 (2015) 1159-1167. [1306.4390]
  12. F. Kutzschebauch, F. Larusson, and G.W. Schwarz, An Oka principle for equivariant isomorphisms, J. fur die reine und angewandte Mathematik (Crelle's J.) 706 (2015), 193-214. [1303.4779]
  13. T. Nikolaus, U. Schreiber and D. Stevenson, Principal ∞-Bundles - General Theory, J. Homotopy Relat. Struct. 10, (2015) no. 4, 749-801
  14. T. Nikolaus, U. Schreiber and D. Stevenson, Principal ∞-Bundles - Present ations, J. Homotopy Relat. Struct. 10, (2015) no. 3, 565-622
  15. S. Barwick and Wen-Ai Jackson, An investigation of the tangent splash of a subplane of PG(2,q3). Des. Codes Cryptogr. 76 (2015), no. 3, 451-468.
  16. S. Barwick and Wen-Ai Jackson, A characterization of translation ovals in finite even order planes. Finite Fields Appl. 33 (2015), 37-52. [1305.6673]
  17. S. Barwick and Wen-Ai Jackson, The tangent splash in PG(6,q). Discrete Math. 338 (2015), no. 7, 1178-1190. [1305.6674]
  18. A. Hanysz, Holomorphic flexibility properties of the space of cubic rational maps, J. Geom. Analysis, 25, No. 3, (2015) 1620-1649. [1211.0765]
  19. D. Baraglia, Topological T-duality for torus bundles with monodromy, Rev. Math. Phys. 27, No. 3 (2015), 1550008, 55 pages [1201.1731]
  20. D. Baraglia, Cyclic Higgs bundles and the affine Toda equations, Geometriae Dedicata, 174 (2015), pp 25-42. [1011.6421]
  21. D. Baraglia, P. Hekmati, Transitive Courant Algebroids, String Structures and T-duality, Adv. Theor. Math. Phys. 19 (2015) 613-672. [1308.5159]
  22. D. Baraglia; P. Hekmati, A Fourier-Mukai approach to the K-theory of compact Lie groups. Adv. Math., 269 (2015), 335-345. [1406.3993]
  23. P. Hekmati, M. K. Murray, V. S. Schlegel, R. F. Vozzo, A Geometric Model for Odd Differential K-theory, Diff. Geom. and applications, 40 (2015) 123-158, [1309.2834]
  24. D. M. Roberts, A topological fibrewise fundamental groupoid, Homology, Homotopy and Applications, 17 No. 2 (2015) 37-51 [1411.5779]
  25. D. M. Roberts, The weak choice principle WISC may fail in the category of sets, Studia Logica 103, No. 5, (2015) 1005-1017. [1311.3074].
  26. R. Ponge, H. Wang, Noncommutative geometry and conformal geometry III: Vafa-Witten inequality and Poincare duality. Adv. Math., 272 (2015) 761-819. [1310.6138].
  27. Andrew Hassell and Melissa Tacy, Improvement of eigenfunction estimates on manifolds of nonpositive curvature, Forum Mathematicum. 27, no. 3 (2015) 1435-1451.
  28. Xiaolong Han and Melissa Tacy, Sharp norm estimates of layer potential and operators at high frequency, J. Funct. Anal., 269 (2015), no. 9, 2890-2926. [arXiv:1403.6576]
  29. Guo Chuan Thiang, Topological phases: isomorphism, homotopy and K-theory, Int. J. Geom. Methods Mod. Phys. 12, 1550098 (2015) 14 pp, [1412.4191]
  30. A. Lischewski, Conformal superalgebras via tractor calculus, Classical and Quantum Gravity, 32 no.1 (2015) 015020
  31. A. Lischewski, Supersymmetric gauge theory on a class of cocalibrated G 2 -structures, Classical and Quantum Gravity, 32 no.11 (2015) 115003
  32. A. Lischewski, Reducible conformal holonomy in any metric signature and application to twistor spinors in low dimension, Differential Geometry and its Applications, 40 (2015) Pages 252-268.
  33. A. Lischewski, Charged conformal Killing spinors, Journal of Mathematical Physics, 56, 013510 (2015)

