$[Q, R]=0$ for spin c Dirac operators

Paul-Emile Paradan

Adelaide, July 28, 2015

Spin ${ }^{c}$ Dirac operators

Let M be a compact, oriented and even dimensional manifold. Let $C I(T M) \rightarrow M$ be the Clifford bundle associated to a Riemannian metric.

Clifford module

A complex vector bundle $\mathcal{E} \rightarrow M$ is a $C l(T M)$-module if there is a bundle map $\mathbf{c}_{\mathcal{E}}: T M \rightarrow \operatorname{End}(\mathcal{E})$ such that

$$
\mathbf{c}_{\mathcal{E}}(v)^{2}=-\|v\|^{2} \mathrm{Id}_{\mathcal{E}} \quad \text { for all } \quad v \in T M
$$

Spinor bundle

- A spinor bundle $\mathcal{S} \rightarrow M$ is an irreducible $C l(T M)$-module.
- The orientation induces a grading $\mathcal{S}=\mathcal{S}^{+} \oplus \mathcal{S}^{-}$such that $\mathbf{c}_{\mathcal{S}}(v)$ are odd endomorphisms.

We can associate to a spinor bundle $\mathcal{S} \rightarrow M$ a Dirac operator

$$
D_{\mathcal{S}}: \Gamma\left(M, \mathcal{S}^{+}\right) \rightarrow \Gamma\left(M, \mathcal{S}^{-}\right) .
$$

Since $D_{\mathcal{S}}$ is elliptic we may consider its index

$$
\mathcal{Q}(M, \mathcal{S}):=\operatorname{Index}\left(D_{\mathcal{S}}\right) \in \mathbb{Z} .
$$

Atiyah-Singer formula

We have

$$
\mathcal{Q}(M, \mathcal{S})=\int_{M} e^{i \Omega_{\mathcal{S}} \widehat{\mathrm{A}}(M)}
$$

where $\Omega_{\mathcal{S}}$ is half the curvature of the line bundle

$$
\operatorname{det}(\mathcal{S}):=\operatorname{hom}_{C I(T M)}(\overline{\mathcal{S}}, \mathcal{S})
$$

Spin c Dirac operators: the equivariant case

- Let K be a compact connected Lie group acting on $\mathcal{S} \rightarrow M$.
- The Dirac operator $D_{\mathcal{S}}$ is K-equivariant, and its equivariant index $\mathcal{Q}_{K}(M, \mathcal{S})$ can be computed by the delocalized formulae of Berline-Vergne: for $X \in \mathfrak{k}$ small enough

$$
\mathcal{Q}_{K}(M, \mathcal{S})\left(e^{X}\right)=\int_{M} e^{i \mathcal{S}_{\mathcal{S}}(X)} \widehat{\mathrm{A}}(M, X),
$$

where

$$
\Omega_{\mathcal{S}}(X):=\Omega_{\mathcal{S}}+\left\langle\Phi_{\mathcal{S}}, X\right\rangle
$$

is half the equivariant curvature of the line bundle $\operatorname{det}(\mathcal{S})$.

Atiyah-Hirzebruch (70's)

If the line bundle $\operatorname{det}(\mathcal{S})$ is trivial, then $\mathcal{Q}_{K}(M, \mathcal{S})=0$ unless the action $K \circlearrowright M$ is trivial.

Parametrization of \widehat{K}

Admissible orbits

- A coadjoint orbit $\mathcal{P} \subset \mathfrak{k}^{*}$ is admissible if there exists an equivariant spinor bundle $\mathcal{S}_{\mathcal{P}}$ such that $\Phi_{\mathcal{S}_{\mathcal{P}}}$ is the inclusion.
- We denote $\mathcal{Q}_{K}^{\text {spin }}(\mathcal{P}):=\mathcal{Q}_{K}\left(\mathcal{P}, \mathcal{S}_{\mathcal{P}}\right)$.
- Let \mathcal{A} be the set of admissible orbits, and let $\mathcal{A}_{\text {reg }} \subset \mathcal{A}$ be the subset formed by the regular orbits.

