Real geometric quantisation

Romero Barbieri Solha Supported by CAPES via AEX programme

July 23, 2015

- The original idea of geometric quantisation is to associate a Hilbert space to a symplectic manifold via a prequantum line bundle and a polarisation.
- I will show an approach to compute cohomology groups appearing in geometric quantisation of integrable systems with nondegenerate singularities.

The setup

- Let (M, ω) be a symplectic manifold such that $[\omega]$ is integral.
- (L, ∇^{ω}) a, Hermitian, complex line bundle with connection over M that satisfies $curv(\nabla^{\omega}) = -i\omega$.
- The symplectic manifold (M, ω) is called prequantisable and the pair (L, ∇^{ω}) a prequantum line bundle for (M, ω) .

Polarisation

- A real polarisation \mathcal{P} is an integrable (in the Sussmann sense) distribution of TM whose leaves are generically Lagrangian.
- An integrable system $F = (f_1, \ldots, f_n) : M^{2n} \to \mathbb{R}^n$ on a symplectic manifold defines a Lagrangian foliation (possibly with singularities): $\mathcal{P} = \langle X_{f_1}, ..., X_{f_n} \rangle_{C^{\infty}(M;\mathbb{R})}$.
- P will denote the complexification of \mathcal{P} : $P = \langle X_{f_1}, ..., X_{f_n} \rangle_{C^{\infty}(M;\mathbb{C})}$

Geometric quantisation (à la Kostant)

- $\mathcal{Q}(M) = \bigoplus_{k \ge 0} \check{H}^k(M; \mathcal{J})$ is the quantisation of $(M, \omega, L, \nabla, P)$.
- \mathcal{J} is the sheaf of flat sections, i.e.: the space of local sections σ of L such that $\nabla^{\omega}_{X}\sigma = 0$ for any vector field X of P.
- $\nabla := \nabla^{\omega} \Big|_{P}$ is the restriction of the connection ∇^{ω} to the polarisation P.

Nondegenerate singularities

- A singular point of the moment map is called nondegenerate if the quadratic part of the first integrals form a cartan subalgebra.
- **Theorem:**(*Eliasson*,*Miranda and Zung*) Near a compact singular nondegenerate orbit both the foliation and the symplectic form can be simultaneously linearised (in an equivariant way).

- The local model is given by $N = D^k \times \mathbb{T}^k \times D^{2(n-k)}$ and $\omega_0 = \sum_{i=1}^n \mathrm{d} x_i \wedge \mathrm{d} y_i.$
- Regular $f_i = x_i$ for i = 1, ..., k;
- Elliptic $f_i = x_i^2 + y_i^2$ for $i = k + 1, ..., k_e$;
- Hyperbolic $f_i = x_i y_i$ for $i = k_e + 1, ..., k_e + k_h$;
- Focus-focus $f_i = x_i y_{i+1} x_{i+1} y_i$, $f_{i+1} = x_i y_i + x_{i+1} y_{i+1}$ for $i = k_e + k_h + 2j 1$, $j = 1, ..., k_f$.

Resolution approach

• Let $\mathcal{S}_P^k(L)$ be the sheaf of $\Gamma(\bigwedge^k P^* \otimes_{C^{\infty}(M;\mathbb{C})} L)$ and d^{∇} is the exterior derivative obtained by twisting d_P with the connection ∇ .

• Theorem:

$$0 \longrightarrow \mathcal{J} \hookrightarrow \mathcal{S} \xrightarrow{\nabla} \mathcal{S}_P^1(L) \xrightarrow{\mathsf{d}^{\nabla}} \cdots \xrightarrow{\mathsf{d}^{\nabla}} \mathcal{S}_P^n(L) \xrightarrow{\mathsf{d}^{\nabla}} 0$$

is a fine resolution for \mathcal{J} . Therefore its cohomology computes geometric quantisation; $\check{H}^k(M; \mathcal{J}) \cong H^k(S_P^{\bullet}(L))$.

• Regular case: Kostant (Rawnsley).