Refereed publications (2014) :

  1. V. Mathai and J. Rosenberg, T-duality for circle bundles via noncommutative geometry, Adv. Theor. Math. Phys., 18, no. 6 (2014) 1437-1462, [1306.4198]
  2. M-T. Benameur, V. Mathai, Index type invariants for twisted signature complexes and homotopy invariance, Math. Proc. Cambridge Philos. Soc., 156 no.3 (2014) 473-503, [1202.0272]
  3. F. Forstneric, F. Larusson, Oka properties of groups of holomorphic and algebraic automorphisms of complex affine space, Mathematical Research Letters 21 (2014) 1047-1067.
  4. F. Forstneric, F. Larusson, Holomorphic flexibility properties of compact complex surfaces, Int. Math. Res. Not. (2014), no. 13, 3714-3734 [1207.4838]
  5. F. Larusson, T. Ritter, Proper holomorphic immersions in homotopy classes of maps from finitely connected planar domains into CxC*, Ind. U. Math. J. 63 (2014), no. 2, 367-383. [1209.4430]
  6. S.G. Barwick and W.-A. Jackson, A Characterisation of Tangent Subplanes of PG(2,q^3). Des. Codes Cryptogr., (2014) 71 Issue 3, 541-545, [1204.4953]
  7. J. Alt, A. J. Di Scala, T. Leistner, Conformal holonomy, symmetric spaces, and skew symmetric torsion, Differential Geom. Appl., 33 (2014), suppl., 4-43. [1208.2191]
  8. H. Baum, K. Larz, T. Leistner, On the full holonomy group of special Lorentzian manifolds, Math. Z., 277 (2014), no. 3-4, 797-828, [1204.5657]
  9. A. Hanysz, Oka properties of some hypersurface complements, Proc. Amer. Math. Soc. 142 (2014), 483-496. [1111.6655]
  10. D. Baraglia, L. P. Schaposnik, Higgs bundles and (A,B,A)-branes, Commun. Math. Phys. 331 (2014), no. 3, 1271-1300. [1305.4638]
  11. D. Baraglia, Variation of Hodge structure for generalized complex manifolds, Differential Geom. Appl. 36 (2014), 98-133. [1205.0240]
  12. D. Baraglia, Topological T-duality for general circle bundles, Pure Appl. Math. Q. 10 (2014) no. 3 pp. 367-438. [1105.0290]
  13. D. Baraglia, A Coboundary Morphism For The Grothendieck Spectral Sequence, Appl. Categ. Structures, 22 (2014), no. 1, 269-288. [1112.6295]
  14. W. Globke, On the Geometry of Flat Pseudo-Riemannian Homogeneous Spaces, Israel J. Math. 202 (2014) 255-274, [1211.1111]
  15. W. Globke, A Supplement to the Classification of Flat Homogeneous Spaces of Signature (m,2), New York J. Math., 20 (2014) 441-446 [1312.2210]
  16. H. Wang, L^2-index formula for proper cocompact group actions, J. Noncommutative Geometry, 8(2), 2014, 393-432.

Refereed publications (2013) :

