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Setup

Let

I (M, ω) be a symplectic manifold;

I G be a Lie group, acting on M, preserving ω;

I J be a G -invariant almost complex structure on M, such that
ω(−, J −) is a Riemannian metric;

I L→ M be a Hermitian G -line bundle with a Hermitian
connection ∇L such that

(∇L)2 = 2πiω.



The Spinc-Dirac operator

In this setting, one has the Spinc-Dirac operator

D :=

dim(M)∑
j=1

c(ej)∇ej on Ω0,∗(M; L)

where

I {e1, . . . , edim(M)} is a local orthonormal frame for TM;

I ∇ is a connection on
∧0,∗ T ∗M ⊗ L induced by the

Levi–Civita connection on TM and the connection ∇L on L;

I c(v) =
√

2
(
−iv0,1 + (v1,0)∗∧ −

)
, for v ∈ TmM, is the Clifford

action.

The operator D is elliptic, so kerD is finite-dimensional if M is
compact.
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Geometric quantisation

Suppose M and G are compact.

Definition (Bott)

The geometric quantisation of the action by G on (M, ω) is the
equivariant index of D:

QG (M, ω) = G -index(D) = [kerD+]− [kerD−] ∈ R(G ).

Here D± are the restrictions of D to the even and odd parts of∧0,∗ T ∗M ⊗ L, and

R(G ) :=
{

[V ]− [W ]; V ,W finite-dim. representation of G
}

is the representation ring of G .



Quantum reduction

On the quantum side, reduction means taking the G -invariant part
of a representation:

QG (M, ω)G = dim(kerD+)G − dim(kerD−)G ∈ Z.

(Here we identify equivalence classes of finite-dimensional vector
spaces with their dimensions.)

One can also take multiplicities of other irreducible representations
than the trivial one.
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Classical reduction
Suppose the action by G on (M, ω) is Hamiltonian, i.e. there is a
moment(um) map

µ : M → g∗,

which is equivariant w.r.t. the coadjoint action by G on g∗, such
that for all X ∈ g,

2πi〈µ,X 〉 = ∇L
XM − LLX ∈ End(L) = C∞(M,C),

with XM the vector field induced by X , and LL the Lie derivative
of sections of L.

Definition
Let ξ ∈ g∗. The symplectic reduction of the action is the space

Mξ := µ−1(ξ)/Gξ

Theorem (Marsden–Weinstein, 1974)

If ξ is a regular value of µ, and Gξ acts freely (properly) on
µ−1(ξ), then Mξ is a symplectic manifold (orbifold).
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Quantisation commutes with reduction

For compact M and G , and M0 smooth, the diagram on the first
slide becomes:

G � (M, ω) � Q //
_

R

��

[kerD+]− [kerD−]
_

R
��

dim(kerD)G − dim(kerD−)G

?

(M0, ω0) � Q // dim(kerD+
M0

)− dim(ker(DM0)−)

Proved by Meinrenken in 1995, and later by Paradan and
Tian–Zhang, after a conjecture by Guillemin–Sternberg in 1982.
Contributions by many others.

Important step in proofs: localisation to µ−1(0).
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Compact example: spin
G = SO(2) acting on M = S2 by rotations around the z-axis

Now G and M are compact, and M0 is a point. Hence

QG (M, ω)G = Q(M0, ω0) = 1.

Physics: direction of angular momentum in rotationally invariant
potential
Maths: restricting irreducible representations of SO(3) to a
maximal torus
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2. Spinc-quantisation



From symplectic to Spinc

All symplectic manifolds are Spinc, and only the Spinc-structure is
necessary to define a Dirac operator and quantisation.

So natural question: can one state and prove [Q,R] = 0 for
Spinc-manifolds in general? (Asked by Cannas da Silva, Karshon
and Tolman in 2000, and answered for circle actions.)

This was generalised to actions by arbitrary compact, connected
Lie groups by Paradan and Vergne in 2014.



Spinc-Dirac operators

Let M be a Spinc-manifold. Let L→ M be the associated
determinant linde bundle, and S → M the spinor bundle. (If M is
almost complex, then S =

∧0,∗ T ∗M.)

The Levi–Civita connection on TM and a connection on L induce a
connection on S via local decompositions

S|U ∼= SU0 ⊗ L|1/2U ,

where SU0 → U is the spinor bundle associated to a local
Spin-structure.