• $(\mathcal{P}, [\cdot, \cdot]|_{\mathcal{P}})$ is a Lie subalgebra of $(\Gamma(TM), [\cdot, \cdot])$ and can be represented on $C^{\infty}(M)$ as vector fields acting on smooth functions.

$$0 \longrightarrow C^{\infty}_{\mathcal{P}}(M) \hookrightarrow C^{\infty}(M) \xrightarrow{\mathsf{d}_{\mathcal{P}}} \Omega^{1}_{\mathcal{P}}(M) \xrightarrow{\mathsf{d}_{\mathcal{P}}} \cdots \xrightarrow{\mathsf{d}_{\mathcal{P}}} \Omega^{n}_{\mathcal{P}}(M) \xrightarrow{\mathsf{d}_{\mathcal{P}}} 0$$

For $Y_1, \ldots, Y_{k+1} \in \mathcal{P}$, the coboundary operator is given by

$$d_{\mathcal{P}}\alpha \quad (Y_1, \dots, Y_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i+1} Y_i(\alpha(Y_1, \dots, \hat{Y}_i, \dots, Y_{k+1})) + \sum_{i < j} (-1)^{i+j} \alpha([Y_i, Y_j], Y_1, \dots, \hat{Y}_i, \dots, \hat{Y}_j, \dots, Y_{k+1}) .$$

 $\begin{aligned} C^{\infty}_{\mathcal{P}}(M) &= \ker(\mathsf{d}_{\mathcal{P}}) \\ \Omega^k_{\mathcal{P}}(M) &= \operatorname{Hom}_{C^{\infty}(M)}(\bigwedge_{C^{\infty}(M)}^k \mathcal{P}; C^{\infty}(M)) \\ \text{plus vanishing conditions} \end{aligned}$

• Theorem: (Miranda and Solha)

Consider $(\mathbb{R}^{2n}, \sum_{i=1}^{n} dx_i \wedge dy_i)$ endowed with a real polarisation \mathcal{P} with singularities of elliptic and hyperbolic type, then the foliated cohomology group in degree 1 is nontrivial — Poincaré lemma does not hold.

- Almost toric case: Solha.
- Nondegenerate case (inclusion of hyperbolic singularities): Miranda and Solha.

Bohr-Sommerfeld condition

- A leaf ℓ of \mathcal{P} is a Bohr-Sommerfeld leaf if there is a nonzero flat section $\sigma: \ell \to L$. Equivalently, all loops in ℓ have trivial holonomy.
- **Theorem:** Under the assumption that the zero fibre is Bohr-Sommerfeld, the image of Bohr-Sommerfeld fibres by a moment map is contained in $\mathbb{R}^{n-k} \times \mathbb{Z}^k$; k being the number of linearly independent Hamiltonian S^1 -actions generated by the moment map.
- The Liouville tori case was proved by Guillemin and Sternberg: their theorem holds for Lagrangian fibrations, with compact connected fibres, over simply connected basis.

 Over a Bohr-Sommerfeld fibre each component of the moment map generating a S¹-action takes an integer value, depending only on the fibre.

Lemma: Let X be the generator of a symplectic S^1 -action with orbits γ , then its (2π) holonomy can be computed (up to flat bundles) by

$$hol_{\nabla^{\omega}}(\gamma) = \mathrm{e}^{i2\pi\theta(X)};$$

where θ is a particular invariant potential 1-form for ω in a neighbourhood of γ .

Nonsingular and elliptic cases

• **Theorem:** (Sniatycki) If the base space N is a manifold and the natural projection $\mathcal{F} : M \to N$ is a Lagrangian fibration, then $\mathcal{Q}(M) = \check{H}^k(M; \mathcal{J}) \cong \check{H}^0(\ell_{BS}; \mathcal{J}|_{\ell_{BS}}).$

k is the rank of the fundamental group of a fibre and $\ell_{BS} \subset M$ is the union of all Bohr-Sommerfeld fibres.

• **Theorem:**(*Hamilton*) For a 2*n*-dimensional compact locally toric fibration:

$$\mathcal{Q}(M) = \check{H}^n(M; \mathcal{J}) \cong \bigoplus_{p \in BS_r} \mathbb{C} .$$

- Sniatycki's result:
 - 1. trivially holds without metaplectic correction and does not need compactness assumptions;
 - 2. depends on the existence of global action-angle coordinates and the image of the moment map must be a manifold.
- Hamilton's result:
 - 1. can be adapted, however does not include metaplectic correction, and needs compactness of the fibres;
 - 2. does not require a manifold structure on the image of the moment map.

