The Comparison of two constructions of the Refined Analytic Torsion on Manifolds with Boundary

Rung-Tzung Huang
j. w. w
Yoonweon Lee(Inha University, Korea)

Department of Mathematics National Central University, Taiwan

IGA/AMSI workshop on geometric quantization The University of Adelaide

$$
\text { 7/27-31, } 2015
$$

Outline

(9) Analytic torsion
(2) Refined analytic torsion
(3) Comparison theorem for refined analytic torsions

Flat bundle

- $\left(M, g^{M}\right)$ a closed Riemannian manifold, $\operatorname{dim}(M)=m$.
- $\left(E, \nabla, h^{E}\right)$ a flat complex vector bundle over M, i.e. $\nabla^{2}=0$.
- In general $d h^{E}(u, v)=h^{E}(\nabla u, v)+h^{E}\left(u, \nabla^{\prime} v\right), \forall u, v \in C^{\infty}(M, E)$.
- ∇^{\prime} is called the dual connection on E
- If ∇ Hermitian (i.e. h^{E} flat), then $\nabla^{\prime}=\nabla$.

Fact

- (E, ∇) is flat $\Longleftrightarrow \exists \rho: \pi_{1}(M) \rightarrow G L(n, \mathbb{C})$ s.t. $E=\widetilde{M} \times_{\rho} \mathbb{C}^{n}$, where M is the universal covering of M.
- (E, ∇) is flat and h^{E} is flat $\Longleftrightarrow \exists \rho: \pi_{1}(M) \rightarrow U(n)$ s.t. $E=\widetilde{M} \times{ }_{\rho} \mathbb{C}^{n}$.

Flat bundle

- $\left(M, g^{M}\right)$ a closed Riemannian manifold, $\operatorname{dim}(M)=m$.
- $\left(E, \nabla, h^{E}\right)$ a flat complex vector bundle over M, i.e. $\nabla^{2}=0$.
- In general $d h^{E}(u, v)=h^{E}(\nabla u, v)+h^{E}\left(u, \nabla^{\prime} v\right), \forall u, v \in C^{\infty}(M, E)$.
- ∇^{\prime} is called the dual connection on E
- If ∇ Hermitian (i.e. h^{E} flat), then $\nabla^{\prime}=\nabla$

Fact

- (E, ∇) is flat $\longleftrightarrow \exists \rho: \pi_{1}(M) \rightarrow G L(n, \mathbb{C})$ s.t. $E=M \times_{\rho} \mathbb{C}^{n}$, where M is the universal covering of M.
- (E, ∇) is flat and h^{E} is flat $\Longleftrightarrow \exists \rho: \pi_{1}(M) \rightarrow U(n)$ s.t. $E=\widetilde{M} \times \rho \mathbb{C}^{n}$.

Flat bundle

- $\left(M, g^{M}\right)$ a closed Riemannian manifold, $\operatorname{dim}(M)=m$.
- $\left(E, \nabla, h^{E}\right)$ a flat complex vector bundle over M, i.e. $\nabla^{2}=0$.
- In general $d h^{E}(u, v)=h^{E}(\nabla u, v)+h^{E}\left(u, \nabla^{\prime} v\right), \forall u, v \in C^{\infty}(M, E)$.
- ∇^{\prime} is called the dual connection on E
- If ∇ Hermitian (i.e. h^{E} flat), then $\nabla^{\prime}=\nabla$.

Fact

- (E, ∇) is flat $\Longleftrightarrow \exists \rho: \pi_{1}(M) \rightarrow G L(n, \mathbb{C})$ s.t. $E=\widetilde{M} \times{ }_{\rho} \mathbb{C}^{n}$, where \widetilde{M} is
the universal covering of M.
- (E, ∇) is flat and h^{E} is flat $\Longleftrightarrow \exists \rho: \pi_{1}(M) \rightarrow U(n)$ s.t. $E=\widetilde{M} \times{ }_{\rho} \mathbb{C}^{n}$.

Flat bundle

- $\left(M, g^{M}\right)$ a closed Riemannian manifold, $\operatorname{dim}(M)=m$.
- $\left(E, \nabla, h^{E}\right)$ a flat complex vector bundle over M, i.e. $\nabla^{2}=0$.
- In general $d h^{E}(u, v)=h^{E}(\nabla u, v)+h^{E}\left(u, \nabla^{\prime} v\right), \forall u, v \in C^{\infty}(M, E)$.
- ∇^{\prime} is called the dual connection on E
- If ∇ Hermitian (i.e. h^{E} flat), then $\nabla^{\prime}=\nabla$.

Fact

- (E, ∇) is flat $\longleftrightarrow \exists \rho: \pi_{1}(M) \rightarrow G L(n, \mathbb{C})$ s.t. $E=\bar{M} \times_{\rho} \mathbb{C}^{n}$, where \bar{M} is
the universal covering of M.
- (E, ∇) is flat and h^{E} is flat $\Longleftrightarrow \exists \rho: \pi_{1}(M) \rightarrow U(n)$ s.t. $E=\widetilde{M} \times{ }_{\rho} \mathbb{C}^{n}$.

Flat bundle

- $\left(M, g^{M}\right)$ a closed Riemannian manifold, $\operatorname{dim}(M)=m$.
- $\left(E, \nabla, h^{E}\right)$ a flat complex vector bundle over M, i.e. $\nabla^{2}=0$.
- In general $d h^{E}(u, v)=h^{E}(\nabla u, v)+h^{E}\left(u, \nabla^{\prime} v\right), \forall u, v \in C^{\infty}(M, E)$.
- ∇^{\prime} is called the dual connection on E
- If ∇ Hermitian (i.e. h^{E} flat), then $\nabla^{\prime}=\nabla$.

Fact

- (E, ∇) is flat $\Longleftrightarrow \exists \rho: \pi_{1}(M) \rightarrow G L(n, \mathbb{C})$ s.t. $E=M \times_{\rho} \mathbb{C}^{n}$, where M is
the universal covering of M.
- (E, ∇) is flat and h^{E} is flat $\Longleftrightarrow \exists \rho: \pi_{1}(M) \rightarrow U(n)$ s.t. $E=\widetilde{M} \times{ }_{\rho} \mathbb{C}^{n}$.

Flat bundle

- $\left(M, g^{M}\right)$ a closed Riemannian manifold, $\operatorname{dim}(M)=m$.
- $\left(E, \nabla, h^{E}\right)$ a flat complex vector bundle over M, i.e. $\nabla^{2}=0$.
- In general $d h^{E}(u, v)=h^{E}(\nabla u, v)+h^{E}\left(u, \nabla^{\prime} v\right), \forall u, v \in C^{\infty}(M, E)$.
- ∇^{\prime} is called the dual connection on E
- If ∇ Hermitian (i.e. h^{E} flat), then $\nabla^{\prime}=\nabla$.

Fact

- (E, ∇) is flat $\Longleftrightarrow \exists \rho: \pi_{1}(M) \rightarrow G L(n, \mathbb{C})$ s.t. $E=\widetilde{M} \times \rho \mathbb{C}^{n}$, where \widetilde{M} is the universal covering of M.

Flat bundle

- $\left(M, g^{M}\right)$ a closed Riemannian manifold, $\operatorname{dim}(M)=m$.
- $\left(E, \nabla, h^{E}\right)$ a flat complex vector bundle over M, i.e. $\nabla^{2}=0$.
- In general $d h^{E}(u, v)=h^{E}(\nabla u, v)+h^{E}\left(u, \nabla^{\prime} v\right), \forall u, v \in C^{\infty}(M, E)$.
- ∇^{\prime} is called the dual connection on E
- If ∇ Hermitian (i.e. h^{E} flat), then $\nabla^{\prime}=\nabla$.

Fact

- (E, ∇) is flat $\Longleftrightarrow \exists \rho: \pi_{1}(M) \rightarrow G L(n, \mathbb{C})$ s.t. $E=\widetilde{M} \times{ }_{\rho} \mathbb{C}^{n}$, where \widetilde{M} is the universal covering of M.
- (E, ∇) is flat and h^{E} is flat $\Longleftrightarrow \exists \rho: \pi_{1}(M) \rightarrow U(n)$ s.t. $E=\widetilde{M} \times{ }_{\rho} \mathbb{C}^{n}$.

Hodge theory

- de Rham complex:

$$
0 \rightarrow \Omega^{0}(M, E) \xrightarrow{\nabla} \Omega^{1}(M, E) \xrightarrow{\nabla} \cdots \xrightarrow{\nabla} \Omega^{m}(M, E) \rightarrow 0
$$

- de Rham theorem:

$$
H^{p}(M, E) \cong H_{d R}^{p}(M, E)=\frac{\operatorname{Ker}\left(\left.\nabla\right|_{\Omega^{p}(M, E)}\right)}{\operatorname{Im}\left(\left.\nabla\right|_{\Omega^{p-1}(M, E)}\right)}
$$

- Hodge Laplacian:

$$
\Delta_{p}=\nabla^{*}+\nabla^{*} \nabla: \Omega^{p}(M, E) \rightarrow \Omega^{P}(M, E)
$$

where ∇^{*} is the adjoint of ∇ w.r.t. $<\cdot, \cdot>$ on $\Omega^{\bullet}(M, E)$ induced from g^{M} and h^{E}.

