On the holonomy fibration

Eckhard Meinrenken based on work with Alejandro Cabrera and Marco Gualtieri

Workshop on Geometric Quantization Adelaide, July 2015

General theme:

Hamiltonian *LG*-spaces \leftrightarrow q-Hamiltonian *G*-spaces $\mathcal{M} \xrightarrow{\Psi} \mathcal{L}\mathfrak{g}^*$ $\downarrow /L_0 G \qquad \downarrow /L_0 G$ $\mathcal{M} \xrightarrow{\Phi} G$

Many aspects of this correspondence are not fully understood.

	Ham. <i>LG</i> -spaces	q-Ham. G-spaces
Volume forms	?	Y
Equivariant cohomology	(?)	Y
Kirwan surjectivity	Y	(Y)
Norm-square localization	Y	(?)
Quantization	(?)	Y
Kähler structures	(Y)	?
'Poisson' structures	?	(Y)

Holonomy fibration

$$\mathcal{A} = \Omega^1(S^1, \mathfrak{g}) \circlearrowleft LG$$
 $Hol igg|_{L_0G}$
 \mathcal{G}

$$g.A = \operatorname{Ad}_g(A) - \partial g g^{-1}$$

Suppose $\mathfrak g$ has invariant metric, denoted ".". \rightsquigarrow central extension:

$$\widehat{L\mathfrak{g}}=\mathbb{R}\oplus L\mathfrak{g}$$

with bracket

$$[t_1 + \xi_1, t_2 + \xi_2]_{\widehat{Lg}} = \int_{S^1} \xi_1 \cdot \partial \xi_2 + [\xi_1, \xi_2]_{Lg}.$$

Have LG-equivariant isomorphism

$$\mathcal{A} = \{1\} \times \mathcal{Lg}^* \subset \widehat{\mathcal{Lg}}^*.$$

Basic facts from Poisson geometry

- Let \u00e8 = Lie(K). Then \u00e8* has a K-invariant Poisson structure. (Leaves = coadjoint orbits.)
- For central extension

$$0 \to \mathbb{R} \to \widehat{\mathfrak{k}} \to \mathfrak{k} \to 0$$

the level sets $\{\lambda\} \times \mathfrak{k}^* \subset \widehat{\mathfrak{k}}^*$ are *K*-equivariant Poisson submanifolds.

 If *M* is Poisson, *H* ⊂ *M* a principal action by Poisson automorphisms, then *M*/*H* is Poisson.

Holonomy fibration

We'd like to apply this to our setting:

$$0 \to \mathbb{R} \to \widehat{Lg} \to Lg \to 0$$

with LG acting on

$$\mathcal{A} = \{1\} imes \mathcal{Lg}^* \subset \widehat{\mathcal{Lg}^*}$$

(symplectic leaves = coadjoint *LG*-orbits) and

$$\mathcal{A}/L_0 G \cong G.$$

But: G does not have a reasonable $LG/L_0G \cong G$ -equivariant Poisson structure.

Problem: dim $\mathcal{A} = \infty$, dim $\mathcal{L}\mathcal{G} = \infty$.

It's not even obvious what we mean by 'Poisson structure' on $\mathcal{A}.$

- Bivector field $\pi \in \Gamma(\wedge^2 T A)$? Infinite rank??
- Bilinear forms $\{\cdot, \cdot\}$ on smooth functions? Domain??

We'll show: The 'Lie-Poisson structure' on A makes sense as a *Dirac structure*, and descends to a *Dirac structure* on *G*.

Dirac geometry was introduced by T. Courant and A. Weinstein in 1989.

•
$$\mathbb{T}M = TM \oplus T^*M$$
,.

•
$$\langle v_1 + \alpha_1, v_2 + \alpha_2 \rangle = \alpha_1(v_2) + \alpha_2(v_1),$$

•
$$\llbracket \mathbf{v}_1 + \alpha_1, \mathbf{v}_2 + \alpha_2 \rrbracket = [\mathbf{v}_1, \mathbf{v}_2] + \mathcal{L}_{\mathbf{v}_1} \alpha_2 - \iota_{\mathbf{v}_2} \mathrm{d}\alpha_1 + \iota_{\mathbf{v}_1} \iota_{\mathbf{v}_2} \eta.$$

where $\eta \in \Omega^3_{cl}(M)$.

Definition

 $E \subset \mathbb{T}M$ is a Dirac structure if

•
$$E=E^{\perp}$$
,

• $\Gamma(E)$ closed under $\llbracket \cdot, \cdot \rrbracket$.