Facts

- The element $\mathcal{Q}_{K}^{\text {spin }}(\mathcal{P})$ is either 0 or an irred. rep. of K.
- The map $\mathcal{P} \longrightarrow \mathcal{Q}_{K}^{\text {spin }}(\mathcal{P})$ is not injective.

Parametrization

The map $\mathcal{O} \in \mathcal{A}_{\text {reg }} \longrightarrow \pi_{\mathcal{O}}:=\mathcal{Q}_{K}^{\text {spin }}(\mathcal{O}) \in \widehat{K}$ is bijective.

Vanishing results

- Let $\left(\mathfrak{E}_{M}\right)$ the generic infinitesimal stabilizer for the K-action on M.
- Let \mathcal{H} be the set of infinitesimal stabilizers $\left(\mathfrak{k}_{\xi}\right), \xi \in \mathfrak{k}$, and let \mathcal{H}^{\prime} be the set formed by their semi-simple part $\left(\left[\mathfrak{k}_{\xi}, \mathfrak{k}_{\xi}\right]\right), \xi \in \mathfrak{k}$.

Theorem 1, P-Vergne

If $\left(\left[\mathfrak{k}_{M}, \mathfrak{k}_{M}\right]\right) \notin \mathcal{H}^{\prime}$, then

$$
\mathcal{Q}_{K}(M, \mathcal{S})=0
$$

for any spinor bundle \mathcal{S}.

Remark

The result above does not hold for more general Dirac operators.

We suppose that $\exists \mathfrak{h} \in \mathcal{H}$ such that $\left(\left[\mathfrak{k}_{M}, \mathfrak{k}_{M}\right]\right)=([\mathfrak{h}, \mathfrak{h}])$.
Let $\mathcal{S} \rightarrow M$ be an equivariant spinor bundle: the choice of a connection on $\operatorname{det}(\mathcal{S})$ determines an equivariant map $\Phi_{\mathcal{S}}: M \rightarrow \mathfrak{k}^{*}$. Note that

$$
\Phi_{\mathcal{S}}(M) \subset\left\{\xi \in \mathfrak{k}^{*} \mid(\mathfrak{h}) \subset\left(\mathfrak{k}_{\xi}\right)\right\} .
$$

Theorem 2, P-Vergne

If $\mathcal{Q}_{K}(M, \mathcal{S}) \neq 0$ then

$$
\Phi_{\mathcal{S}}^{-1}\left(\left\{\xi \in \mathfrak{k}^{*} \mid(\mathfrak{h})=\left(\mathfrak{k}_{\xi}\right)\right\}\right)
$$

is open and dense in M.

Geometric consequence

The manifold M has a dense open part of the form $K \times_{H} Y$ where Y is a $H /[H, H]$-submanifold of M.

Multiplicies

- Thanks to the parametrization $\mathcal{O} \in \mathcal{A}_{\text {reg }} \mapsto \pi_{\mathcal{O}} \in \widehat{K}$, we define $m_{\mathcal{O}}$ as the multiplicity of $\pi_{\mathcal{O}}$ in $\mathcal{Q}_{K}(M, \mathcal{S})$.
- Let $\mathcal{A}((\mathfrak{h}))$ be the subset of admissible orbits of type (\mathfrak{h}). For any $\mathcal{P} \in \mathcal{A}((\mathfrak{h}))$, we define the reduced space

$$
M_{\mathcal{P}}:=\Phi_{\mathcal{S}}(\mathcal{P}) / K
$$

Theorem 3, P-Vergne

- We have

$$
m_{\mathcal{O}}=\sum_{\mathcal{P}} \mathcal{Q}^{\text {spin }}\left(M_{\mathcal{P}}\right)
$$

where the sum runs over $\mathcal{P} \in \mathcal{A}((\mathfrak{h}))$ such that $\mathcal{Q}_{K}^{\text {spin }}(\mathcal{P})=\pi_{\mathcal{O}}$.

