[Q, R] = 0 for spin^c Dirac operators

Paul-Emile Paradan

Adelaide, July 28, 2015

PEP [Q, R] = 0 for spin^c Dirac operators

▲ 同 ▶ → 三 ▶

-

Let *M* be a compact, oriented and even dimensional manifold. Let $Cl(TM) \rightarrow M$ be the Clifford bundle associated to a Riemannian metric.

Clifford module

A complex vector bundle $\mathcal{E} \to M$ is a Cl(TM)-module if there is a bundle map $\mathbf{c}_{\mathcal{E}} : TM \to End(\mathcal{E})$ such that

$$\mathbf{c}_{\mathcal{E}}(\mathbf{v})^2 = -\|\mathbf{v}\|^2 \mathrm{Id}_{\mathcal{E}}$$
 for all $\mathbf{v} \in TM$.

Spinor bundle

• A spinor bundle $S \rightarrow M$ is an *irreducible Cl(TM*)-module.

• The orientation induces a grading $S = S^+ \oplus S^-$ such that $c_S(v)$ are odd endomorphisms.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

We can associate to a spinor bundle $\mathcal{S} \to M$ a Dirac operator

$$D_{\mathcal{S}}: \Gamma(M, \mathcal{S}^+) \to \Gamma(M, \mathcal{S}^-).$$

Since D_S is elliptic we may consider its index

$$\mathcal{Q}(M, \mathcal{S}) := \operatorname{Index}(\mathcal{D}_{\mathcal{S}}) \in \mathbb{Z}.$$

Atiyah-Singer formula

We have

$$\mathcal{Q}(\boldsymbol{M},\mathcal{S}) = \int_{\boldsymbol{M}} \boldsymbol{e}^{i\Omega_{\mathcal{S}}} \widehat{\mathrm{A}}(\boldsymbol{M}),$$

where $\Omega_{\mathcal{S}}$ is **half** the curvature of the line bundle

$$det(\mathcal{S}) := hom_{Cl(TM)}(\overline{\mathcal{S}}, \mathcal{S}).$$

< 同 > < ∃ >

Spin^c Dirac operators: the equivariant case

• Let *K* be a compact connected Lie group acting on $S \rightarrow M$.

• The Dirac operator D_S is *K*-equivariant, and its equivariant index $\mathcal{Q}_K(M, S)$ can be computed by the delocalized formulae of Berline-Vergne: for $X \in \mathfrak{k}$ small enough

$$\mathcal{Q}_{\mathcal{K}}(\mathcal{M},\mathcal{S})(\boldsymbol{e}^{X}) = \int_{\mathcal{M}} \boldsymbol{e}^{i\Omega_{\mathcal{S}}(X)}\widehat{\mathrm{A}}(\mathcal{M},X),$$

where

$$\Omega_{\mathcal{S}}(\boldsymbol{X}) := \Omega_{\mathcal{S}} + \langle \Phi_{\mathcal{S}}, \boldsymbol{X} \rangle$$

is half the **equivariant curvature** of the line bundle det(S).

Atiyah-Hirzebruch (70's)

If the line bundle det(S) is trivial, then $Q_K(M, S) = 0$ unless the action $K \odot M$ is trivial.

< 17 > <

Parametrization of \widehat{K}

Admissible orbits

• A coadjoint orbit $\mathcal{P} \subset \mathfrak{k}^*$ is admissible if there exists an equivariant spinor bundle $\mathcal{S}_{\mathcal{P}}$ such that $\Phi_{\mathcal{S}_{\mathcal{P}}}$ is the inclusion.

- We denote $\mathcal{Q}_{K}^{spin}(\mathcal{P}) := \mathcal{Q}_{K}(\mathcal{P}, \mathcal{S}_{\mathcal{P}}).$
- Let A be the set of admissible orbits, and let $A_{reg} \subset A$ be the subset formed by the **regular** orbits.