Dirac geometry

Examples

- $\omega \in \Omega^2(M) \rightsquigarrow \operatorname{Graph}(\omega)$ is a Dirac structure $\Leftrightarrow d\omega = 0$.
- Solution Conversely, a Dirac structure *E* ⊆ $\mathbb{T}M$ is a Poisson structure ⇔ *E* ∩ *TM* = 0.
- Lie-Poisson structure: $E \subseteq \mathbb{T}\mathfrak{g}^*$ spanned by sections

$$e(\xi) = \xi_{\mathfrak{g}^*} + \langle \mathsf{d}\mu, \xi \rangle, \quad \xi \in \mathfrak{g}.$$

6 Cartan-Dirac structure: $E \subseteq \mathbb{T}G$ spanned by sections

$$e(\xi) = \xi_G + \frac{1}{2}(\theta^L + \theta^R) \cdot \xi, \quad \xi \in \mathfrak{g}$$

is a Dirac structure wrt $\eta = \frac{1}{12}\theta^L \cdot [\theta^L, \theta^L] \in \Omega^3(G)$. Here $\theta^L = g^{-1}dg, \ \theta^R = dg \ g^{-1}$.

The definitions also work for Hilbert manifolds M.

Definition

A Dirac structure $E \subseteq \mathbb{T}M$ is called a

- Poisson structure $\Leftrightarrow E \oplus TM = \mathbb{T}M$,
- weak Poisson structure $\Leftrightarrow E \cap TM = 0$.

The leaves of a weak Poisson structure are weakly symplectic.

Dirac geometry

Example

•
$$\mathcal{A}=\Omega^1_{H^r}(S^1,\mathfrak{g})$$
 connections of Sobolev class $r\geq 0$

• Dirac structure $E \subseteq \mathbb{T}\mathcal{A}$ spanned by

$$e(\xi) = \xi_{\mathcal{A}} + \langle \mathsf{d} \mathcal{A}, \xi \rangle, \quad \xi \in L \mathfrak{g}$$

where

$$\xi_{\mathcal{A}}|_{\mathcal{A}} = \partial \xi + [\mathcal{A}, \xi].$$

Then *E* is a weak Poisson structure: $E \cap T\mathcal{A} = 0$. But $\mathbb{T}\mathcal{A} \neq E \oplus T\mathcal{A}$. Note

$$E|_A = \operatorname{graph}(\partial_A), \quad \partial_A \colon \Omega^0_{H_{r+1}}(S^1, \mathfrak{g}) o \Omega^1_{H_r}(S^1, \mathfrak{g})$$

skew-adjoint operator $\partial_A = \partial + \operatorname{ad}_A$ with dense domain.

Reduction of Dirac structures

Suppose $H \circlearrowright M$ preserves $\eta \in \Omega^3_{cl}(M)$. Then $H \circlearrowright \mathbb{T}M$ by automorphisms of $\langle \cdot, \cdot \rangle$, $\llbracket \cdot, \cdot \rrbracket$.

Definition

 $\varrho \colon \mathfrak{h} \to \Gamma(\mathbb{T}M)$ defines generators for the action if

$$\llbracket \varrho(\xi), \cdot \rrbracket = \frac{d}{dt} \Big|_{t=0} \exp(-t\xi)^*$$

on $\Gamma(\mathbb{T}M)$.

Examples

 $G \circlearrowright \mathbb{T}\mathfrak{g}^*, \ G \circlearrowright \mathbb{T}G, \ LG \circlearrowright \mathbb{T}\mathcal{A}$ have generators $\varrho(\xi) = e(\xi)$.

$$\begin{split} e(\xi) &= \xi_{\mathfrak{g}^*} + \langle \mathsf{d}\mu, \xi \rangle, \quad \xi \in \mathfrak{g} \\ e(\xi) &= \xi_G + \frac{1}{2} (\theta^L + \theta^R) \cdot \xi, \quad \xi \in \mathfrak{g} \\ e(\xi) &= \xi_A + \langle \mathsf{d}A, \xi \rangle, \quad \xi \in L\mathfrak{g} \end{split}$$

Suppose $H \circlearrowright M$ is a principal action preserving η , and that

 $\varrho \colon M \times \mathfrak{h} \to \mathbb{T}M$

defines generators for $H \circlearrowright \mathbb{T}M$.

Theorem (Bursztyn-Cavalcanti-Gualtieri)

Suppose $J = \varrho(M \times \mathfrak{h}) \subseteq \mathbb{T}M$ is isotropic. Then $\langle \cdot, \cdot \rangle$, $\llbracket \cdot, \cdot \rrbracket$ descend to

$$\mathbb{T}M/\!\!/ H = (J^{\perp}/J)/H.$$

Furthermore, if $E \subset \mathbb{T}M$ is an H-invariant Dirac structure with $J \subseteq E$, then

$$E/\!\!/H = (E/J)/H$$

is a Dirac structure.

One has $\mathbb{T}M/\!\!/H \cong \mathbb{T}(M/H)$ but this depends on a choice..

Have an exact sequence

$$0 \to T^*(M/H) \to \mathbb{T}M/\!\!/ H \to T(M/H) \to 0.$$

To identify $\mathbb{T}M/\!\!/H \cong \mathbb{T}(M/H)$ one needs an isotropic splitting

 $T(M/H) \to (\mathbb{T}M)/\!\!/ H.$

Equivalently, need *H*-equivariant isotropic splitting $j: TM \to \mathbb{T}M$ with $J \subseteq j(TM)$.