This induces a Spinc-Dirac operator D on Γ∞(S).
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Spinc-reduction

Let G be a Lie group acting properly on M, and suppose the
action lifts to the Spinc-structure.

As in the symplectic case, one can define a Spinc-momentum
map µ : M → g∗ by

2πi〈µ,X 〉 = ∇L
XM − LLX ,

for X ∈ g.

Definition
The reduced space at ξ ∈ g∗ is

Mξ := µ−1(ξ)/Gξ.

If G is a torus and ξ is a regular value of µ, then Mξ is a
Spinc-orbifold. More generally, there is a (nontrivial) way to define
Q(Mξ) ∈ Z.
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Compact groups and manifolds
Suppose that M and G are compact and connected, and that M is
even-dimensional. Then

QG (M) := G -index(D) =
∑
π∈Ĝ

mππ,

for certain mπ ∈ Z. Paradan and Vergne computed mπ in terms of
quantisations of reduced spaces.

Theorem (Paradan–Vergne, 2014)

Let λ be the highest weight of π, and ρ half the sum of the
positive roots.

I If the minimal stabiliser of the action is Abelian, then

mπ = Q(Mλ+ρ).

I In general, mπ is expressed as a finite sum of quantisations of
reduced spaces.
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3. Noncompact groups and manifolds



The noncompact setting

Natural question: can this be generalised to noncompact G and
M?

I Would give insight in representation theory of noncompact
groups.

I Many phase spaces in classical mechanics (symplectic
manifolds) are noncompact, e.g. cotangent bundles.

I In general, equivariant index theory of Spinc-Dirac operators is
a relevant subject.



Existing results

There are [Q,R] = 0 results when either G or M/G may be
noncompact.

I For G compact and µ proper, there is a result in the
symplectic case by Ma–Zhang, with another proof given by
Paradan. This was generalised to Spinc-manifolds by H.–Song.

I For M/G compact, Landsman formulated a [Q,R] = 0
conjecture, in the symplectic case. Results in this context
were obtained by Landsman, H., and Mathai–Zhang.



Noncompact example: free particle on a line

G = R acting on M = R2 by addition on the first coordinate

Now G , M and M/G are noncompact, so outside the scope of
the Ma–Zhang/Paradan and Landsman approaches.



Goals and method

Goals: generalise [Q,R] = 0 to cases where

1. M, G and M/G may be noncompact;

2. M is only Spinc;

3. the Spinc-Dirac operator is twisted by an arbitrary vector
bundle over M.

Method: generalise the analytic approach developed by
Tian–Zhang.



4. An analytic approach in the compact case



Localising and decomposing

Consider the symplectic setting, and suppose M and G are
compact.

Idea:

1. consider a deformed version Dt of the Dirac operator D, with
a real deformation parameter t;

2. localise the G -invariant part of the kernel of Dt to a
neighbourhood U of µ−1(0) in a suitable sense, for t large
enough;

3. on U, decompose Dt into a part on µ−1(0) and a part normal
to µ−1(0).

In this talk we focus on the localisation of the kernel of Dt , since
noncompactness plays the biggest role in that step.
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Deforming the Dirac operator

Tian and Zhang used an Ad∗(G )-invariant inner product on g∗,
which exists for compact groups G . Then one has

µ∗ : M → g

dual to µ.

Consider the vector field v given by

vm := 2(µ∗(m))Mm ,

and the deformed Spinc-Dirac operator

Dt := D + t

√
−1

2
c(v),

for t ∈ R.
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A Bochner-type formula

Theorem (Tian–Zhang)

On Ω0,∗(M; L)G , one has

D2
t = D2 + tA + 4πt‖µ‖2 +

t2

4
‖v‖2,

where A is a vector bundle endomorphism.

Together with an explicit expression for A, and harmonic
oscillator-type estimates for A, this allowed Tian and Zhang to
localise (kerDt)

G to µ−1(0) for large t, and prove that [Q,R] = 0.
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5. An analytic approach in the noncompact case



The noncompact case
Idea: generalise Tian–Zhang’s localisation arguments both to
define quantisation and to prove [Q,R] = 0.

Issues:

I If G is noncompact, there is no Ad∗(G )-invariant inner
product on g∗ in general, so the deformed Dirac operator may
not be G -equivariant.