- The spin ${ }^{c}$ indices $\mathcal{Q}^{\text {spin }}\left(M_{\mathcal{P}}\right)$, which are defined by shift desingularization, do not depend on the choice of connection.

Previous works in the spin ${ }^{c}$ setting

Torus actions

- Y. Karshon and S. Tolman (1993), M. Grossberg and Y. Karshon $(1994,1998)$: toric manifolds.
- A. Cannas da Silva, Y. Karshon and S. Tolman (2000) : circle actions.

Non-abelian group actions and $\Omega_{\mathcal{S}}$ is symplectic

- L. Jeffrey and F. Kirwan (1997) : asymptotic result
- PEP (2012)

Example : the Hirzebruch surface

Let M be the quotient of $U:=\mathbb{C}^{2}-\{(0,0)\} \times \mathbb{C}^{2}-\{(0,0)\}$ by the free action of $\mathbb{C}^{*} \times \mathbb{C}^{*}$ acting by

$$
(u, v) \cdot\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(u z_{1}, u z_{2}, u v z_{3}, v z_{4}\right) .
$$

Consider the non-ample line bundle \mathbb{L} obtained as quotient of the trivial line bundle $U \times \mathbb{C} \rightarrow U$ by the action

$$
(u, v) \cdot\left(z_{1}, z_{2}, z_{3}, z_{4}, z\right)=\left(u z_{1}, u z_{2}, u v z_{3}, v z_{4}, u^{3} v^{6} z\right) .
$$

We have a natural holomorphic action of $U(2)$ on $\mathbb{L} \rightarrow M$: the Euler characteristic $H^{0}(M, O(\mathbb{L}))-H^{1}(M, O(\mathbb{L}))+H^{2}(M, O(\mathbb{L}))$ is a $U(2)$-representation equal to

$$
\mathcal{Q}_{U(2)}(M, \mathcal{S})
$$

where $\mathcal{S}=\Lambda_{\mathbb{C}} \mathrm{TM} \otimes \mathbb{L}$.

In this example we can compute everything and check the validity of our $[Q, R]=0$ theorem.

Main steps of the proof

The proof of Theorems 1,2,3 can be divided in the following steps:

- Witten deformation
- Fixed point formula for localized indices
- Function d_{S}
- Shifting trick
- Magical inequality

Witten deformation

- Let $\sigma(M, \mathcal{S})(m, v)=\mathbf{c}_{m}(v): \mathcal{S}_{m}^{+} \rightarrow \mathcal{S}_{m}^{-}$be the the principal symbol of the Dirac operator $D_{\mathcal{S}}$.
- The Kirwan vector field is $\kappa_{\mathcal{S}}(m)=\Phi_{\mathcal{S}}(m) \cdot m$.
- Let $Z_{\mathcal{S}}=\left\{\kappa_{\mathcal{S}}=0\right\}$.
- The symbol $\sigma(M, \mathcal{S})$ pushed by the vector field $\kappa_{\mathcal{S}}$ is

$$
\sigma\left(M, \mathcal{S}, \Phi_{\mathcal{S}}\right)(m, v)=\mathbf{c}_{m}\left(v+\kappa_{\mathcal{S}}(m)\right)
$$

We have $\mathcal{Q}_{K}(M, \mathcal{S})=\operatorname{Index}_{K}(\sigma(M, \mathcal{S}))=\operatorname{Index}_{K}\left(\sigma\left(M, \mathcal{S}, \Phi_{\mathcal{S}}\right)\right)$.

Basic fact

If $U \subset M$ is an open invariant subset such that $Z:=U \cap Z_{\mathcal{S}}$ is compact, then $\left.\sigma\left(M, \mathcal{S}, \Phi_{\mathcal{S}}\right)\right|_{\mathrm{T}^{*} U}$ is transversally elliptic. We denote

$$
\mathcal{Q}_{K}(M, \mathcal{S}, Z)
$$

its equivariant index.