Facts

- The element $\mathcal{Q}_{K}^{spin}(\mathcal{P})$ is either 0 or an irred. rep. of K.
- The map $\mathcal{P} \longrightarrow \mathcal{Q}_{K}^{spin}(\mathcal{P})$ is not injective.

Parametrization

The map
$$\mathcal{O} \in \mathcal{A}_{reg} \longrightarrow \pi_{\mathcal{O}} := \mathcal{Q}_{K}^{spin}(\mathcal{O}) \in \widehat{K}$$
 is bijective.

• Let (\mathfrak{t}_M) the generic infinitesimal stabilizer for the *K*-action on *M*.

• Let \mathcal{H} be the set of infinitesimal stabilizers $(\mathfrak{k}_{\xi}), \xi \in \mathfrak{k}$, and let \mathcal{H}' be the set formed by their semi-simple part $([\mathfrak{k}_{\xi}, \mathfrak{k}_{\xi}]), \xi \in \mathfrak{k}$.

Theorem 1, P-Vergne

If $([\mathfrak{k}_M, \mathfrak{k}_M]) \notin \mathcal{H}'$, then

$$\mathcal{Q}_{\mathcal{K}}(M,\mathcal{S})=0$$

for any spinor bundle S.

Remark

The result above does not hold for more general Dirac operators.

(日)

æ

We suppose that $\exists \mathfrak{h} \in \mathcal{H}$ such that $([\mathfrak{k}_M, \mathfrak{k}_M]) = ([\mathfrak{h}, \mathfrak{h}]).$

Let $S \to M$ be an equivariant spinor bundle: the choice of a connection on det(S) determines an equivariant map $\Phi_S : M \to \mathfrak{k}^*$. Note that

$$\Phi_{\mathcal{S}}(M) \subset \{\xi \in \mathfrak{k}^* \, | \, (\mathfrak{h}) \subset (\mathfrak{k}_{\xi}) \}.$$

Theorem 2, P-Vergne

If $\mathcal{Q}_{\mathcal{K}}(\mathcal{M},\mathcal{S}) \neq 0$ then

$$\Phi_{\mathcal{S}}^{-1}\left(\left\{\xi\in\mathfrak{k}^{*}\,|\,(\mathfrak{h})=(\mathfrak{k}_{\xi})\right\}\right)$$

is open and dense in *M*.

Geometric consequence

The manifold *M* has a dense open part of the form $K \times_H Y$ where *Y* is a H/[H, H]-submanifold of *M*.

Multiplicies

• Thanks to the parametrization $\mathcal{O} \in \mathcal{A}_{reg} \mapsto \pi_{\mathcal{O}} \in \widehat{\mathcal{K}}$, we define $m_{\mathcal{O}}$ as the multiplicity of $\pi_{\mathcal{O}}$ in $\mathcal{Q}_{\mathcal{K}}(M, \mathcal{S})$.

• Let $\mathcal{A}((\mathfrak{h}))$ be the subset of admissible orbits of type (\mathfrak{h}) . For any $\mathcal{P} \in \mathcal{A}((\mathfrak{h}))$, we define the reduced space

$$M_{\mathcal{P}} := \Phi_{\mathcal{S}}(\mathcal{P})/K.$$

Theorem 3, P-Vergne

• We have

$$m_{\mathcal{O}} = \sum_{\mathcal{P}} \mathcal{Q}^{spin}(M_{\mathcal{P}})$$

where the sum runs over $\mathcal{P} \in \mathcal{A}((\mathfrak{h}))$ such that $\mathcal{Q}_{K}^{spin}(\mathcal{P}) = \pi_{\mathcal{O}}$.

• The spin^{*c*} indices $Q^{spin}(M_{\mathcal{P}})$, which are defined by shift desingularization, do not depend on the choice of connection.