I If M is noncompact, the operator A in

D2
t = D2 + tA + 4πt‖µ‖2 +

t2

4
‖v‖2,

may be unbounded. (And ‖µ‖2 and v may go to zero at
infinity.)

I If M is only Spinc, the expression for the operator A becomes
less explicit.

Solution: use families of inner products on g∗, parametrised by
M.
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Families of inner products
Let {(−,−)m}m∈M be a smooth family of inner products on g∗,
with the invariance property that for all m ∈ M, g ∈ G and
ξ, ξ′ ∈ g∗, (

Ad∗(g)ξ,Ad∗(g)ξ′
)
g ·m = (ξ, ξ′)m.

Then we define

I the map µ∗ : M → g by

〈ξ, µ∗(m)〉 = (ξ, µ(m))m

for all ξ ∈ g∗ and m ∈ M;

I the vector field v as before vm := 2(µ∗(m))Mm ;

I the deformed Dirac operator (which is equivariant)

Dv = D +

√
−1

2
c(v).

(Now the parameter t can be absorbed into the family of
inner products.)
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Main assumption

We defined:
vm := 2(µ∗(m))Mm .

The main assumption is that Zeros(v)/G is compact. Since
µ−1(0) ⊂ Zeros(v), this implies that M0 is compact.

Other assumptions: G is unimodular, and acts properly on M.
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Transversally L2-sections
We will use transversally L2-sections to define an index of Dv .
I A cutoff function is a function f ∈ C∞(M) such that for all

m ∈ M, the intersection G ·m ∩ supp(f ) is compact, and for a
Haar measure dg on G ,

∫
G
f (g ·m)2 dg = 1.

I For any vector bundle E → M equipped with a metric, the
space of G -invariant, transversally L2-sections of E is

L2T (E )G := {s ∈ Γ(E )G ; fs ∈ L2(E ) for a cutoff function f }/ =a.e. .

I For any (differential) operator D on Γ∞(E ), we have the
G -invariant, transversally L2-kernel of D:

(kerL2T
D)G := {s ∈ Γ∞(E ) ∩ L2T (E )G ;Ds = 0}.
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Special cases

I If G is compact, f ≡ 1 is a cutoff function, so

L2T (E )G = L2(E )G .

I If M/G is compact, cutoff functions have compact supports,
so

Γ∞(E ) ∩ L2T (E ) = Γ∞(E ).

In general, L2(E )G is independent of the cutoff function used, by
unimodularity of G .
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Invariant quantisation
We had the deformed Dirac operator

Dv = D +

√
−1

2
c(v).

Theorem (Mathai–H. in symplectic case; Braverman for
general Dirac-type operators)

If Zeros(v)/G is compact, then the metric on M × g∗ can be
rescaled by a positive function so that

dim
(
kerL2T

Dv

)G
<∞.

Definition
The G -invariant, transversally L2-index of Dv is

indexGL2T
Dv := dim

(
kerL2T

D+
v

)G − dim
(
kerL2T

D−v
)G
.
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Quantisation commutes with reduction

Theorem (Mathai–H., 2014)

Suppose 0 is a regular value of µ, and G acts freely on µ−1(0).
Then there is a class of Spinc-structures on M, such that

indexGL2T
Dv = indexDM0

The class of Spinc-structures in the theorem corresponds to using
high enough tensor powers of the determinant line bundle.

In the symplectic analogue of this result, one does not need high
tensor powers of the line bundle if

I G is compact, or

I the action is locally free.
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A Bochner formula for families of inner products

As in the compact case, the proofs of the results start with an
explicit expression for D2

v .

Theorem
On Γ∞(S)G , one has

D2
v = D2 + A + 2π‖µ‖2 +

1

4
‖v‖2,

with A a vector bundle endomorphism.

The expression for A is different from the compact case, because of

I extra terms due to the use of a family of inner products on g∗;

I the fact that M is only assumed to be Spinc.

In addition, one has no control over the behaviour of A, ‖µ‖2 and
‖v‖ ‘at infinity’.



A Bochner formula for families of inner products

As in the compact case, the proofs of the results start with an
explicit expression for D2

v .

Theorem
On Γ∞(S)G , one has

D2
v = D2 + A + 2π‖µ‖2 +

1

4
‖v‖2,

with A a vector bundle endomorphism.