- Hodge theorem: $H^{p}(M, E) \cong H_{d R}^{p}(M ; E) \cong \operatorname{Ker} \Delta_{p}$

Hodge theory

- de Rham complex:

$$
0 \rightarrow \Omega^{0}(M, E) \xrightarrow{\nabla} \Omega^{1}(M, E) \xrightarrow{\nabla} \cdots \xrightarrow{\nabla} \Omega^{m}(M, E) \rightarrow 0
$$

- de Rham theorem:

$$
H^{p}(M, E) \cong H_{d R}^{p}(M, E)=\frac{\operatorname{Ker}\left(\left.\nabla\right|_{\Omega^{p}(M, E)}\right)}{\operatorname{Im}\left(\left.\nabla\right|_{\Omega^{p-1}(M, E)}\right)}
$$

- Hodge Laplacian:

$$
\Delta_{p}=\nabla^{*}+\nabla^{*} \nabla: \Omega^{P}(M, E) \rightarrow \Omega^{P}(M, E)
$$

where ∇^{*} is the adjoint of ∇ w.r.t. $<\cdot, \cdot>$ on $\Omega^{\bullet}(M, E)$ induced from g^{M} and h^{E}.

- Hodge theorem: $H^{p}(M, E) \cong H_{d R}^{p}(M ; E) \cong \operatorname{Ker} \Delta_{p}$

Hodge theory

- de Rham complex:

$$
0 \rightarrow \Omega^{0}(M, E) \xrightarrow{\nabla} \Omega^{1}(M, E) \xrightarrow{\nabla} \cdots \xrightarrow{\nabla} \Omega^{m}(M, E) \rightarrow 0
$$

- de Rham theorem:

$$
H^{p}(M, E) \cong H_{d R}^{p}(M, E)=\frac{\operatorname{Ker}\left(\left.\nabla\right|_{\Omega^{p}(M, E)}\right)}{\operatorname{Im}\left(\left.\nabla\right|_{\Omega^{p-1}(M, E)}\right)}
$$

- Hodge Laplacian:

$$
\Delta_{p}=\nabla \nabla^{*}+\nabla^{*} \nabla: \Omega^{p}(M, E) \rightarrow \Omega^{p}(M, E)
$$

where ∇^{*} is the adjoint of ∇ w.r.t. $\langle\cdot, \cdot\rangle$ on $\Omega^{\bullet}(M, E)$ induced from g^{M} and h^{E}.

- Hodge theorem: $H^{P}(M, E) \cong H_{d R}^{p}(M ; E) \cong \operatorname{Ker} \Delta_{p}$

Hodge theory

- de Rham complex:

$$
0 \rightarrow \Omega^{0}(M, E) \xrightarrow{\nabla} \Omega^{1}(M, E) \xrightarrow{\nabla} \cdots \xrightarrow{\nabla} \Omega^{m}(M, E) \rightarrow 0
$$

- de Rham theorem:

$$
H^{p}(M, E) \cong H_{d R}^{p}(M, E)=\frac{\operatorname{Ker}\left(\left.\nabla\right|_{\Omega^{p}(M, E)}\right)}{\operatorname{Im}\left(\left.\nabla\right|_{\Omega^{p-1}(M, E)}\right)}
$$

- Hodge Laplacian:

$$
\Delta_{p}=\nabla \nabla^{*}+\nabla^{*} \nabla: \Omega^{p}(M, E) \rightarrow \Omega^{p}(M, E)
$$

where ∇^{*} is the adjoint of ∇ w.r.t. $\langle\cdot, \cdot\rangle$ on $\Omega^{\bullet}(M, E)$ induced from g^{M} and h^{E}.

- Hodge theorem: $\quad H^{p}(M, E) \cong H_{d R}^{p}(M ; E) \cong \operatorname{Ker} \Delta_{p}$

ζ-regularized determinant

- For $s \in \mathbb{C}, \operatorname{Re} s>m / 2$, the ζ-function

$$
\zeta_{\Delta_{p}}(s):=\operatorname{Tr}\left(\Delta_{p}\right)^{-s}=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} \operatorname{Tr}\left[\exp \left(-t \Delta_{p}\right)-\operatorname{dim} \operatorname{Ker} \Delta_{p}\right] d t
$$

converges. Moreover, it has a meromorphic continuation to \mathbb{C}. In particular, it is regular at $s=0$.

- Define ζ-regularized determinant

- Formally,

ζ-regularized determinant

- For $s \in \mathbb{C}, \operatorname{Re} s>m / 2$, the ζ-function

$$
\zeta_{\Delta_{p}}(s):=\operatorname{Tr}\left(\Delta_{p}\right)^{-s}=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} \operatorname{Tr}\left[\exp \left(-t \Delta_{p}\right)-\operatorname{dim} \operatorname{Ker} \Delta_{p}\right] d t
$$

converges. Moreover, it has a meromorphic continuation to \mathbb{C}. In particular, it is regular at $s=0$.

- Define ζ-regularized determinant

- Formally,

ζ-regularized determinant

- For $s \in \mathbb{C}, \operatorname{Re} s>m / 2$, the ζ-function

$$
\zeta_{\Delta_{p}}(s):=\operatorname{Tr}\left(\Delta_{p}\right)^{-s}=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} \operatorname{Tr}\left[\exp \left(-t \Delta_{p}\right)-\operatorname{dim} \operatorname{Ker} \Delta_{p}\right] d t
$$

converges. Moreover, it has a meromorphic continuation to \mathbb{C}. In particular, it is regular at $s=0$.

- Define ζ-regularized determinant

$$
\operatorname{Det} \Delta_{p}:=\exp \left(-\zeta_{\Delta_{p}}^{\prime}(0)\right)
$$

- Formally,

ζ-regularized determinant

- For $s \in \mathbb{C}, \operatorname{Re} s>m / 2$, the ζ-function

$$
\zeta_{\Delta_{p}}(s):=\operatorname{Tr}\left(\Delta_{p}\right)^{-s}=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} \operatorname{Tr}\left[\exp \left(-t \Delta_{p}\right)-\operatorname{dim} \operatorname{Ker} \Delta_{p}\right] d t
$$

converges. Moreover, it has a meromorphic continuation to \mathbb{C}. In particular, it is regular at $s=0$.

- Define ζ-regularized determinant

$$
\operatorname{Det} \Delta_{p}:=\exp \left(-\zeta_{\Delta_{p}}^{\prime}(0)\right)
$$

- Formally,

$$
\text { Det } \Delta_{p}=" \prod_{\lambda_{k}>0} \lambda_{k} "
$$

Determinant line

- V : n-dim. vector space, $\operatorname{det} V:=\wedge^{n} V$ complex line.
- volume element: $[v]=v_{1} \wedge \cdots \wedge v_{n} \in \operatorname{det} V$, where $\left\{v_{i}\right\}$ orthornormal basis for V.
- determinant line of cohomology groups:

- For $\left[h_{i}\right] \in \operatorname{det} H^{i}(M, E)$,

$$
\rho\left(\nabla, g^{M}\right)=\left[h_{0}\right] \otimes\left[h_{1}\right]^{-1} \otimes \cdots \otimes\left[h_{m}\right]^{ \pm} \in \operatorname{det} H^{\circ}(M, E) .
$$

Determinant line

- V : n-dim. vector space, $\operatorname{det} V:=\wedge^{n} V$ complex line.
- volume element: $[v]=v_{1} \wedge \cdots \wedge v_{n} \in \operatorname{det} V$, where $\left\{v_{i}\right\}$ orthornormal basis for V.
- determinant line of cohomology groups:

- For $\left[h_{i}\right] \in \operatorname{det} H^{i}(M, E)$,

Determinant line

- V : n-dim. vector space, $\operatorname{det} V:=\wedge^{n} V$ complex line.
- volume element: $[v]=v_{1} \wedge \cdots \wedge v_{n} \in \operatorname{det} V$, where $\left\{v_{i}\right\}$ orthornormal basis for V.
- determinant line of cohomology groups:

$$
\operatorname{det} H^{\bullet}(M, E)=\otimes_{p}\left(\operatorname{det} H^{p}(M, E)\right)^{(-1)^{p}}
$$

- For $\left[h_{i}\right] \in \operatorname{det} H^{i}(M, E)$,

Determinant line

- V : n-dim. vector space, $\operatorname{det} V:=\wedge^{n} V$ complex line.
- volume element: $[v]=v_{1} \wedge \cdots \wedge v_{n} \in \operatorname{det} V$, where $\left\{v_{i}\right\}$ orthornormal basis for V.
- determinant line of cohomology groups:

$$
\operatorname{det} H^{\bullet}(M, E)=\otimes_{p}\left(\operatorname{det} H^{p}(M, E)\right)^{(-1)^{p}}
$$

- For $\left[h_{i}\right] \in \operatorname{det} H^{i}(M, E)$,

$$
\rho\left(\nabla, g^{M}\right)=\left[h_{0}\right] \otimes\left[h_{1}\right]^{-1} \otimes \cdots \otimes\left[h_{m}\right]^{ \pm} \in \operatorname{det} H^{\bullet}(M, E)
$$

Ray-Singer analytic torsion

- Scalar Ray-Singer torsion

$$
T\left(M, g^{M}, h^{E}\right):=\exp \left(\frac{1}{2} \sum_{p=0}^{m}(-1)^{p+1} \cdot p \cdot \operatorname{Det} \Delta_{p}\right)
$$

- Ray-Singer torsion

$$
\rho^{\mathrm{RS}}(\nabla):=\rho\left(\nabla, g^{M}\right) \cdot T\left(M, g^{M}, h^{E}\right) \in \operatorname{det} H^{\circ}(M, E)
$$

- Ray-Singer metric $\|\cdot\|_{\operatorname{det} H \cdot(M, E)}^{\mathrm{RS}}$ on $\operatorname{det} H^{\bullet}(M, E)$