Localization à la Witten

If we have a disjoint decomposition in compact subsets

$$
Z_{\mathcal{S}}=\coprod_{i \in I} z_{i}
$$

the excision property gives

$$
\mathcal{Q}_{K}(M, \mathcal{S})=\sum_{i \in I} \mathcal{Q}_{K}\left(M, \mathcal{S}, Z_{i}\right)
$$

Question

Determine when $\left[\mathcal{Q}_{K}\left(M, \mathcal{S}, Z_{i}\right)\right]^{K} \neq 0$.

We can use the finite decomposition $Z_{\mathcal{S}}=\coprod_{\beta} Z_{\beta}$ where

$$
Z_{\beta}=K\left(M^{\beta} \cap \Phi_{\mathcal{S}}^{-1}(\beta)\right)
$$

Fixed point formula for $\mathcal{Q}_{K}\left(M, \mathcal{S}, Z_{\beta}\right)$ when $\beta \neq 0$

Let \mathcal{N} be the normal bundle of M^{β} in M : the linear action of β on the fibers induces a complex structure.

Fixed point formula à la Atiyah-Segal-Singer
The spinor bundle \mathcal{S} on M induces a spinor bundle $\mathcal{S}_{M^{\beta}}$ on M^{β} such that

$$
\begin{aligned}
& {\left[\mathcal{Q}_{K}\left(M, \mathcal{S}, Z_{\beta}\right)\right]^{K}=} \\
& \quad\left[\mathcal{Q}_{K_{\beta}}\left(M^{\beta}, \mathcal{S}_{M^{\beta}} \otimes \operatorname{Sym}(\mathcal{N}), M^{\beta} \cap \Phi_{\mathcal{S}}^{-1}(\beta)\right) \otimes \bigwedge\left(\mathfrak{k} / \mathfrak{k}_{\beta}\right)_{\mathbb{C}}\right]^{K_{\beta}}
\end{aligned}
$$

Consequence

If the eigenvalues of $\frac{1}{i} \mathcal{L}(\beta)$ on $\mathcal{S}_{M^{\beta}} \otimes \bigwedge\left(\mathfrak{k} / \mathfrak{k}_{\beta}\right)_{\mathbb{C}}$ are strictly positive then

$$
\left[\mathcal{Q}_{K}\left(M, \mathcal{S}, Z_{\beta}\right)\right]^{K}=0
$$

Function d_{S}

Define $d_{\mathcal{S}}: Z_{\mathcal{S}} \longrightarrow \mathbb{R}$ by the following relation

$$
d_{\mathcal{S}}(m)=\|\theta\|^{2}+\frac{1}{2} \mathbf{n} \mathbf{T r}_{\mathrm{T}_{m} M}|\theta|-\mathbf{n} \mathbf{T r}_{\mathfrak{k}}|\theta|, \quad \text { with } \quad \theta=\Phi_{\mathcal{S}}(m)
$$

where $\mathbf{n T r}$ is a normalized trace.

Facts

- $d_{\mathcal{S}}(m)$ is the smallest eigenvalue of $\frac{1}{i} \mathcal{L}(\theta)$ on
$\left.\mathcal{S}_{M^{\theta}}\right|_{m} \otimes \bigwedge\left(\mathfrak{k} / \mathfrak{k}_{\theta}\right)_{\mathbb{C}}$.
- $d_{\mathcal{S}}$ is a K-invariant locally constant function on $Z_{\mathcal{S}}$ that takes a finite number of values.

Localization on $Z_{\mathcal{S}}^{=0}:=\left\{d_{\mathcal{S}}=0\right\}$
If $d_{\mathcal{S}}$ is non-negative on M, we have

$$
\left[\mathcal{Q}_{K}(M, \mathcal{S})\right]^{K}=\left[\mathcal{Q}_{K}\left(M, \mathcal{S}, Z_{\mathcal{S}}^{=0}\right)\right]^{K}
$$

Shifting trick

By the shifting trick

$$
m_{\mathcal{O}}=\left[\mathcal{Q}_{K}\left(M \times \mathcal{O}^{*}, \mathcal{S} \boxtimes \mathcal{S}_{\mathcal{O}^{*}}\right)\right]^{K}
$$