  1. M-T. Benameur, V. Mathai, Conformal invariants of twisted Dirac operators and positive scalar curvature, J. Geom. Phys, 70 (2013) 39-47, [1210.0301] Erratum
  2. R. Dey, V. Mathai, Holomorphic Quillen determinant line bundles on integral compact Kahler manifolds, The Quarterly J. Math., Quillen memorial issue, 64 (2013), 785-794, [1202.5213]
  3. P. Hekmati, M. K. Murray, D. Stevenson and R. Vozzo, The Faddeev-Mickelsson anomaly and lifting bundle gerbes, Commun. Math. Phys. 319 no. 2 (2013) 379-393, [1112.1752]
  4. J. C. Hurtubise and M. K. Murray, Loop groups and holomorphic bundles, The Quarterly J. Math., 64, no. 1 (2013) 189-220, [0812.3684v1]
  5. F. Larusson, E. A. Poletsky, Plurisubharmonic subextensions as envelopes of disc functionals, Mich. Math. J. 62 (2013), no. 3, 551-565, [1201.5875]
  6. D. M. Roberts The universal simplicial bundle is a simplicial group, New York J. Math. 19 (2013) 51-60 [1204.4886]
  7. T. Ritter, A strong Oka principle for embeddings of some planar domains into CxC*, J. Geom. Anal. 23, no. 2, (2013) 571-597, [1011.4116]
  8. T. Ritter, Acyclic embeddings of open Riemann surfaces into new examples of elliptic manifolds, Proc. Amer. Math. Soc. 141 (2013), 597-603, [1107.0102]
  9. W. Globke, Holonomy Groups of Complete Flat Pseudo-Riemannian Homogeneous Spaces, Adv. Math. 240 (2013) 88-105 [1205.3285]
  10. D. Baraglia, Conformal Courant algebroids and orientifold T-duality, Int. J. Geom. Methods in Modern Phys, 10, no 2 (2013), 1250084.
  11. D. Baraglia, Introduction to Generalized Geometry and T-duality, in Open Problems and Surveys of Contemporary Mathematics SMM 6, pp 45-97 (2013).

Refereed publications (2012) :

  1. P. Hekmati and V. Mathai, T-duality of current algebras and their quantization, Contemporary Mathematics, 584 (2012) 17-38, [1203.1709]
  2. K. Hannabuss, V. Mathai. Nonassociative strict deformation quantization of C*-algebras and nonassociative torus bundles. Lett. Math. Phys., 102 no.1, (2012) 107-123, [1012.2274]
  3. V. Mathai and S. Wu, Topology and Flux of T-Dual Manifolds with Circle Actions, Commun. Math. Phys. 316 (2012) 279-286. [1108.5045]
  4. P. Bouwknegt, V. Mathai and S. Wu, Bundle gerbes and moduli spaces, J. Geom. Phys., 62 no.1, (2012) 1-10, [1107.3687]
  5. P. Hekmati, M. K. Murray and R. Vozzo, The general caloron correspondence, J. Geom. Phys., 62, no.2, (2012), 224-241. [1105.0805]
  6. M. K. Murray, D. M. Roberts, D. Stevenson, On the existence of bibundles, Proc. London Math. Soc., 105 no. 6 (2012), 1290-1314. [1102.4388]
  7. F. Larusson, Deformations of Oka manifolds, Mathematische Zeitschrift, 272, No. 3-4 (2012), 1051-1058, [1106.5300]
  8. S.G. Barwick and D.J. Marshall. Conics and multiple derivation. Discrete Mathematics, 312 (2012) 1623--1632.
  9. S.G. Barwick and W.-A. Jackson. Sublines and subplanes of PG(2,q^3) in the Bruck-Bose representation in PG(6,q), Finite fields and their applications. 18 no.1 (2012) 93-107.
  10. T. Leistner, P. Nurowski, Conformal structures with exceptional ambient metrics, Ann. Sc. Norm. Super. Pisa Cl. Sci. XI, issue 2 (2012), 407-436, [0904.0186] .
  11. T. Leistner, P. Nurowski, Conformal pure radiation with parallel rays, Classical and Quantum Gravity 29 (2012) 055007 [1107.1675]
  12. D. M. Roberts Internal categories, anafunctors and localisations, 33 pages, Theory and Application of Categories, Vol. 26, 2012, No. 29, pp 788-829 [1101.2363]
  13. O. Baues and W. Globke, Flat pseudo-Riemannian homogeneous spaces with non-abelian holonomy group, Proc. Amer. Math. Soc. 140 (2012), 2479-2488.
  14. D. Baraglia, Leibniz algebroids, twistings and exceptional generalized geometry, J. Geom. Phys. 62 (2012) 903-934.
  15. D. Baraglia, Topological T-duality with monodromy, Proceedings of Symposia in Pure Mathematics, 85 (2012), 293-302.