Ray-Singer analytic torsion

- Scalar Ray-Singer torsion

$$
T\left(M, g^{M}, h^{E}\right):=\exp \left(\frac{1}{2} \sum_{p=0}^{m}(-1)^{p+1} \cdot p \cdot \operatorname{Det} \Delta_{p}\right)
$$

- Ray-Singer torsion

$$
\rho^{\mathrm{RS}}(\nabla):=\rho\left(\nabla, g^{M}\right) \cdot T\left(M, g^{M}, h^{E}\right) \in \operatorname{det} H^{\bullet}(M, E)
$$

- Ray-Singer metric $\|\cdot\|_{\operatorname{det} H^{\bullet}(M, E)}^{\mathrm{RS}}$ on $\operatorname{det} H^{\bullet}(M, E)$

Ray-Singer analytic torsion

- Scalar Ray-Singer torsion

$$
T\left(M, g^{M}, h^{E}\right):=\exp \left(\frac{1}{2} \sum_{p=0}^{m}(-1)^{p+1} \cdot p \cdot \operatorname{Det} \Delta_{p}\right)
$$

- Ray-Singer torsion

$$
\rho^{\mathrm{RS}}(\nabla):=\rho\left(\nabla, g^{M}\right) \cdot T\left(M, g^{M}, h^{E}\right) \in \operatorname{det} H^{\bullet}(M, E)
$$

- Ray-Singer metric $\|\cdot\|_{\operatorname{det} H \bullet(M, E)}^{\mathrm{RS}}$ on $\operatorname{det} H^{\bullet}(M, E)$

$$
\|\cdot\|_{\operatorname{det} H \cdot(M, E)}^{\mathrm{RS}}:=|\cdot|_{\operatorname{det} H \bullet(M, E)}^{L^{2}} \cdot T\left(M, g^{M}, h^{E}\right)^{-1}
$$

Cheeger-Müller theorem

- If $\operatorname{dim} M$ odd, $\|\cdot\|_{\operatorname{det} H \cdot(M, E)}^{\mathrm{RS}}$ does not depend on g^{M}, h^{E} a topological invariant.
- If $\operatorname{dim} M$ even, M orientable, h^{E} flat, then $T\left(M, g^{M}, h^{E}\right)=1$.
- If $\operatorname{dim} M$ even, h^{E} unimodular $\left(\operatorname{det} \rho(\gamma)=1\right.$ for all $\left.\gamma \in \pi_{1}(M)\right)$, then $\|\cdot\|_{\text {det } H \bullet(M, E)}^{\mathrm{RS}}$ does not depend on g^{M}, a topological invariant.
- Ray-Singer conjecture:The Ray-Singer torsion coincides with the Reidemeister torsion.
- h^{E} flat, Cheeger(1978), Müller(1978), RS conj. holds
- $\operatorname{dim} M$ odd, E unimodular, Müller(1991) RS conj. holds
- Gencral case, Bismut-Zhang(1991) PS conj. holds

Cheeger-Müller theorem

- If $\operatorname{dim} M$ odd, $\|\cdot\|_{\operatorname{det} H}^{\mathrm{RS}}{ }_{(M, E)}$ does not depend on g^{M}, h^{E} a topological invariant.
- If $\operatorname{dim} M$ even, M orientable, h^{E} flat, then $T\left(M, g^{M}, h^{E}\right)=1$.
- If $\operatorname{dim} M$ even, h^{E} unimodular $\left(\operatorname{det} \rho(\gamma)=1\right.$ for all $\left.\gamma \in \pi_{1}(M)\right)$, then $\|\cdot\|_{\operatorname{det} H \bullet(M, E)}^{\mathrm{RS}}$ does not depend on g^{M}, a topological invariant.
- Ray-Singer conjecture:The Ray-Singer torsion coincides with the Reidemeister torsion.
- h^{E} flat, Cheeger(1978), Müller(1978), RS conj. holds
- dim M odd, E unimodular, Müller(1991) PS conj. holds
- General case, Bismut-Zhang(1991) RS conj. holds

Cheeger-Müller theorem

- If $\operatorname{dim} M$ odd, $\|\cdot\|_{\operatorname{det} H \cdot(M, E)}^{\mathrm{RS}}$ does not depend on g^{M}, h^{E} a topological invariant.
- If $\operatorname{dim} M$ even, M orientable, h^{E} flat, then $T\left(M, g^{M}, h^{E}\right)=1$.
- If $\operatorname{dim} M$ even, h^{E} unimodular $\left(\operatorname{det} \rho(\gamma)=1\right.$ for all $\left.\gamma \in \pi_{1}(M)\right)$, then $\|\cdot\|_{\operatorname{det} H \cdot(M, E)}^{\mathrm{RS}}$ does not depend on g^{M}, a topological invariant.
- Ray-Singer conjecture:The Ray-Singer torsion coincides with the Reidemeister torsion.
- h^{E} flat, Cheeger(1978), Müller(1978), RS conj. holds
- $\operatorname{dim} M$ odd, E unimodular, Müller(1991) RS conj. holds
- General case, Bismut-Zhang(1991) PS conj, holds

Cheeger-Müller theorem

- If $\operatorname{dim} M$ odd, $\|\cdot\|_{\operatorname{det} H \cdot(M, E)}^{\mathrm{RS}}$ does not depend on g^{M}, h^{E} a topological invariant.
- If $\operatorname{dim} M$ even, M orientable, h^{E} flat, then $T\left(M, g^{M}, h^{E}\right)=1$.
- If $\operatorname{dim} M$ even, h^{E} unimodular $\left(\operatorname{det} \rho(\gamma)=1\right.$ for all $\left.\gamma \in \pi_{1}(M)\right)$, then $\|\cdot\|_{\operatorname{det} H \cdot(M, E)}^{\mathrm{RS}}$ does not depend on g^{M}, a topological invariant.
- Ray-Singer conjecture:The Ray-Singer torsion coincides with the Reidemeister torsion.
- h^{E} flat, Cheeger(1978), Müller(1978), RS conj. holds
- $\operatorname{dim} M$ odd, E unimodular, Müller(1991) RS conj. holds
- General case, Bismut-Zhang(1991) RS conj. holds

Cheeger-Müller theorem

- If $\operatorname{dim} M$ odd, $\|\cdot\|_{\operatorname{det} H \cdot(M, E)}^{\mathrm{RS}}$ does not depend on g^{M}, h^{E} a topological invariant.
- If $\operatorname{dim} M$ even, M orientable, h^{E} flat, then $T\left(M, g^{M}, h^{E}\right)=1$.
- If $\operatorname{dim} M$ even, h^{E} unimodular $\left(\operatorname{det} \rho(\gamma)=1\right.$ for all $\left.\gamma \in \pi_{1}(M)\right)$, then $\|\cdot\|_{\operatorname{det} H \cdot(M, E)}^{\mathrm{RS}}$ does not depend on g^{M}, a topological invariant.
- Ray-Singer conjecture:The Ray-Singer torsion coincides with the Reidemeister torsion.
- h^{E} flat, Cheeger(1978), Müller(1978), RS conj. holds
- $\operatorname{dim} M$ odd, E unimodular, Müller(1991) RS conj. holds
- General case, Bismut-Zhang(1991) RS conj. holds

Cheeger-Müller theorem

- If $\operatorname{dim} M$ odd, $\|\cdot\|_{\operatorname{det} H \cdot(M, E)}^{\mathrm{RS}}$ does not depend on g^{M}, h^{E} a topological invariant.
- If $\operatorname{dim} M$ even, M orientable, h^{E} flat, then $T\left(M, g^{M}, h^{E}\right)=1$.
- If $\operatorname{dim} M$ even, h^{E} unimodular $\left(\operatorname{det} \rho(\gamma)=1\right.$ for all $\left.\gamma \in \pi_{1}(M)\right)$, then $\|\cdot\|_{\operatorname{det} H \cdot(M, E)}^{\mathrm{RS}}$ does not depend on g^{M}, a topological invariant.
- Ray-Singer conjecture:The Ray-Singer torsion coincides with the Reidemeister torsion.
- h^{E} flat, Cheeger(1978), Müller(1978), RS conj. holds
- $\operatorname{dim} M$ odd, E unimodular, Müller(1991) RS conj. holds
- General case, Bismut-Zhang(1991) RS conj. holds

Cheeger-Müller theorem

- If $\operatorname{dim} M$ odd, $\|\cdot\|_{\operatorname{det} H \cdot(M, E)}^{\mathrm{RS}}$ does not depend on g^{M}, h^{E} a topological invariant.
- If $\operatorname{dim} M$ even, M orientable, h^{E} flat, then $T\left(M, g^{M}, h^{E}\right)=1$.
- If $\operatorname{dim} M$ even, h^{E} unimodular $\left(\operatorname{det} \rho(\gamma)=1\right.$ for all $\left.\gamma \in \pi_{1}(M)\right)$, then $\|\cdot\|_{\operatorname{det} H \cdot(M, E)}^{\mathrm{RS}}$ does not depend on g^{M}, a topological invariant.
- Ray-Singer conjecture:The Ray-Singer torsion coincides with the Reidemeister torsion.
- h^{E} flat, Cheeger(1978), Müller(1978), RS conj. holds
- $\operatorname{dim} M$ odd, E unimodular, Müller(1991) RS conj. holds
- General case, Bismut-Zhang(1991) RS conj. holds

$\partial M \neq \phi$

- Impose relative and absolute boundary conditions for Δ.
- h^{E} flat, g^{M} product structure near ∂M : Lott-Rothenberg(1978), Lück(1993), Vishik(1995), Hassell(1998)
- h^{E} flat, but without assuming product structure near ∂M : Dai-Fang(2000)
- Most general case: Brüning-Ma(2006)
- Gluing formula for analytic torsion: Brüning-Ma(2013)