Torus actions

- Y. Karshon and S. Tolman (1993), M. Grossberg and Y. Karshon (1994,1998) : **toric manifolds**.
- A. Cannas da Silva, Y. Karshon and S. Tolman (2000) : circle actions.

Non-abelian group actions and Ω_S is symplectic

- L. Jeffrey and F. Kirwan (1997) : asymptotic result
- PEP (2012)

▲帰▶ ▲ 国▶ ▲ 国▶

Example : the Hirzebruch surface

Let *M* be the quotient of $U := \mathbb{C}^2 - \{(0,0)\} \times \mathbb{C}^2 - \{(0,0)\}$ by the free action of $\mathbb{C}^* \times \mathbb{C}^*$ acting by

$$(u, v) \cdot (z_1, z_2, z_3, z_4) = (uz_1, uz_2, uvz_3, vz_4).$$

Consider the **non-ample** line bundle \mathbb{L} obtained as quotient of the trivial line bundle $U \times \mathbb{C} \to U$ by the action

$$(u, v) \cdot (z_1, z_2, z_3, z_4, z) = (uz_1, uz_2, uvz_3, vz_4, u^3v^6z).$$

We have a natural holomorphic action of U(2) on $\mathbb{L} \to M$: the Euler characteristic $H^0(M, O(\mathbb{L})) - H^1(M, O(\mathbb{L})) + H^2(M, O(\mathbb{L}))$ is a U(2)-representation equal to

$$\mathcal{Q}_{U(2)}(M, S)$$

where $S = \bigwedge_{\mathbb{C}} TM \otimes \mathbb{L}$.

In this example we can compute everything and check the validity of our [Q, R] = 0 theorem.

문 > 문

The proof of Theorems 1,2,3 can be divided in the following steps:

- Witten deformation
- Fixed point formula for localized indices
- Function d_S
- Shifting trick
- Magical inequality

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ...

크

Witten deformation

- Let $\sigma(M, S)(m, v) = \mathbf{c}_m(v) : S_m^+ \to S_m^-$ be the principal symbol of the Dirac operator D_S .
- The Kirwan vector field is $\kappa_{\mathcal{S}}(m) = \Phi_{\mathcal{S}}(m) \cdot m$.
- Let $Z_{\mathcal{S}} = \{\kappa_{\mathcal{S}} = \mathbf{0}\}.$
- The symbol $\sigma(M, S)$ pushed by the vector field κ_S is

$$\sigma(\boldsymbol{M}, \mathcal{S}, \Phi_{\mathcal{S}})(\boldsymbol{m}, \boldsymbol{v}) = \mathbf{c}_{\boldsymbol{m}}(\boldsymbol{v} + \kappa_{\mathcal{S}}(\boldsymbol{m})).$$

We have $\mathcal{Q}_{\mathcal{K}}(\mathcal{M}, \mathcal{S}) = \operatorname{Index}_{\mathcal{K}}(\sigma(\mathcal{M}, \mathcal{S})) = \operatorname{Index}_{\mathcal{K}}(\sigma(\mathcal{M}, \mathcal{S}, \Phi_{\mathcal{S}})).$

Basic fact

If $U \subset M$ is an open invariant subset such that $Z := U \cap Z_S$ is compact, then $\sigma(M, S, \Phi_S)|_{T^*U}$ is transversally elliptic. We denote

$$\mathcal{Q}_{\mathcal{K}}(\mathcal{M},\mathcal{S},\mathcal{Z})$$

its equivariant index.