The expression for A is different from the compact case, because of

I extra terms due to the use of a family of inner products on g∗;

I the fact that M is only assumed to be Spinc.

In addition, one has no control over the behaviour of A, ‖µ‖2 and
‖v‖ ‘at infinity’.



A Bochner formula for families of inner products

As in the compact case, the proofs of the results start with an
explicit expression for D2

v .

Theorem
On Γ∞(S)G , one has

D2
v = D2 + A + 2π‖µ‖2 +

1

4
‖v‖2,

with A a vector bundle endomorphism.

The expression for A is different from the compact case, because of

I extra terms due to the use of a family of inner products on g∗;

I the fact that M is only assumed to be Spinc.

In addition, one has no control over the behaviour of A, ‖µ‖2 and
‖v‖ ‘at infinity’.



Choosing the family of inner products on g∗

Solution to issues arising in the noncompact/Spinc-case: a suitable
choice of the family of inner products on g∗.

Let

I V be a G -invariant, relatively cocompact neighbourhood of
Zeros(v)

I η be any G -invariant smooth function on M

Proposition

The family of inner products on g∗ can be rescaled by a positive
function in such a way that for all m ∈ M \ V ,

‖µ(m)‖2 ≥ 1;

‖vm‖ ≥ η(m),

and there is a C > 0, such that for all m ∈ M,

Am ≥ −C (‖vm‖2 + 1).

This turns out to be enough to localise (kerL2T
Dt)

G , and get

[Q,R] = 0.
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5. Twisted Spinc-Dirac operators



Twisting Dirac operators by vector bundles
As before, let M be a Riemannian manifolds, on which a Lie group
G acts properly and isometrically. Suppose M has a G -equivariant
Spinc-structure, with spinor bundle S → M. Consider a
G -invariant, Hermitian connection ∇S on S.

Now let E → M be a Hermitian, G -equivariant vector bundle, with
a Hermitian, G -invariant connection ∇E . Then we have the
connection

∇S⊗E := ∇S ⊗ 1E + 1S ⊗∇E

on S ⊗ E .

Definition
The Spinc-Dirac operator DS⊗E twised by E (via ∇E ) is the
operator on Γ∞(S ⊗ E ) locally given by

DE =
∑
j

(c(ej)⊗ 1E )∇S⊗Eej
.
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Localising twisted Dirac operators
As before, we set

DE
v := DE +

√
−1

2
c(v),

and suppose Zeros(v)/G is compact.

Theorem (H.–Mathai, 2015)

The metric on M × g∗ can be rescaled such that, after replacing
the determinant line bundle L by a high enough tensor power Lp,

dim
(
kerL2T

Dv

)G
<∞,

and

indexGL2T
Dv = indexDE0

M0
=

∫
M0

ch(E0)e
p
2
c1(L0)Â(M0).

Here E0 := (E |µ−1(0))/G → M0, and similarly for L0.



Application 1: excision

Braverman defined an invariant, transversally L2-index for general
Dirac-type operators, deformed by a vector field v . As a
consequence of a cobordism invariance property, this index is
determined by data near Zeros(v).

Corollary

For a twisted Spinc-Dirac operator DE
v , its index indexGL2T

Dv is

determined by data in a neighbourhood of µ−1(0) ⊂ Zeros(v).



Application 2: the signature operator

If M is Spin, then DS equals the signature operator B on

S ⊗ S ∼=
∧
T ∗M.

If M is only Spinc, then DS is the twisted signature operator BL on∧
T ∗M ⊗ L.

Using this, one obtains

indexGL2T
BLp =

∫
M0

ch(SN0 )e(p−
1
2
)c1(L0)L(M0).

Here

I SN → µ−1(0) is the spinor bundle of the normal bundle
N → µ−1(0) to TM0;

I L(M0) = ch(SM0)Â(M0) is the L-class.
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Thank you



Optional activities

I Colloquium “Dynamics on Networks: The role of local
dynamics and global networks on hypersynchronous neural
activity” by John Terry, 15:10, basement room B21

I Friday drinks at the staff club, meet at 17:00 in front of the
lifts on the ground floor

I Dinner at the British on Finniss Street on Saturday (e.g.
barbecued kangaroo)
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