$\partial M \neq \phi$

- Impose relative and absolute boundary conditions for Δ.
- h^{E} flat, g^{M} product structure near ∂M : Lott-Rothenberg(1978), Lück(1993), Vishik(1995), Hassell(1998)
- h^{E} flat, but without assuming product structure near ∂M : Dai-Fang(2000)
- Most general case: Brüning-Ma(2006)
- Gluing formula for analytic torsion: Brüning-Ma(2013)

$\partial M \neq \phi$

- Impose relative and absolute boundary conditions for Δ.
- h^{E} flat, g^{M} product structure near ∂M : Lott-Rothenberg(1978), Lück(1993), Vishik(1995), Hassell(1998)
- h^{E} flat, but without assuming product structure near ∂M : Dai-Fang(2000)
- Most general case: Brüning-Ma(2006)
- Gluing formula for analytic torsion: Brüning-Ma(2013)

$\partial M \neq \phi$

- Impose relative and absolute boundary conditions for Δ.
- h^{E} flat, g^{M} product structure near ∂M : Lott-Rothenberg(1978), Lück(1993), Vishik(1995), Hassell(1998)
- h^{E} flat, but without assuming product structure near ∂M : Dai-Fang(2000)
- Most general case: Brüning-Ma(2006)
- Gluing formula for analytic torsion: Brüning-Ma(2013)
- Impose relative and absolute boundary conditions for Δ.
- h^{E} flat, g^{M} product structure near ∂M : Lott-Rothenberg(1978), Lück(1993), Vishik(1995), Hassell(1998)
- h^{E} flat, but without assuming product structure near ∂M : Dai-Fang(2000)
- Most general case: Brüning-Ma(2006)
- Gluing formula for analytic torsion: Brüning-Ma(2013)

Odd signature operator

- $\left(M^{m}, g^{M}\right)$ a closed oriented Riemannian manifold, $m=2 r-1$.
- $\left(E, \nabla, h^{E}\right)$ a complex flat vector bundle over M.
- Define the Chirality operator by
where $*$ is the Hodge star operator. Then $\Gamma^{2}=\mathrm{Id}$,
- In general $\nabla^{*}=\Gamma \nabla^{\prime} \Gamma$. If ∇ Hermitian, then $\nabla^{*}=\Gamma \nabla \Gamma$.
- The odd signature operator

$$
\mathcal{B}:=\Gamma \nabla+\nabla \Gamma: \Omega^{\bullet}(M, E) \rightarrow \Omega^{\bullet}(M, E)
$$

not necessarily self-adjoint.

- Note that, if ∇ Hermitian, $\mathcal{B}^{2}=(\Gamma \nabla+\nabla \Gamma)^{2}=\Delta$.

Odd signature operator

- $\left(M^{m}, g^{M}\right)$ a closed oriented Riemannian manifold, $m=2 r-1$.
- $\left(E, \nabla, h^{E}\right)$ a complex flat vector bundle over M.
- Define the Chirality operator by
where $*$ is the Hodge star operator. Then $\Gamma^{2}=\mathrm{Id}$,
- In general $\nabla^{*}=\Gamma \nabla^{\prime} \Gamma$. If ∇ Hermitian, then $\nabla^{*}=\Gamma \nabla \Gamma$
- The odd signature operator

not necessarily self-adjoint.
- Note that, if ∇ Hermitian, $\mathcal{B}^{2}=(\Gamma \nabla+\nabla \Gamma)^{2}=\Delta$.

Odd signature operator

- $\left(M^{m}, g^{M}\right)$ a closed oriented Riemannian manifold, $m=2 r-1$.
- $\left(E, \nabla, h^{E}\right)$ a complex flat vector bundle over M.
- Define the Chirality operator by

$$
\Gamma:=i^{r}(-1)^{\frac{k(k+1)}{2}} *: \Omega^{k}(M, E) \rightarrow \Omega^{m-k}(M, E)
$$

where $*$ is the Hodge star operator. Then $\Gamma^{2}=\mathrm{Id}$,

- In general $\nabla^{*}=\Gamma \nabla^{\prime} \Gamma$. If ∇ Hermitian, then $\nabla^{*}=\Gamma \nabla \Gamma$.
- The odd signature operator

not necessarily self-adjoint.
- Note that, if ∇ Hermitian, $\quad \mathcal{B}^{2}=(\Gamma \nabla+\nabla \Gamma)^{2}=\Delta$.

Odd signature operator

- $\left(M^{m}, g^{M}\right)$ a closed oriented Riemannian manifold, $m=2 r-1$.
- $\left(E, \nabla, h^{E}\right)$ a complex flat vector bundle over M.
- Define the Chirality operator by

$$
\Gamma:=i^{r}(-1)^{\frac{k(k+1)}{2}} *: \Omega^{k}(M, E) \rightarrow \Omega^{m-k}(M, E)
$$

where $*$ is the Hodge star operator. Then $\Gamma^{2}=\mathrm{Id}$,

- In general $\nabla^{*}=\Gamma \nabla^{\prime} \Gamma$. If ∇ Hermitian, then $\nabla^{*}=\Gamma \nabla \Gamma$.
- The odd signature operator

not necessarily self-adjoint.
- Note that, if ∇ Hermitian, $\mathcal{B}^{2}=(\Gamma \nabla+\nabla \Gamma)^{2}=\Delta$.

Odd signature operator

- $\left(M^{m}, g^{M}\right)$ a closed oriented Riemannian manifold, $m=2 r-1$.
- $\left(E, \nabla, h^{E}\right)$ a complex flat vector bundle over M.
- Define the Chirality operator by

$$
\Gamma:=i^{r}(-1)^{\frac{k(k+1)}{2}} *: \Omega^{k}(M, E) \rightarrow \Omega^{m-k}(M, E)
$$

where $*$ is the Hodge star operator. Then $\Gamma^{2}=\mathrm{Id}$,

- In general $\nabla^{*}=\Gamma \nabla^{\prime} \Gamma$. If ∇ Hermitian, then $\nabla^{*}=\Gamma \nabla \Gamma$.
- The odd signature operator

$$
\mathcal{B}:=\Gamma \nabla+\nabla \Gamma: \Omega^{\bullet}(M, E) \rightarrow \Omega^{\bullet}(M, E)
$$

not necessarily self-adjoint.

Odd signature operator

- $\left(M^{m}, g^{M}\right)$ a closed oriented Riemannian manifold, $m=2 r-1$.
- $\left(E, \nabla, h^{E}\right)$ a complex flat vector bundle over M.
- Define the Chirality operator by

$$
\Gamma:=i^{r}(-1)^{\frac{k(k+1)}{2}} *: \Omega^{k}(M, E) \rightarrow \Omega^{m-k}(M, E)
$$

where $*$ is the Hodge star operator. Then $\Gamma^{2}=\mathrm{Id}$,

- In general $\nabla^{*}=\Gamma \nabla^{\prime} \Gamma$. If ∇ Hermitian, then $\nabla^{*}=\Gamma \nabla \Gamma$.
- The odd signature operator

$$
\mathcal{B}:=\Gamma \nabla+\nabla \Gamma: \Omega^{\bullet}(M, E) \rightarrow \Omega^{\bullet}(M, E)
$$

not necessarily self-adjoint.

- Note that, if ∇ Hermitian, $\mathcal{B}^{2}=(\Gamma \nabla+\nabla \Gamma)^{2}=\Delta$.

Graded determinant of $\mathcal{B}_{\text {even }}$

- Denote by $\Omega_{+}^{p}(M, E)=\operatorname{Ker}(\nabla \Gamma) \cap \Omega^{p}(M, E)$,

$$
\Omega_{-}^{p}(M, E)=\operatorname{Ker}(\Gamma \nabla) \cap \Omega^{p}(M, E) .
$$

Definition(Braverman-Kapper)

The graded determinant of $\mathcal{B}_{\text {even }}$ is defined as

Graded determinant of $\mathcal{B}_{\text {even }}$

- Denote by $\Omega_{+}^{p}(M, E)=\operatorname{Ker}(\nabla \Gamma) \cap \Omega^{p}(M, E)$,

$$
\Omega_{-}^{p}(M, E)=\operatorname{Ker}(\Gamma \nabla) \cap \Omega^{p}(M, E) .
$$

Definition(Braverman-Kapper)

The graded determinant of $\mathcal{B}_{\text {even }}$ is defined as

$$
\operatorname{Det}_{\mathrm{gr}}\left(\mathcal{B}_{\text {even }}\right):=\frac{\operatorname{Det}\left(\left.\mathcal{B}\right|_{\Omega_{+}^{\text {even }}(M, E)}\right)}{\operatorname{Det}\left(-\left.\mathcal{B}\right|_{\Omega_{-}^{\text {even }}(M, E)}\right)}
$$

η-invariant

- The η-function of $\mathcal{B}_{\text {even }}$ is defined as

$$
\eta\left(s, \mathcal{B}_{\text {even }}\right)=\sum_{\operatorname{Re} \lambda>0} \lambda^{-s}-\sum_{\operatorname{Re} \lambda<0}(-\lambda)^{-s}
$$

- $\eta\left(s, \mathcal{B}_{\text {even }}\right)$ holomorphic for $\operatorname{Re} s$ large and admits a meromorphic extension to \mathbb{C}. In particular, $s=0$ is a regular point.
- The η-invariant of $B_{\text {even }}$ is defined as

where $m_{ \pm}$are \# of eigenvalues on \pm-parts of imaginary axis.
- Denote by $\eta_{\text {trivial }}\left(g^{M}\right)$ the η-invariant for $M \times \mathbb{C}$