Such a splitting is described by a 2-form ϖ , with $d\varpi = p^*\eta$.

Given $H \circlearrowright M$ and $\varrho \colon M \times \mathfrak{h} \to \mathbb{T}M$ as above, we have:

Any connection 1-form $\theta \in \Omega^1(M, \mathfrak{h})^H$ determines an isotropic splitting.

Explicitly, writing $\varrho(\xi) = \xi_M + \alpha(\xi)$, and letting

$$c(\xi_1,\xi_2)=\iota((\xi_1)_M)\alpha(\xi_2),$$

we have

$$\varpi = -\alpha(\theta) + \frac{1}{2}c(\theta,\theta).$$

Back to our setting:

$$LG \circlearrowright E \subseteq \mathbb{T}\mathcal{A}, \quad \varrho \colon L\mathfrak{g} \to \Gamma(\mathbb{T}\mathcal{A}), \quad \mathcal{A}/L_0G = G.$$

Hol: $\mathcal{A} \to G$ has an 'almost canonical' connection $\theta \in \Omega^1(\mathcal{A}, L_0\mathfrak{g})$, depending on choice of a 'bump function' on [0, 1]. Constructed by caloron correspondence of Michael Murray and Raymond Vozzo.

with the G-bundle $Q = (G \times \mathbb{R} \times G)/\mathbb{Z} \to G \times S^1$.

For any choice of bump function, get connection θ and hence $\varpi \in \Omega^2(\mathcal{A})^{LG}$ as above.

- ϖ independent of choice of bump function.
- $d\varpi = Hol^* \eta$, with $\eta \in \Omega^3(G)$ the Cartan 3-form.

This 2-form also appeared in the '98 AMM paper:

$$\varpi = \frac{1}{2} \int_0^1 \operatorname{Hol}_s^* \theta^R \cdot \frac{\partial}{\partial s} \operatorname{Hol}_s^* \theta^R \in \Omega^2(\mathcal{A})$$

where $\operatorname{Hol}_s : \mathcal{A} \to G$ is the holonomy from 0 to *s*.

Theorem (Cabrera-Gualtieri-M)

The reduction of $(\mathbb{T}\mathcal{A}, E)$ by L_0G , using the standard generators ϱ and the isotropic splitting defined by ϖ , is the Cartan-Dirac structure on G.

Remark

Can also consider twisted loop groups \rightsquigarrow *twisted Cartan-Dirac structure.*

Remark

Similar discussion of S^1 with n marked points \rightsquigarrow interesting Dirac structure on G^n . (Cf. Li-Bland, Severa.)

Reduction of morphisms

Let M_1, M_2 be manifolds with closed 3-forms η_1, η_2 .

A map $\Phi: M_1 \to M_2$ together with a 2-form $\omega \in \Omega^2(M_1)$ defines a relation $(\mathbb{T}M_1)_{\eta_1} \dashrightarrow (\mathbb{T}M_2)_{\eta_2}$, where

 $\mathbf{v}_1 + \alpha_1 \sim \mathbf{v}_2 + \alpha_2 \Leftrightarrow \mathbf{v}_2 = \Phi_* \mathbf{v}_1, \quad \alpha_1 = \Phi^* \alpha_2 + \iota_{\mathbf{v}_1} \omega.$

Given Dirac structures $E_i \subset (\mathbb{T}M_1)_{\eta_i}$, we say that

$$(\Phi,\omega)$$
: $((\mathbb{T}M_1)_{\eta_1}, E_1) \dashrightarrow ((\mathbb{T}M_2)_{\eta_2}, E_2)$

is a Dirac morphism if

- $\Phi^*\eta_2 = \eta_1 + \mathsf{d}\omega$
- Every $x_2 \in (E_2)_{\Phi(m)}$ is (Φ, ω) -related to a unique element $x_1 \in (E_1)_m$.

Example

A Dirac morphism
$$(\Phi, \omega)$$
: $(\mathbb{T}M, TM) \dashrightarrow (\mathbb{T}\mathfrak{g}^*, E_{\mathfrak{g}^*})$ is a Hamiltonian \mathfrak{g} -space.

Example

A Dirac morphism (Φ, ω) : $(\mathbb{T}M, TM) \dashrightarrow ((\mathbb{T}G)_{\eta}, E_G)$ is a quasi-Hamiltonian g-space.

Example

A Dirac morphism
$$(\Phi, \omega)$$
: $(\mathbb{T}M, TM) \dashrightarrow (\mathbb{T}A, E_A)$ is a Hamiltonian Lg-space.

Our results on reductions of Dirac structures extend to morphisms. \Rightarrow recover the correspondence

Hamiltonian LG-spaces \leftrightarrow q-Hamiltonian G-spaces

- How to explain the quasi-Poisson structure on G by reduction?
- How to explain the volume forms on q-Hamiltonian spaces by reduction?
- Metric and Kähler aspects?

Many of the foundations of Poisson/Dirac geometry and Lie algebroids in infinite dimensions remain to be developed. (E.g., forthcoming work with Bursztyn and Lima.)