Localization à la Witten

If we have a disjoint decomposition in compact subsets

$$Z_{\mathcal{S}} = \coprod_{i \in I} Z_i$$

the excision property gives

$$\mathcal{Q}_{\mathcal{K}}(\mathcal{M},\mathcal{S}) = \sum_{i\in I} \mathcal{Q}_{\mathcal{K}}(\mathcal{M},\mathcal{S},Z_i).$$

Question

Determine when $[\mathcal{Q}_{\mathcal{K}}(M, \mathcal{S}, Z_i)]^{\mathcal{K}} \neq 0.$

We can use the finite decomposition $Z_S = \coprod_{\beta} Z_{\beta}$ where

$$Z_{\beta} = K(M^{\beta} \cap \Phi_{\mathcal{S}}^{-1}(\beta)).$$

・ロト ・四ト ・ヨト ・ヨト

1

Fixed point formula for $Q_{\mathcal{K}}(M, \mathcal{S}, Z_{\beta})$ when $\beta \neq 0$

Let \mathcal{N} be the normal bundle of M^{β} in M: the linear action of β on the fibers induces a **complex structure**.

Fixed point formula à la Atiyah-Segal-Singer

The spinor bundle ${\cal S}$ on M induces a spinor bundle ${\cal S}_{M^\beta}$ on M^β such that

$$\begin{split} & [\mathcal{Q}_{\mathcal{K}}(M,\mathcal{S},Z_{\beta})]^{\mathcal{K}} = \\ & \left[\mathcal{Q}_{\mathcal{K}_{\beta}}(M^{\beta},\mathcal{S}_{M^{\beta}}\otimes \operatorname{Sym}(\mathcal{N}),M^{\beta}\cap \Phi_{\mathcal{S}}^{-1}(\beta))\otimes \bigwedge(\mathfrak{k}/\mathfrak{k}_{\beta})_{\mathbb{C}}\right]^{\mathcal{K}_{\beta}} \end{split}$$

Consequence

If the eigenvalues of $\frac{1}{7}\mathcal{L}(\beta)$ on $\mathcal{S}_{M^{\beta}} \otimes \bigwedge (\mathfrak{k}/\mathfrak{k}_{\beta})_{\mathbb{C}}$ are strictly positive then

 $[\mathcal{Q}_{\mathcal{K}}(\boldsymbol{M},\mathcal{S},\boldsymbol{Z}_{\beta})]^{\mathcal{K}}=0.$

(日)

Function d_S

Define $d_{\mathcal{S}}: Z_{\mathcal{S}} \longrightarrow \mathbb{R}$ by the following relation

$$d_{\mathcal{S}}(m) = \|\theta\|^2 + \frac{1}{2} \mathbf{n} \mathbf{Tr}_{\mathbf{T}_m M} |\theta| - \mathbf{n} \mathbf{Tr}_{\mathfrak{k}} |\theta|, \quad \text{with} \quad \theta = \Phi_{\mathcal{S}}(m).$$

where **nTr** is a **normalized** trace.

Facts

• $d_{\mathcal{S}}(m)$ is the smallest eigenvalue of $\frac{1}{l}\mathcal{L}(\theta)$ on $\mathcal{S}_{M^{\theta}}|_{m} \otimes \bigwedge (\mathfrak{k}/\mathfrak{k}_{\theta})_{\mathbb{C}}.$

• d_S is a *K*-invariant locally constant function on Z_S that takes a finite number of values.

Localization on
$$Z_S^{=0} := \{ d_S = 0 \}$$

If $d_{\mathcal{S}}$ is non-negative on M, we have

$$\left[\mathcal{Q}_{\mathcal{K}}(\mathcal{M},\mathcal{S})\right]^{\mathcal{K}}=\left[\mathcal{Q}_{\mathcal{K}}(\mathcal{M},\mathcal{S},Z_{\mathcal{S}}^{=0})\right]^{\mathcal{K}}$$

Shifting trick

By the shifting trick

$$m_{\mathcal{O}} = \left[\mathcal{Q}_{\mathcal{K}}(\boldsymbol{M} \times \mathcal{O}^*, \mathcal{S} \boxtimes \mathcal{S}_{\mathcal{O}^*})\right]^{\mathcal{K}}$$

On the manifold $M \times \mathcal{O}^*$, we consider the set $Z_{\mathcal{O}}$ where the Kirwan vector field $\kappa_{S \boxtimes S_{\mathcal{O}^*}}$ vanishes, and the function

$$d_{\mathcal{O}} := d_{\mathcal{S} \boxtimes \mathcal{S}_{\mathcal{O}^*}} : Z_{\mathcal{O}} \to \mathbb{R}.$$

Theorem A

The function $d_{\mathcal{O}}$ takes non-negative values.