η-invariant

- The η-function of $\mathcal{B}_{\text {even }}$ is defined as

$$
\eta\left(s, \mathcal{B}_{\text {even }}\right)=\sum_{\operatorname{Re} \lambda>0} \lambda^{-s}-\sum_{\operatorname{Re} \lambda<0}(-\lambda)^{-s}
$$

- $\eta\left(s, \mathcal{B}_{\text {even }}\right)$ holomorphic for $\operatorname{Re} s$ large and admits a meromorphic extension to \mathbb{C}. In particular, $s=0$ is a regular point.
- The η-invariant of $\mathcal{B}_{\text {even }}$ is defined as
where $m_{ \pm}$are \# of eigenvalues on \pm-parts of imaginary axis.
- Denote by $\eta_{\text {urival }}\left(g^{M}\right)$ the η-invariant for $M \times \mathbb{C}$

η-invariant

- The η-function of $\mathcal{B}_{\text {even }}$ is defined as

$$
\eta\left(s, \mathcal{B}_{\text {even }}\right)=\sum_{\operatorname{Re} \lambda>0} \lambda^{-s}-\sum_{\operatorname{Re} \lambda<0}(-\lambda)^{-s}
$$

- $\eta\left(s, \mathcal{B}_{\text {even }}\right)$ holomorphic for $\operatorname{Re} s$ large and admits a meromorphic extension to \mathbb{C}. In particular, $s=0$ is a regular point.
- The η-invariant of $\mathcal{B}_{\text {even }}$ is defined as

$$
\eta\left(\mathcal{B}_{\text {even }}\right)=\frac{\eta\left(0, \mathcal{B}_{\text {even }}\right)+m_{+}\left(\mathcal{B}_{\text {even }}\right)-m_{-}\left(\mathcal{B}_{\text {even }}\right)}{2}
$$

where $m_{ \pm}$are \# of eigenvalues on \pm-parts of imaginary axis.

- Denote by $\eta_{\text {trivial }}\left(g^{M}\right)$ the η-invariant for $M \times \mathbb{C}$

η-invariant

- The η-function of $\mathcal{B}_{\text {even }}$ is defined as

$$
\eta\left(s, \mathcal{B}_{\text {even }}\right)=\sum_{\operatorname{Re} \lambda>0} \lambda^{-s}-\sum_{\operatorname{Re} \lambda<0}(-\lambda)^{-s}
$$

- $\eta\left(s, \mathcal{B}_{\text {even }}\right)$ holomorphic for $\operatorname{Re} s$ large and admits a meromorphic extension to \mathbb{C}. In particular, $s=0$ is a regular point.
- The η-invariant of $\mathcal{B}_{\text {even }}$ is defined as

$$
\eta\left(\mathcal{B}_{\text {even }}\right)=\frac{\eta\left(0, \mathcal{B}_{\text {even }}\right)+m_{+}\left(\mathcal{B}_{\text {even }}\right)-m_{-}\left(\mathcal{B}_{\text {even }}\right)}{2}
$$

where $m_{ \pm}$are $\#$ of eigenvalues on \pm-parts of imaginary axis.

- Denote by $\eta_{\text {trivial }}\left(g^{M}\right)$ the η-invariant for $M \times \mathbb{C}$

Relation with η-invariant

Proposition

- If

$$
\xi=\left.\frac{1}{2} \sum_{p=0}^{m}(-1)^{p+1} \cdot p \cdot \log \operatorname{Det} \mathcal{B}^{2}\right|_{\Omega^{p}(M, E)}
$$

then

$$
\operatorname{Det}_{\mathrm{gr}}\left(\mathcal{B}_{\mathrm{even}}\right)=e^{\xi-i \pi\left(\eta\left(\mathcal{B}_{\mathrm{even}}\right)+\cdots\right)}
$$

- In particular, if ∇ is acyclic (i.e. $H^{\bullet}(M, E)=0$) and Hermitian, then $\log \operatorname{Det}_{\mathrm{gr}}\left(\mathcal{B}_{\text {even }}\right)=\log \rho^{\mathrm{RS}}(\nabla)-i \pi \eta\left(\mathcal{B}_{\text {even }}\right)$.

Relation with η-invariant

Proposition

- If

$$
\xi=\left.\frac{1}{2} \sum_{p=0}^{m}(-1)^{p+1} \cdot p \cdot \log \operatorname{Det} \mathcal{B}^{2}\right|_{\Omega^{p}(M, E)}
$$

then

$$
\operatorname{Det}_{\mathrm{gr}}\left(\mathcal{B}_{\text {even }}\right)=e^{\xi-i \pi\left(\eta\left(\mathcal{B}_{\text {even }}\right)+\cdots\right)}
$$

- In particular, if ∇ is acyclic (i.e. $H^{\bullet}(M, E)=0$) and Hermitian, then

$$
\log \operatorname{Det}_{\mathrm{gr}}\left(\mathcal{B}_{\mathrm{even}}\right)=\log \rho^{\mathrm{RS}}(\nabla)-i \pi \eta\left(\mathcal{B}_{\text {even }}\right)
$$

Refined analytic torsion

- Volume element:

$$
\begin{aligned}
\rho_{\Gamma}\left(\nabla, g^{M}\right)= & (-1)^{R} \cdot\left[h_{0}\right] \otimes\left[h_{1}\right]^{-1} \otimes \cdots \otimes\left[h_{r-1}\right]^{(-1)^{r-1}} \\
& \otimes\left[\Gamma h_{r-1}\right]^{(-1)^{r}} \otimes\left[\Gamma h_{r-2}\right]^{(-1)^{r-1}} \otimes \cdots \otimes\left[\Gamma h_{0}\right]^{(-1)}
\end{aligned}
$$

and R an algebraic formula on Betti numbers $\beta_{p}(M, E)$

Definition \& Theorem (Braverman-Kappeler 2007)
 The refined analytic torsion defined by

 independent of the choice of g^{M} and a topological invariant.

Refined analytic torsion

- Volume element:

$$
\begin{aligned}
\rho_{\Gamma}\left(\nabla, g^{M}\right)= & (-1)^{R} \cdot\left[h_{0}\right] \otimes\left[h_{1}\right]^{-1} \otimes \cdots \otimes\left[h_{r-1}\right]^{(-1)^{r-1}} \\
& \otimes\left[\Gamma h_{r-1}\right]^{(-1)^{r}} \otimes\left[\Gamma h_{r-2}\right]^{(-1)^{r-1}} \otimes \cdots \otimes\left[\Gamma h_{0}\right]^{(-1)}
\end{aligned}
$$

and R an algebraic formula on Betti numbers $\beta_{p}(M, E)$

Definition \& Theorem (Braverman-Kappeler 2007)

The refined analytic torsion defined by

$$
\rho_{\mathrm{an}}(\nabla):=\rho_{\Gamma}\left(\nabla, g^{M}\right) \cdot \operatorname{Det}_{\mathrm{gr}}\left(\mathcal{B}_{\mathrm{even}}\right) \cdot e^{i \pi \cdot \mathrm{rk} E \cdot \eta_{\text {trivial }}\left(g^{M}\right)}
$$

independent of the choice of g^{M} and a topological invariant.

Some properties of refined analytic torsion

- (Braverman-Kappeler 2007): The refined analytic torsion is closely related to the Farber-Turaev torsion, a refinement of the Reidemeister torsion.
- If E acyclic and ∇ Hermitian, then $\left|\rho_{\text {an }}(\nabla)\right|=\rho^{R S}(\nabla)$ and $\operatorname{Ph}\left(\rho_{\text {an }}(\nabla)\right)=-\pi \rho(\nabla)$, where $\rho(\nabla)=\eta\left(\mathcal{B}_{\text {even }}\right)-\operatorname{rank} E \cdot \eta_{\text {trivial }}\left(g^{M}\right)$.
- Refined analytic torsion is an analytic function on the space of representation variety.
- Braverman-Vertman (2013): An alternative derivation of the Bismut-Zhang's formula on the connected components of the complex representation space which contain a unitary point.

Some properties of refined analytic torsion

- (Braverman-Kappeler 2007): The refined analytic torsion is closely related to the Farber-Turaev torsion, a refinement of the Reidemeister torsion.
- If E acyclic and ∇ Hermitian, then $\left|\rho_{\text {an }}(\nabla)\right|=\rho^{\mathrm{RS}}(\nabla)$ and $\operatorname{Ph}\left(\rho_{\text {an }}(\nabla)\right)=-\pi \rho(\nabla)$, where $\rho(\nabla)=\eta\left(\mathcal{B}_{\text {even }}\right)-\operatorname{rank} E \cdot \eta_{\text {trivial }}\left(g^{M}\right)$.
- Refined analytic torsion is an analytic function on the space of representation variety.
- Braverman-Vertman (2013): An alternative derivation of the Bismut-Zhang's formula on the connected components of the complex representation space which contain a unitary point.

Some properties of refined analytic torsion

- (Braverman-Kappeler 2007): The refined analytic torsion is closely related to the Farber-Turaev torsion, a refinement of the Reidemeister torsion.
- If E acyclic and ∇ Hermitian, then $\left|\rho_{\text {an }}(\nabla)\right|=\rho^{\mathrm{RS}}(\nabla)$ and $\operatorname{Ph}\left(\rho_{\text {an }}(\nabla)\right)=-\pi \rho(\nabla)$, where $\rho(\nabla)=\eta\left(\mathcal{B}_{\text {even }}\right)-\operatorname{rank} E \cdot \eta_{\text {trivial }}\left(g^{M}\right)$.
- Refined analytic torsion is an analytic function on the space of representation variety.
- Braverman-Vertman (2013): An alternative derivation of the Bismut-Zhang's formula on the connected components of the complex representation space which contain a unitary point.

