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Spin¢ Dirac operators

Let M be a compact, oriented and even dimensional manifold.
Let CI(TM) — M be the Clifford bundle associated to a
Riemannian metric.

Clifford module

A complex vector bundle £ — M is a CI/(TM)-module if there is
a bundle map ¢¢ : TM — End(&) such that

ce(v)? = —|v|?ldg forall v e TM.

Spinor bundle

e A spinor bundle S — M is an irreducible CI( TM)-module.
e The orientation induces a grading S = S™ & S~ such that
cs(v) are odd endomorphisms.
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We can associate to a spinor bundle S — M a Dirac operator
Ds:T(M,S8") — [(M,S87).
Since Ds is elliptic we may consider its index

Q(M,S) := Index(Ds) € Z.

Atiyah-Singer formula
We have

oM, S) = /M S A(M),

where Qg is half the curvature of the line bundle

det(S) = homC,(TM) (3, S)
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Spin¢ Dirac operators: the equivariant case

e Let K be a compact connected Lie group actingon § — M.

e The Dirac operator Ds is K-equivariant, and its equivariant
index Qx(M, S) can be computed by the delocalized formulae
of Berline-Vergne: for X € ¢ small enough

Qk(M, 5)(e¥) = /M P OR(M, X),

where

Qs(X) := Qs + ($s, X)
is half the equivariant curvature of the line bundle det(S).

Atiyah-Hirzebruch (70’s)

If the line bundle det(S) is trivial, then Qx (M, S) = 0 unless the
action K © M is trivial.
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Parametrization of K
Admissible orbits

¢ A coadjoint orbit P C ¢* is admissible if there exists an
equivariant spinor bundle Sp such that &5, is the inclusion.

e We denote QP"(P) := Qx(P, Sp).

e Let A be the set of admissible orbits, and let A,y C A be the
subset formed by the regular orbits.

e The element Q3P"(P) is either 0 or an irred. rep. of K.
e The map P — QP"(P) is not injective.

Parametrization

The map O € Arg — 0 := QP"(0) € K is bijective.
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Vanishing results

e Let (ty) the generic infinitesimal stabilizer for the K-action on
M.

e Let # be the set of infinitesimal stabilizers (t¢), ¢ € ¢, and let
' be the set formed by their semi-simple part ([¢, £]), ¢ € &.

Theorem 1, P-Vergne

If ([em, Em]) ¢ H', then

Qk(M,S5) =0

for any spinor bundle S.

The result above does not hold for more general Dirac
operators.
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We suppose that 35 € H such that ([ty, tnm]) = ([, b])-

Let S — M be an equivariant spinor bundle: the choice of a
connection on det(S) determines an equivariant map
ds : M — t*. Note that

ds(M) C {€ €t [(b) C ()}

Theorem 2, P-Vergne

If Ok (M, S) # 0 then

o5 ({€ e €| (h) = (8)})

is open and dense in M.

Geometric consequence

The manifold M has a dense open part of the form K xy Y
where Y is a H/[H, H]-submanifold of M.
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Multiplicies

e Thanks to the parametrization O € Aeq — 7o € f(, we define
me as the multiplicity of 7o in Qx(M, S).

e Let A((h)) be the subset of admissible orbits of type (). For
any P € A((h)), we define the reduced space

Mp = ds(P)/K.

Theorem 3, P-Vergne
e We have

mo = 3 QP(My)

P
where the sum runs over P € A((b)) such that O"(P) = 0.

e The spin® indices Q%°(My), which are defined by shift
desingularization, do not depend on the choice of connection.
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Previous works in the spin® setting

Torus actions

e Y. Karshon and S. Tolman (1993), M. Grossberg and Y.
Karshon (1994,1998) : toric manifolds.

e A. Cannas da Silva, Y. Karshon and S. Tolman (2000) : circle
actions.