Refereed publications (2011) :

  1. V. Mathai and S.Wu, Analytic torsion for twisted de Rham complexes, J. Differential Geometry, 88 (2011) 297-332, [0810.4204]
  2. S. Mahanta, V. Mathai, Operator algebra quantum homogeneous spaces of universal gauge groups, Lett. Math. Phys., 97 (2011) 263-277, [1012.5893]
  3. K. Hannabuss, V. Mathai. Parametrised strict deformation quantization of C*-bundles and Hilbert C*-modules, J. Aust. Maths. Soc. 90 no. 01 (2011) 25-38. [1007.4696]
  4. V. Mathai, Siye Wu, Analytic torsion of Z2-graded elliptic complexes, Contemporary Mathematics, 546 (2011) 199-212. [1001.3212]
  5. V. Mathai and J. Rosenberg, A noncommutative sigma-model, J. Noncommutative Geometry, 5 no 2 (2011) 265-294, [0903.4241]
  6. M. K. Murray, D. Stevenson, A note on bundle gerbes and infinite-dimensionality, J. Aust. Maths. Soc. 90 no. 01 (2011) 81-92, [1007.4922]
  7. S.G. Barwick, C.T. Quinn and W.-A. Jackson. Conics and caps, J. Geom. 100 (2011) 15-28.
  8. F. Forstneric, F. Larusson, Survey of Oka theory, New York J. of Math. 17a (2011), 1-28. [1009.1934]
  9. T. Leistner, A. J. Di Scala, Connected subgroups of SO(2,n) acting irreducibly on $\mathbb{R}^{2,n}$, Israel Journal of Mathematics, 182 (2011), 103-121. [0806.2586]
  10. V. Cortes, T. Leistner, L. Schafer, F. Schulte-Hengesbach, Half-flat Structures and Special Holonomy, Proceedings of the London Mathematical Society (3) 102 (2011) 113-158, [0907.1222] .
  11. R. Vozzo, Universal string classes and equivariant cohomology, J. Aust. Maths. Soc. 90 no. 01 (2011) 109-127. [1005.4243]
  12. S. Mahanta, Higher nonunital Quillen K'-theory, KK-dualities and applications to topological T-dualities, J. Geom. Phys. 61 (2011) 875-889.
  13. A. De Sole, P. Hekmati, V. Kac, Calculus structure on the Lie conformal algebra complex and the variational complex, J. Math. Phys. 2 053510 (2011), 35 pages [1007.3707] .

Refereed publications (2010) :

  1. V. Mathai, W. Zhang, Geometric quantization for proper actions, Advances in Mathematics, 225 no.3 (2010) 1224--1247 [0806.3138v2]
  2. K. Hannabuss, V. Mathai, Noncommutative principal torus bundles via parametrised strict deformation quantization, AMS Proceedings of Symposia in Pure Mathematics, 81 (2010) 133-148, [0911.1886]
  3. V. Mathai, S. Wu, Twisted Analytic Torsion, Science China Mathematics, 53 no. 3 (2010) 555-563 [0912.2184]
  4. P. Bouwknegt, K. Hannabuss, V. Mathai, C*-algebras in tensor categories, Clay Mathematics Proceedings, 12 (2010) 127-165. [math.QA/0702802]
  5. M. K. Murray, An Introduction to Bundle Gerbes, in "The Many Facets of Geometry: A Tribute to Nigel Hitchin", Edited by Oscar Garcia-Prada, Jean Pierre Bourguignon, Simon Salamon, Oxford University Press (2010) 237-260, [0712.1651v3]
  6. M. K. Murray and R. Vozzo, The caloron correspondence and higher string classes for loop groups, J. Geometry and Physics, 60, no. 9 (2010) 1235-1250, [0911.3464]
  7. M. K. Murray and R. Vozzo, Circle actions, central extensions and string structures, International Journal of Geometric Methods in Modern Physics 7, no. 6 (2010) 1065-1092, [1004.0779]
  8. F. Larusson, What is an Oka manifold? Notices of the American Mathematical Society, 57 (2010) 50-52.
  9. F. Larusson, Applications of a parametric Oka principle for liftings, in Complex Analysis, pages 205-211, a refereed volume in honour of Linda P. Rothschild, Trends in Mathematics series, Birkhauser, 2010. [0901.4388]
  10. A. Galaev, T. Leistner, On the local structure of Lorentzian Einstein manifolds with parallel null line, Classical and Quantum Gravity 27 (2010) 225003 (16pp) [0912.3400] .
  11. T. Leistner, P. Nurowski, Ambient metrics for $n$-dimensional $pp$-waves, Commun. Math. Phys., 296, no. 3 (2010) 881-898. [0810.2903]
  12. A. Galaev, T. Leistner, Recent developments in pseudo-Riemannian holonomy theory, in Handbook of Pseudo Riemannian Geometry, Institut de Recherche Mathematique Avancee Lectures in Mathematics and Theoretical Physics, Vol. 16 (2010): 581-629.
  13. A. J. Di Scala, T. Leistner, T. Neukirchner, Geometric applications of irreducible representations of Lie groups, in Handbook of Pseudo Riemannian Geometry, Institut de Recherche Mathematique Avancee Lectures in Mathematics and Theoretical Physics, Vol. 16 (2010): 629-652. [math/0507047]
  14. P. Hekmati, Integrability Criterion for Abelian Extensions of Lie Groups, Proc. Amer. Math. Soc. 138 (2010), 4137-4148, [0611431] .
  15. P. Hekmati and J. Mickelsson, Fractional Loop Group and Twisted K-theory, Commun. Math. Phys. 299 (2010), no. 3, 741-763, [0801.2522] .