Some properties of refined analytic torsion

- (Braverman-Kappeler 2007): The refined analytic torsion is closely related to the Farber-Turaev torsion, a refinement of the Reidemeister torsion.
- If E acyclic and ∇ Hermitian, then $\left|\rho_{\text {an }}(\nabla)\right|=\rho^{\mathrm{RS}}(\nabla)$ and $\operatorname{Ph}\left(\rho_{\text {an }}(\nabla)\right)=-\pi \rho(\nabla)$, where $\rho(\nabla)=\eta\left(\mathcal{B}_{\text {even }}\right)-\operatorname{rank} E \cdot \eta_{\text {trivial }}\left(g^{M}\right)$.
- Refined analytic torsion is an analytic function on the space of representation variety.
- Braverman-Vertman (2013): An alternative derivation of the Bismut-Zhang's formula on the connected components of the complex representation space which contain a unitary point.

$\partial M \neq \phi$

- When $\partial M \neq \phi$, Vertman(2009) and Huang-Lee(2010) in two different independent constructions.
- Braverman-Vertman (2015): A gluing formula for refined analytic torsion on connected components of the complex representation space which contain a unitary point.
- The essential ingredient in the definition of the refined analytic torsion is the twisted de Rham complex with a chirality operator and the odd signature operator associated to the complex.
- Roughly speaking, Vertman considers

$\partial M \neq \phi$

- When $\partial M \neq \phi$, Vertman(2009) and Huang-Lee(2010) in two different independent constructions.
- Braverman-Vertman (2015): A gluing formula for refined analytic torsion on connected components of the complex representation space which contain a unitary point.
- The essential ingredient in the definition of the refined analytic torsion is the twisted de Rham complex with a chirality operator and the odd signature operator associated to the complex.
- Roughly speaking, Vertman considers

$\partial M \neq \phi$

- When $\partial M \neq \phi$, Vertman(2009) and Huang-Lee(2010) in two different independent constructions.
- Braverman-Vertman (2015): A gluing formula for refined analytic torsion on connected components of the complex representation space which contain a unitary point.
- The essential ingredient in the definition of the refined analytic torsion is the twisted de Rham complex with a chirality operator and the odd signature operator associated to the complex.
- Roughly speaking, Vertman considers

$\partial M \neq \phi$

- When $\partial M \neq \phi$, Vertman(2009) and Huang-Lee(2010) in two different independent constructions.
- Braverman-Vertman (2015): A gluing formula for refined analytic torsion on connected components of the complex representation space which contain a unitary point.
- The essential ingredient in the definition of the refined analytic torsion is the twisted de Rham complex with a chirality operator and the odd signature operator associated to the complex.
- Roughly speaking, Vertman considers

$$
\Omega_{\mathrm{rel}}^{\bullet}(M, E) \oplus \Omega_{\mathrm{abs}}^{\bullet}(M, E), \quad \widetilde{\Gamma}=\left(\begin{array}{cc}
0 & \Gamma \\
\Gamma & 0
\end{array}\right), \quad \widetilde{\mathcal{B}}_{\mathrm{even}}:=\left(\begin{array}{cc}
0 & \mathcal{B}_{\mathrm{even}} \\
\mathcal{B}_{\mathrm{even}} & 0
\end{array}\right)
$$

Vertman's approach

Lemma

$\operatorname{Spec}\left(\widetilde{\mathcal{B}}_{\text {even,rel/abs }}\right)$ is symmetric w.r.t. 0 . Hence $\eta\left(\widetilde{\mathcal{B}}_{\text {even,rel/abs }}\right)=0$.

Proposition

If ∇ is acyclic and Hermitian, then

Vertman's approach

Lemma

$\operatorname{Spec}\left(\widetilde{\mathcal{B}}_{\text {even,rel } / \text { abs }}\right)$ is symmetric w.r.t. 0 . Hence $\eta\left(\widetilde{\mathcal{B}}_{\text {even,rel/abs }}\right)=0$.

Proof.

$$
\begin{aligned}
& \left(\begin{array}{cc}
0 & \mathcal{B}_{\text {even }} \\
\mathcal{B}_{\text {even }} & 0
\end{array}\right)\binom{\phi_{\text {rel }}}{\psi_{\text {abs }}}=\binom{\mathcal{B}_{\text {even }} \psi_{\text {abs }}}{\mathcal{B}_{\text {even }} \phi_{\text {rel }}}=\lambda\binom{\phi_{\text {rel }}}{\psi_{\text {abs }}} . \\
& \left(\begin{array}{cc}
0 & \mathcal{B}_{\text {even }} \\
\mathcal{B}_{\text {even }} & 0
\end{array}\right)\binom{\phi_{\text {rel }}}{-\psi_{\text {abs }}}=\binom{-\mathcal{B}_{\text {even }} \psi_{\text {abs }}}{\mathcal{B}_{\text {even }} \phi_{\text {rel }}}=-\lambda\binom{\phi_{\text {rel }}}{-\psi_{\text {abs }}} .
\end{aligned}
$$

Proposition

If ∇ is acyclic and Hermitian, then

$$
\log \operatorname{Det}_{\mathrm{gr}} \widetilde{\mathcal{B}}_{\mathrm{even}, \mathrm{rel} / \mathrm{abs}}=\left(\log \rho_{\mathrm{rel}}^{\mathrm{RS}}(\nabla)+\log \rho_{\mathrm{abs}}^{\mathrm{RS}}(\nabla)\right)
$$

Vertman's approach

Lemma

$\operatorname{Spec}\left(\widetilde{\mathcal{B}}_{\text {even,rel } / \text { abs }}\right)$ is symmetric w.r.t. 0 . Hence $\eta\left(\widetilde{\mathcal{B}}_{\text {even,rel } / \text { abs }}\right)=0$.
Proof.

$$
\begin{aligned}
& \left(\begin{array}{cc}
0 & \mathcal{B}_{\text {even }} \\
\mathcal{B}_{\text {even }} & 0
\end{array}\right)\binom{\phi_{\text {rel }}}{\psi_{\text {abs }}}=\binom{\mathcal{B}_{\text {even }} \psi_{\text {abs }}}{\mathcal{B}_{\text {even }} \phi_{\text {rel }}}=\lambda\binom{\phi_{\text {rel }}}{\psi_{\text {abs }}} . \\
& \left(\begin{array}{cc}
0 & \mathcal{B}_{\text {even }} \\
\mathcal{B}_{\text {even }} & 0
\end{array}\right)\binom{\phi_{\text {rel }}}{-\psi_{\text {abs }}}=\binom{-\mathcal{B}_{\text {even }} \psi_{\text {abs }}}{\mathcal{B}_{\text {even }} \phi_{\text {rel }}}=-\lambda\binom{\phi_{\text {rel }}}{-\psi_{\text {abs }}} .
\end{aligned}
$$

Proposition

If ∇ is acyclic and Hermitian, then

$$
\log \operatorname{Det}_{\mathrm{gr}} \widetilde{\mathcal{B}}_{\mathrm{even}, \mathrm{rel} / \mathrm{abs}}=\left(\log \rho_{\mathrm{rel}}^{\mathrm{RS}}(\nabla)+\log \rho_{\mathrm{abs}}^{\mathrm{RS}}(\nabla)\right)
$$

Boundary conditions for \mathcal{B}

- Now assume $\partial M=Y \neq \phi$ and g^{M} is a product metric near Y.
- Trivialize E along the normal direction near Y by using ∇.
- Assume ∇ is Hermitian.
- For $\phi \in \Omega^{\bullet}(M, E)$ and $\mathcal{B} \phi=0$, near Y,
where $\phi_{2}, \psi_{2} \in \operatorname{Ker} \Delta_{Y}$.
- We define

$$
\mathcal{K}=\left\{\phi_{2} \mid \nabla \phi=\Gamma \nabla \Gamma \phi=0\right\}, \quad \Gamma^{Y} \mathcal{K}=\left\{\psi_{2} \mid \nabla \phi=\Gamma \nabla \Gamma \phi=0\right\} .
$$

- Then
where $\iota: Y \hookrightarrow M$
and
$H^{\bullet}\left(Y,\left.E\right|_{Y}\right) \cong \operatorname{Ker} \Delta_{Y}=\mathcal{K} \oplus \Gamma^{Y} \mathcal{K}$.

Boundary conditions for \mathcal{B}

- Now assume $\partial M=Y \neq \phi$ and g^{M} is a product metric near Y.
- Trivialize E along the normal direction near Y by using ∇.
- Assume ∇ is Hermitian.
- For $\phi \in \Omega^{\bullet}(M, E)$ and $\mathcal{B} \phi=0$, near Y,
where $\phi_{2}, \psi_{2} \in \operatorname{Ker} \Delta_{Y}$.
- We define

- Then
where $\iota: Y \hookrightarrow M$
and

Boundary conditions for \mathcal{B}

- Now assume $\partial M=Y \neq \phi$ and g^{M} is a product metric near Y.
- Trivialize E along the normal direction near Y by using ∇.
- Assume ∇ is Hermitian.
- For $\phi \in \Omega^{\bullet}(M, E)$ and $\mathcal{B} \phi=0$, near Y,
where $\phi_{2}, \psi_{2} \in \operatorname{Ker} \Delta_{Y}$.
- We define

- Then
and
where $\iota: Y \hookrightarrow M$

Boundary conditions for \mathcal{B}

- Now assume $\partial M=Y \neq \phi$ and g^{M} is a product metric near Y.
- Trivialize E along the normal direction near Y by using ∇.
- Assume ∇ is Hermitian.
- For $\phi \in \Omega^{\bullet}(M, E)$ and $\mathcal{B} \phi=0$, near Y,

$$
\phi=\nabla^{Y} \phi_{1}+\phi_{2}+d u \wedge\left(\left(\nabla^{Y}\right)^{*} \psi_{1}+\psi_{2}\right)
$$

where $\phi_{2}, \psi_{2} \in \operatorname{Ker} \Delta_{Y}$.