Corollary

We have

$$m_{\mathcal{O}} = \left[\mathcal{Q}_{\mathcal{K}}(\boldsymbol{M}\times\mathcal{O}^*,\mathcal{S}\boxtimes\mathcal{S}_{\mathcal{O}^*},\boldsymbol{Z}_{\mathcal{O}}^{=0})\right]^{\mathcal{K}}.$$

Hence $m_{\mathcal{O}} = 0$ if $Z_{\mathcal{O}}^{=0} = \emptyset$.

We have to understand when the subset $Z_{\mathcal{O}}^{=0} \subset M \times \mathcal{O}^*$ is non-empty.

Theorem B

- $Z_{\mathcal{O}}^{=0} \neq \emptyset$ only if $\exists (\mathfrak{h}) \in \mathcal{H}$ such that $([\mathfrak{k}_M, \mathfrak{k}_M]) = ([\mathfrak{h}, \mathfrak{h}]).$
- Suppose that $([\mathfrak{k}_M,\mathfrak{k}_M]) = ([\mathfrak{h},\mathfrak{h}])$ for some $(\mathfrak{h}) \in \mathcal{H}$. Then

$$Z_{\mathcal{O}}^{=0} = \coprod_{\mathcal{P}} Z_{\mathcal{O}}^{\mathcal{P}}$$

where the disjoint union is parametrized by $\mathcal{P} \in \mathcal{A}((\mathfrak{h})) \cap \Phi_{\mathcal{S}}(M)$ such that $\mathcal{Q}_{K}^{spin}(\mathcal{P}) = \pi_{\mathcal{O}}$.

・< 回 > < 回 > < 回 > < 回

Let $T \subset K$ be a maximal torus with Lie algebra \mathfrak{t} .

The proofs of Theorems A and B use in a crucial way the following

Magical inequality

Let $\lambda,\mu\in\mathfrak{t}^*,$ where λ is admissible and regular. We have

$$\|\lambda - \mu\|^2 \ge \|\rho(K_{\mu})\|^2$$
,

and the equality holds only if the following hold

• μ is admissible and belongs to the Weyl chamber defined by $\lambda,$

•
$$\mathcal{Q}_{K}^{spin}(K\mu) = \pi_{K\lambda}$$
.

A (1) > A (2) > A

Final computation

At this stage we know that

$$m_{\mathcal{O}} = \sum_{\mathcal{P}} \left[\mathcal{Q}_{\mathcal{K}}(\boldsymbol{M} \times \mathcal{O}^*, \mathcal{S} \boxtimes \mathcal{S}_{\mathcal{O}^*}, \boldsymbol{Z}_{\mathcal{O}}^{\mathcal{P}}) \right]^{\mathcal{K}}$$

where the sum is parametrized by $\mathcal{P} \in \mathcal{A}((\mathfrak{h}))$ such that $\mathcal{Q}_{\mathcal{K}}^{spin}(\mathcal{P}) = \pi_{\mathcal{O}}.$

With a bit more work we get

Final computation

$$\left[\mathcal{Q}_{\mathcal{K}}(\mathcal{M}\times\mathcal{O}^*,\mathcal{S}\boxtimes\mathcal{S}_{\mathcal{O}^*},\mathcal{Z}_{\mathcal{O}}^{\mathcal{P}})\right]^{\mathcal{K}}=\mathcal{Q}^{\text{spin}}(\mathcal{M}_{\mathcal{P}}).$$

THE END!

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

크