On the manifold $M \times \mathcal{O}^{*}$, we consider the set $Z_{\mathcal{O}}$ where the Kirwan vector field $\kappa_{\mathcal{S} \boxtimes \mathcal{S}_{\mathcal{O}^{*}}}$ vanishes, and the function

$$
d_{\mathcal{O}}:=d_{\mathcal{S} \boxtimes \mathcal{S}_{\mathcal{O}^{*}}}: Z_{\mathcal{O}} \rightarrow \mathbb{R}
$$

Theorem A

The function $d_{\mathcal{O}}$ takes non-negative values.
Corollary
We have

$$
m_{\mathcal{O}}=\left[\mathcal{Q}_{K}\left(M \times \mathcal{O}^{*}, \mathcal{S} \boxtimes \mathcal{S}_{\mathcal{O}^{*}}, Z_{\overline{\mathcal{O}}}^{=0}\right)\right]^{K}
$$

Hence $m_{\mathcal{O}}=0$ if $Z_{\overline{\mathcal{O}}}^{=0}=\emptyset$.

Computation of $Z_{\bar{O}}^{=0}$

We have to understand when the subset $Z_{\overline{\mathcal{O}}}^{=0} \subset M \times \mathcal{O}^{*}$ is non-empty.

Theorem B

- $Z_{\overline{\mathcal{O}}}^{\overline{=}} \neq \emptyset$ only if $\exists(\mathfrak{h}) \in \mathcal{H}$ such that $\left(\left[\mathfrak{k}_{M}, \mathfrak{k}_{M}\right]\right)=([\mathfrak{h}, \mathfrak{h}])$.
- Suppose that $\left(\left[\mathfrak{k}_{M}, \mathfrak{k}_{M}\right]\right)=([\mathfrak{h}, \mathfrak{h}])$ for some $(\mathfrak{h}) \in \mathcal{H}$. Then

$$
Z_{\mathcal{O}}^{=0}=\coprod_{\mathcal{P}} Z_{\mathcal{O}}^{\mathcal{P}}
$$

where the disjoint union is parametrized by $\mathcal{P} \in \mathcal{A}((\mathfrak{h})) \cap \Phi_{\mathcal{S}}(M)$ such that $\mathcal{Q}_{K}^{\text {spin }}(\mathcal{P})=\pi_{\mathcal{O}}$.

Magical inequality

Let $T \subset K$ be a maximal torus with Lie algebra t .
The proofs of Theorems A and B use in a crucial way the following

Magical inequality

Let $\lambda, \mu \in \mathfrak{t}^{*}$, where λ is admissible and regular. We have

$$
\|\lambda-\mu\|^{2} \geq\left\|\rho\left(K_{\mu}\right)\right\|^{2}
$$

and the equality holds only if the following hold

- μ is admissible and belongs to the Weyl chamber defined by λ,
- $\mathcal{Q}_{K}^{\text {spin }}(K \mu)=\pi_{K \lambda}$.

Final computation

At this stage we know that

$$
m_{\mathcal{O}}=\sum_{\mathcal{P}}\left[\mathcal{Q}_{K}\left(M \times \mathcal{O}^{*}, \mathcal{S} \boxtimes \mathcal{S}_{\mathcal{O}^{*}}, Z_{\mathcal{O}}^{\mathcal{P}}\right)\right]^{K}
$$

where the sum is parametrized by $\mathcal{P} \in \mathcal{A}((\mathfrak{h}))$ such that $\mathcal{Q}_{K}^{\text {spin }}(\mathcal{P})=\pi_{\mathcal{O}}$.
With a bit more work we get
Final computation

$$
\left[\mathcal{Q}_{K}\left(M \times \mathcal{O}^{*}, \mathcal{S} \boxtimes \mathcal{S}_{\mathcal{O}^{*}}, Z_{\mathcal{O}}^{\mathcal{P}}\right)\right]^{K}=\mathcal{Q}^{\text {spin }}\left(M_{\mathcal{P}}\right)
$$

THE END!