- We define
- Then
where $\iota: Y \hookrightarrow M$
and

Boundary conditions for \mathcal{B}

- Now assume $\partial M=Y \neq \phi$ and g^{M} is a product metric near Y.
- Trivialize E along the normal direction near Y by using ∇.
- Assume ∇ is Hermitian.
- For $\phi \in \Omega^{\bullet}(M, E)$ and $\mathcal{B} \phi=0$, near Y,

$$
\phi=\nabla^{Y} \phi_{1}+\phi_{2}+d u \wedge\left(\left(\nabla^{Y}\right)^{*} \psi_{1}+\psi_{2}\right)
$$

where $\phi_{2}, \psi_{2} \in \operatorname{Ker} \Delta_{Y}$.

- We define

$$
\mathcal{K}=\left\{\phi_{2} \mid \nabla \phi=\Gamma \nabla \Gamma \phi=0\right\}, \quad \Gamma^{Y} \mathcal{K}=\left\{\psi_{2} \mid \nabla \phi=\Gamma \nabla \Gamma \phi=0\right\} .
$$

- Then
where $\iota: Y \hookrightarrow M$
and

Boundary conditions for \mathcal{B}

- Now assume $\partial M=Y \neq \phi$ and g^{M} is a product metric near Y.
- Trivialize E along the normal direction near Y by using ∇.
- Assume ∇ is Hermitian.
- For $\phi \in \Omega^{\bullet}(M, E)$ and $\mathcal{B} \phi=0$, near Y,

$$
\phi=\nabla^{Y} \phi_{1}+\phi_{2}+d u \wedge\left(\left(\nabla^{Y}\right)^{*} \psi_{1}+\psi_{2}\right),
$$

where $\phi_{2}, \psi_{2} \in \operatorname{Ker} \Delta_{Y}$.

- We define

$$
\mathcal{K}=\left\{\phi_{2} \mid \nabla \phi=\Gamma \nabla \Gamma \phi=0\right\}, \quad \Gamma^{Y} \mathcal{K}=\left\{\psi_{2} \mid \nabla \phi=\Gamma \nabla \Gamma \phi=0\right\} .
$$

- Then

$$
\mathcal{K} \cong \operatorname{Im}\left(\iota^{*}: H^{\bullet}(M, E) \rightarrow H^{\bullet}\left(Y,\left.E\right|_{Y}\right)\right), \quad \text { where } \iota: Y \hookrightarrow M
$$

and

$$
H^{\bullet}\left(Y,\left.E\right|_{Y}\right) \cong \operatorname{Ker} \Delta_{Y}=\mathcal{K} \oplus \Gamma^{Y} \mathcal{K}
$$

Projections \mathcal{P}_{-}and \mathcal{P}_{+}

- Hodge decomposition:

$$
\Omega^{\bullet}\left(Y,\left.E\right|_{Y}\right)=\operatorname{Im} \nabla^{Y} \oplus \operatorname{Im}\left(\nabla^{Y}\right)^{*} \oplus \mathcal{K} \oplus \Gamma^{Y} \mathcal{K}
$$

- Define the orthognal projections $\mathcal{P}_{-}, \mathcal{P}_{+}$by

- Define the realization $\mathcal{B}_{\mathcal{P}_{-}}$by \mathcal{B} with domain

and similarly, for $\mathcal{B}_{\mathcal{P}_{+}}$
- Note that

$$
\Gamma^{Y} \mathcal{P}_{-} \Gamma^{Y}=\mathcal{P}_{+}, \quad \Gamma \mathcal{B}_{\mathcal{P}_{-}} \Gamma=\mathcal{B}_{\mathcal{P}_{+}}
$$

Projections \mathcal{P}_{-}and \mathcal{P}_{+}

- Hodge decomposition:

$$
\Omega^{\bullet}\left(Y,\left.E\right|_{Y}\right)=\operatorname{Im} \nabla^{Y} \oplus \operatorname{Im}\left(\nabla^{Y}\right)^{*} \oplus \mathcal{K} \oplus \Gamma^{Y} \mathcal{K}
$$

- Define the orthognal projections $\mathcal{P}_{-}, \mathcal{P}_{+}$by

$$
\operatorname{Im} \mathcal{P}_{-}=\binom{\operatorname{Im} \nabla^{Y} \oplus \mathcal{K}}{\operatorname{Im} \nabla^{Y} \oplus \mathcal{K}}, \quad \operatorname{Im} \mathcal{P}_{+}=\binom{\operatorname{Im}\left(\nabla^{Y}\right)^{*} \oplus \Gamma^{Y} \mathcal{K}}{\operatorname{Im}\left(\nabla^{Y}\right)^{*} \oplus \Gamma^{Y} \mathcal{K}}
$$

- Define the realization $\mathcal{B}_{\mathcal{P}_{-}}$by \mathcal{B} with domain

$$
\operatorname{Dom}\left(\mathcal{B}_{\mathcal{P}_{-}}\right)=\left\{\psi \in \Omega^{\bullet}(M, E) \mid \mathcal{P}_{-}\left(\left.\psi\right|_{Y}\right)=0\right\},
$$

and similarly, for $\mathcal{B}_{\mathcal{P}_{+}}$

- Note that

Projections \mathcal{P}_{-}and \mathcal{P}_{+}

- Hodge decomposition:

$$
\Omega^{\bullet}\left(Y,\left.E\right|_{Y}\right)=\operatorname{Im} \nabla^{Y} \oplus \operatorname{Im}\left(\nabla^{Y}\right)^{*} \oplus \mathcal{K} \oplus \Gamma^{Y} \mathcal{K}
$$

- Define the orthognal projections $\mathcal{P}_{-}, \mathcal{P}_{+}$by

$$
\operatorname{Im} \mathcal{P}_{-}=\binom{\operatorname{Im} \nabla^{Y} \oplus \mathcal{K}}{\operatorname{Im} \nabla^{Y} \oplus \mathcal{K}}, \quad \operatorname{Im} \mathcal{P}_{+}=\binom{\operatorname{Im}\left(\nabla^{Y}\right)^{*} \oplus \Gamma^{Y} \mathcal{K}}{\operatorname{Im}\left(\nabla^{Y}\right)^{*} \oplus \Gamma^{Y} \mathcal{K}}
$$

- Define the realization $\mathcal{B}_{\mathcal{P}_{-}}$by \mathcal{B} with domain

$$
\operatorname{Dom}\left(\mathcal{B}_{\mathcal{P}_{-}}\right)=\left\{\psi \in \Omega^{\bullet}(M, E) \mid \mathcal{P}_{-}\left(\left.\psi\right|_{Y}\right)=0\right\}
$$

and similarly, for $\mathcal{B}_{\mathcal{P}_{+}}$.

- Note that

Projections \mathcal{P}_{-}and \mathcal{P}_{+}

- Hodge decomposition:

$$
\Omega^{\bullet}\left(Y,\left.E\right|_{Y}\right)=\operatorname{Im} \nabla^{Y} \oplus \operatorname{Im}\left(\nabla^{Y}\right)^{*} \oplus \mathcal{K} \oplus \Gamma^{Y} \mathcal{K}
$$

- Define the orthognal projections $\mathcal{P}_{-}, \mathcal{P}_{+}$by

$$
\operatorname{Im} \mathcal{P}_{-}=\binom{\operatorname{Im} \nabla^{Y} \oplus \mathcal{K}}{\operatorname{Im} \nabla^{Y} \oplus \mathcal{K}}, \quad \operatorname{Im} \mathcal{P}_{+}=\binom{\operatorname{Im}\left(\nabla^{Y}\right)^{*} \oplus \Gamma^{Y} \mathcal{K}}{\operatorname{Im}\left(\nabla^{Y}\right)^{*} \oplus \Gamma^{Y} \mathcal{K}}
$$

- Define the realization $\mathcal{B}_{\mathcal{P}_{-}}$by \mathcal{B} with domain

$$
\operatorname{Dom}\left(\mathcal{B}_{\mathcal{P}_{-}}\right)=\left\{\psi \in \Omega^{\bullet}(M, E) \mid \mathcal{P}_{-}\left(\left.\psi\right|_{Y}\right)=0\right\}
$$

and similarly, for $\mathcal{B}_{\mathcal{P}_{+}}$.