Refereed publications (2009) :

  1. V. Mathai, R.B. Melrose, I.M. Singer, The index of projective families of elliptic operators: the decomposable case, Asterisque, 328 (2009) 255-296, [0809.0028]
  2. P. Bouwknegt, V. Mathai, T-Duality as a Duality of Loop Group Bundles, J. Physics A: Math. Theor. (Fast Track Communications), 42 no.16 (2009) 162001, 8 pages, [0902.4341]
  3. R. Green, V. Mathai, Harmonic Cheeger-Simons characters with applications, J. Geometry and Physics, 59 no.5 (2009) 663-672. [0803.1874]
  4. P. Chakraborty, V. Mathai, The geometry of determinant line bundles in noncommutative geometry, J. Noncommutative Geometry, 3 no.4 (2009) 559-578. [0804.3232v2]
  5. J. Brodzki, V. Mathai, J. Rosenberg, R. Szabo, Noncommutative correspondences, duality and D-branes in bivariant K-theory, Advances in Theoretical and Mathematical Physics, 13 no. 2 (2009) 497-552. [0708.2648]
  6. F. Larusson, Affine simplices in Oka manifolds, Documenta Mathematica, 14 (2009) 691-697, [0905.0532]
  7. F. Larusson, R. Sigurdsson, Siciak-Zahariuta extremal functions, analytic discs and polynomial hulls, Math. Annalen, 345 (2009) 159-174. [0808.3304v1]
  8. F. Larusson, R. Shafikov, Schlicht envelopes of holomorphy and foliations by lines, J. Geometric Analysis, 19 (2009) 373-389.
  9. D.K. Butler and S.G. Barwick. A characterizations of the lines external to a quadric cone of PG(3,q), q odd. Innovations in Incidence Geometry, 8 (2009) 39-48.
  10. S.G. Barwick and D.K. Butler. A Characterisation of the Lines External to an Oval Cone in PG(3,q), q even. J. Geometry, 93 (2009), no. 1-2, 21--27.
  11. S.G. Barwick and D.J. Marshall. Unitals and Replaceable t-nests. Aust. J. Combin., 43 (2009), 115--126..
  12. D. V. Alekseevsky, V. Cortes, A. Galaev and T. Leistner, Cones over semi-Riemannian manifolds and their holonomy, Journal fur die reine und angewandte Mathematik (Crelle's Journal) , 635 (2009), 23-69. [0707.3063]
  13. G. Brown, F. Moricz, Z. Safar, Formal differentiation of absolutely convergent Fourier series and classical function classes. Acta Sci. Math. (Szeged), 75 (2009), no. 1-2, 161--173.

BACK TO THE IGA HOME PAGE