Non-abelian group actions and Qs is symplectic

e L. Jeffrey and F. Kirwan (1997) : asymptotic result
e PEP (2012)
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Example : the Hirzebruch surface

Let M be the quotient of U := C? — {(0,0)} x C2 — {(0,0)} by
the free action of C* x C* acting by

(U7 V) : (Z1 , 22, 23, 24) = (UZ1 , Uz, UVZ3, VZ4)'

Consider the non-ample line bundle L. obtained as quotient of
the trivial line bundle U x C — U by the action

(U, V) ’ (Z'I )22, 23, Z4, Z) = (UZ1 , UZo, UVZ3, VZy, USVGZ)‘
We have a natural holomorphic action of U(2) on L — M: the
Euler characteristic H*(M, O(LL)) — H'(M, O(L)) + H?(M, O(L))
is a U(2)-representation equal to
Qu)(M,S)

where S = A\ TM ® L.
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In this example we can compute everything and check the
validity of our [Q, R] = 0 theorem.
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Main steps of the proof

The proof of Theorems 1,2,3 can be divided in the following
steps:

¢ Witten deformation

e Fixed point formula for localized indices
e Function ds

e Shifting trick

e Magical inequality
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Witten deformation

o Let o(M,S)(m,v) =cm(v) : S, — S;, be the the principal
symbol of the Dirac operator Dg.

e The Kirwan vector field is ks(m) = ®s(m) - m.

o Let ZS = {ES = 0}

e The symbol (M, S) pushed by the vector field xs is

o(M,S,®s)(m,v) = cm(v + ks(m)).
We have Qk(M,S) = Indexx(c(M,S)) = Indexx(c(M, S, ds)).

Basic fact

If U c Mis an open invariant subset such that Z := UnN Zs is
compact, then o(M, S, ®s)|r+y is transversally elliptic. We
denote

QK(M537Z)

its equivariant index.
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Localization a la Witten

If we have a disjoint decomposition in compact subsets

ZS:HZI

iel
the excision property gives

Qk(M,S) = Z kM, S, Z).

iel

Determine when [Qk(M, S, Z)]K # 0.

We can use the finite decomposition Zs = [[; Z3 where

Zs = K(M° n o5 (8)).
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Fixed point formula for Ox(M, S, Zs) when 3 # 0

Let \V be the normal bundle of M? in M: the linear action of 8
on the fibers induces a complex structure.

Fixed point formula a la Atiyah-Segal-Singer

The spinor bundle S on M induces a spinor bundle Sys on M?
such that

[QK(M. 8. Z;)] =
[0k, (MP. S5 @ Sym(N). MP 03 (8)) © A\(t/85)c]

Consequence

If the eigenvalues of 1.£(8) on Sys ® A(¢/€s)c are strictly
positive then
[Qk(M, S, Z)]* = 0.
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Function ds

Define ds : Zs — R by the following relation
1
ds(m) = ||0]?> + SN Trr w0 — nTrf0],  with 0 = s(m).

where nTr is a normalized trace.
Facts

e ds(m) is the smallest eigenvalue of }5(0) on
Swolm @ A(€/to)c.

e ds is a K-invariant locally constant function on Zs that takes a
finite number of values.

Localization on Z30 := {ds = 0}

If ds is non-negative on M, we have

[QK(M’ 8)]K = [QK(Mv 87 Z;O)] ‘
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Shifting trick
By the shifting trick
mo = [Qk(M x 0%, 8 K Sp-)|¥

On the manifold M x O*, we consider the set Z» where the
Kirwan vector field xsxs,,. vanishes, and the function

d(') = dg@go* . Z@ — R.

Theorem A
The function dy takes non-negative values.

Corollary

We have

mo = [QK(M X (’)*,S@So*vzgo)]K

Hence mp = 0 if Z5° = 0.

v
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Computation of Z;°

We have to understand when the subset Z5° ¢ M x O* is
non-empty.

Theorem B
e Z;% £ () only if 3(h) € H such that ([em, tn]) = ([h, b))
e Suppose that ([, ty]) = ([h, b]) for some (h) € H. Then

7z =112
P

where the disjoint union is parametrized by P € A((h)) N ®s(M)
such that O"(P) = ro.

v
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Magical inequality

Let T C K be a maximal torus with Lie algebra t.

The proofs of Theorems A and B use in a crucial way the
following

Magical inequality
Let A\, u € t*, where )\ is admissible and regular. We have

IX = ll® > Nlp(K) 112,

and the equality holds only if the following hold

¢ 1, is admissible and belongs to the Weyl chamber defined by
A,

o OPM(Kp) = mix.
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Final computation

At this stage we know that
. K
mo =Y [Qk(Mx 0*,8RSp-,25)]
P

where the sum is parametrized by P € A((h)) such that
QSKpm(P) = To.

With a bit more work we get

Final computation

[Qk(M x 0%, SR So-, Z5)]*

= QP"(Mp).

THE END !
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