- Note that

$$
\Gamma^{Y} \mathcal{P}_{-} \Gamma^{Y}=\mathcal{P}_{+}, \quad \Gamma \mathcal{B}_{\mathcal{P}_{-}} \Gamma=\mathcal{B}_{\mathcal{P}_{+}}
$$

A cochain complex with a chirality operator Γ

- Cochain complexes $\left(\Omega_{\widetilde{\mathcal{P}}_{0 / 1}^{\bullet}}(M, E), \nabla, \Gamma\right)$:

$$
0 \rightarrow \Omega_{\mathcal{P}_{\mp}}^{0}(M, E) \xrightarrow{\nabla} \Omega_{\mathcal{P}_{ \pm}}^{1}(M, E) \xrightarrow{\nabla} \cdots \xrightarrow{\nabla} \Omega_{\mathcal{P}_{ \pm}}^{m}(M, E) \rightarrow 0,
$$

where

$$
\Omega_{\mathcal{P}_{ \pm}}^{q}(M, E):=\left\{\psi \in \Omega^{q}(M, E) \mid \mathcal{P}_{ \pm}\left(\left.\left(\mathcal{B}^{l} \psi\right)\right|_{Y}\right)=0, \quad l=0,1,2, \cdots\right\}
$$

Proposition

- $H_{\mathcal{P}_{-}}^{q}(M, E):=H^{q}\left(\Omega_{\mathcal{P}_{-}}^{\bullet}(M, E), \nabla\right) \cong \operatorname{Ker} \mathcal{B}_{q, \mathcal{P}_{-}}^{2}=\operatorname{Ker} \mathcal{B}_{q, \text { rel }}^{2} \cong H^{q}(M, Y, E)$,
- $H_{\mathcal{P}+}^{q}(M, E):=H^{q}\left(\Omega_{\mathcal{P}}^{\bullet}(M, E), \nabla\right) \cong \operatorname{Ker} \mathcal{B}_{q, \mathcal{P}}^{2}=\operatorname{Ker} \mathcal{B}_{q, \text { abs }}^{2} \cong H^{q}(M, E)$.

A cochain complex with a chirality operator Γ

- Cochain complexes $\left(\Omega_{\stackrel{\mathcal{P}}{0 / 1}^{\bullet}}(M, E), \nabla, \Gamma\right)$:

$$
0 \rightarrow \Omega_{\mathcal{P}_{\mp}}^{0}(M, E) \xrightarrow{\nabla} \Omega_{\mathcal{P}_{ \pm}}^{1}(M, E) \xrightarrow{\nabla} \cdots \xrightarrow{\nabla} \Omega_{\mathcal{P}_{ \pm}}^{m}(M, E) \rightarrow 0,
$$

where

$$
\Omega_{\mathcal{P}_{ \pm}}^{q}(M, E):=\left\{\psi \in \Omega^{q}(M, E) \mid \mathcal{P}_{ \pm}\left(\left.\left(\mathcal{B}^{l} \psi\right)\right|_{Y}\right)=0, \quad l=0,1,2, \cdots\right\}
$$

Proposition

- $H_{\mathcal{P}_{-}}^{q}(M, E):=H^{q}\left(\Omega_{\mathcal{P}_{-}}^{\bullet}(M, E), \nabla\right) \cong \operatorname{Ker} \mathcal{B}_{q, \mathcal{P}_{-}}^{2}=\operatorname{Ker} \mathcal{B}_{q, \text { rel }}^{2} \cong H^{q}(M, Y, E)$,
- $H_{\mathcal{P}_{+}}^{q}(M, E):=H^{q}\left(\Omega_{\mathcal{P}_{+}}^{\circ}(M, E), \nabla\right) \cong \operatorname{Ker} \mathcal{B}_{q, \mathcal{P}_{+}}^{2}=\operatorname{Ker} \mathcal{B}_{q, \text { abs }}^{2} \cong H^{q}(M, E)$.

A cochain complex with a chirality operator Γ

- Cochain complexes $\left(\Omega_{\stackrel{\rightharpoonup}{\mathcal{P}}_{0 / 1}}(M, E), \nabla, \Gamma\right)$:

$$
0 \rightarrow \Omega_{\mathcal{P}_{\mp}}^{0}(M, E) \xrightarrow{\nabla} \Omega_{\mathcal{P}_{ \pm}}^{1}(M, E) \xrightarrow{\nabla} \cdots \xrightarrow{\nabla} \Omega_{\mathcal{P}_{ \pm}}^{m}(M, E) \rightarrow 0,
$$

where

$$
\Omega_{\mathcal{P}_{ \pm}}^{q}(M, E):=\left\{\psi \in \Omega^{q}(M, E) \mid \mathcal{P}_{ \pm}\left(\left.\left(\mathcal{B}^{l} \psi\right)\right|_{Y}\right)=0, \quad l=0,1,2, \cdots\right\}
$$

Proposition

- $H_{\mathcal{P}_{-}}^{q}(M, E):=H^{q}\left(\Omega_{\mathcal{P}_{-}}^{\bullet}(M, E), \nabla\right) \cong \operatorname{Ker} \mathcal{B}_{q, \mathcal{P}_{-}}^{2}=\operatorname{Ker} \mathcal{B}_{q, \text { rel }}^{2} \cong H^{q}(M, Y, E)$,
- $H_{\mathcal{P}_{+}}^{q}(M, E):=H^{q}\left(\Omega_{\mathcal{P}_{+}}^{\bullet}(M, E), \nabla\right) \cong \operatorname{Ker} \mathcal{B}_{q, \mathcal{P}_{+}}^{2}=\operatorname{Ker} \mathcal{B}_{q, \text { abs }}^{2} \cong H^{q}(M, E)$.

Refined analytic torsion on manifolds with boundary

Definition \& Theorem (— Y. Lee)

Under above assumptions. The refined analytic torsion defined by

$$
\rho_{\mathrm{an}, \mathcal{P}_{-}}(\nabla):=\rho_{\Gamma, \widetilde{\mathcal{P}}_{0}}\left(\nabla, g^{M}\right) \cdot \operatorname{Det}_{\mathrm{gr}}\left(\mathcal{B}_{\mathrm{even}, \mathcal{P}_{-}}\right) \cdot e^{i \pi \cdot \mathrm{rk} E \cdot \eta_{\mathrm{trivial}, \mathcal{P}_{-}}\left(g^{M}\right)}
$$

is independent of the choice of g^{M} in the interior of M.

- If ∇ is acyclic and Hermitian, then
$\log \operatorname{Det}_{g r}\left(\mathcal{B}_{\text {even }, \mathcal{P}_{-}}\right)+\log \operatorname{Det}_{\text {gr }}\left(-\mathcal{B}_{\text {even }, \mathcal{P}_{+}}\right)$

Refined analytic torsion on manifolds with boundary

Definition \& Theorem (— Y. Lee)

Under above assumptions. The refined analytic torsion defined by

$$
\rho_{\mathrm{an}, \mathcal{P}_{-}}(\nabla):=\rho_{\Gamma, \widetilde{\mathcal{P}}_{0}}\left(\nabla, g^{M}\right) \cdot \operatorname{Det}_{\mathrm{gr}}\left(\mathcal{B}_{\mathrm{even}, \mathcal{P}_{-}}\right) \cdot e^{i \pi \cdot \mathrm{rk} E \cdot \eta_{\text {trivial }, \mathcal{P}_{-}}\left(g^{M}\right)},
$$

is independent of the choice of g^{M} in the interior of M.

- If ∇ is acyclic and Hermitian, then

$$
\begin{aligned}
& \log \operatorname{Det}_{\mathrm{gr}}\left(\mathcal{B}_{\text {even }, \mathcal{P}_{-}}\right)+\log \operatorname{Det}_{\mathrm{gr}}\left(-\mathcal{B}_{\text {even }, \mathcal{P}_{+}}\right) \\
& =\left(\log \rho_{\mathrm{rel}}^{\mathrm{RS}}(\nabla)+\log \rho_{\mathrm{abs}}^{\mathrm{RS}}(\nabla)\right)-i \pi\left(\eta\left(\mathcal{B}_{\text {even }, \mathcal{P}_{-}}\right)-\eta\left(\mathcal{B}_{\text {even }, \mathcal{P}_{+}}\right)\right)
\end{aligned}
$$

Comparison theorem for refined analytic torsions

- $\widehat{\rho}_{\text {an }, \mathcal{P}_{+}}(\nabla)$ refined analytic torsion defined by $-\Gamma$ instead of Γ.
- The fusion isomorphism

Theorem(- Y. Lee)

Under above assumptions. Then:

Comparison theorem for refined analytic torsions

- $\widehat{\rho}_{\text {an }, \mathcal{P}_{+}}(\nabla)$ refined analytic torsion defined by $-\Gamma$ instead of Γ.
- The fusion isomorphism

Theorem(- Y. Lee)

Under above assumptions. Then:

Comparison theorem for refined analytic torsions

- $\widehat{\rho}_{\mathrm{an}, \mathcal{P}_{+}}(\nabla)$ refined analytic torsion defined by $-\Gamma$ instead of Γ.
- The fusion isomorphism

$$
\mu: \operatorname{det} H_{\stackrel{\mathcal{P}}{0}^{\bullet}}^{\bullet}(M, E) \otimes \operatorname{det} H_{\dot{\mathcal{P}}_{1}}^{\bullet}(M, E) \rightarrow \operatorname{det}\left(H_{\mathrm{rel}}^{\bullet}(M, E) \oplus H_{\mathrm{abs}}^{\bullet}(M, E)\right)
$$

Theorem(- Y. Lee)

Under above assumptions. Then:

$$
\mu\left(\rho_{\mathrm{an}, \mathcal{P}_{-}}(\nabla) \otimes \widehat{\rho}_{\mathrm{an}, \mathcal{P}_{+}}(\nabla)\right)= \pm \rho_{\mathrm{an}, \mathrm{rel} / \mathrm{abs}}(\nabla) \cdot e^{\frac{i \pi}{2} \mathrm{rk} E \cdot \mathcal{X}(M, \mathcal{C})} .
$$

Thank you!