- For the new proofs:
 - it does not matter if metaplectic correction is included or not (it holds for Hermitian line bundles with flat connection along the leaves of the polarisation);
 - 2. it does not need a manifold structure on the image of the moment map;
 - 3. Sniatycki's and Hamilton's result are unified;
 - 4. something can be said about the almost toric case.

Dimension 2

• **Theorem:**(Hamilton and Miranda) For a integrable system on a compact surface, whose moment map has only nondegenerate singularities

$$\mathcal{Q}(M) = \check{H}^1(M; \mathcal{J}) \cong \bigoplus_{p \in \mathcal{H}} (\mathbb{C}^{\mathbb{N}} \oplus \mathbb{C}^{\mathbb{N}}) \oplus \bigoplus_{p \in BS_r} \mathbb{C} .$$

Free rigid body

- The coadjoint orbits of $\mathfrak{so}(3)^*$ are spheres, with the area form, and a point.
- The Euler equations are equivalent to the free rigid body dynamics.
- If the principal axis of inertia satisfies $I_1 = I_2 \neq I_3$, the momentum of inertia operator has 2 distinct eigenvalues. It has two elliptic singularities.
- A generic body satisfies $I_1 < I_2 < I_3$. It has four elliptic and two hyperbolic singularities.

Rawnsley: Circle actions and homotopy operators

$$0 \longrightarrow \mathcal{J} \hookrightarrow \mathcal{S} \xrightarrow{\nabla} \mathcal{S}_P^1(L) \xrightarrow{\mathsf{d}^{\nabla}} \cdots \xrightarrow{\mathsf{d}^{\nabla}} \mathcal{S}_P^n(L) \xrightarrow{\mathsf{d}^{\nabla}} 0$$

• Suppose that $X \in \mathcal{P}$ is a periodic Hamiltonian vector field and ϕ_t represents its flow.

•
$$J_X(\alpha \otimes s) = \int_0^{2\pi} (\imath_X \circ \phi_t^* \alpha) \otimes \Pi_{\phi_t}^{-1}(s \circ \phi_t) dt$$

resembles an homotopy operator:

$$[hol_{\nabla \omega}(\gamma)^{-1} - 1] \alpha \otimes s = J_X(\mathsf{d}^{\nabla} \alpha \otimes s) + \mathsf{d}^{\nabla} J_X(\alpha \otimes s) .$$

• For sections of *L*,

$$[hol_{\nabla^{\omega}}(\gamma)^{-1} - 1]s = J_X(\nabla s)$$

and if the holonomy is nontrivial over a dense set $H^0(S_P^{\bullet}(L)) = \{0\}.$

• If $\pmb{lpha}\in S^k_P(L)$ is closed, d $^
abla \pmb{lpha}=$ 0,

$$[hol_{\nabla}\omega(\gamma)^{-1}-1]\alpha = \mathsf{d}^{\nabla}J_X(\alpha) ,$$

and if the holonomy is nontrivial over a dense set $J_X(\alpha)$ closed $\Rightarrow H^k(S_P^{\bullet}(L)) = \{0\}.$ **Proposition:** Supposing that (M, ω) admits a symplectic S^1 action preserving P, $H^0(S_P^{\bullet}(L)) = \{0\}$ if $\{hol_{\nabla \omega}(\gamma) \neq 1\}$ is dense.

Proposition: Let $\alpha \in S_P^k(L)$ be closed, $d^{\nabla}\alpha = 0$, and $k \neq 0$.

- The form α is exact everywhere $hol_{\nabla^{\omega}}(\gamma) \neq 1$. It is also globally exact if $\{hol_{\nabla^{\omega}}(\gamma) \neq 1\}$ is dense and $J_X(\alpha) = 0$ where $hol_{\nabla^{\omega}}(\gamma) = 1$.
- When $\{hol_{\nabla^{\omega}}(\gamma) = 1\}$ is a (not necessarily connected) submanifold, α is exact on M if and only if $\mathbf{J}_X(\alpha)\Big|_{T\{hol_{\nabla^{\omega}}(\gamma)=1\}}$ is exact.

Computing the building blocks: regular case

• The existence of J_X implies no global flat sections and induces an isomorphism between flat sections over Bohr-Sommerfeld leaves and the first cohomology group.

$$\Psi: S_P^1(L) \to \bigoplus_{k \in \mathbb{Z}} \Gamma(L|_{\ell_k}) \ \Psi(\alpha) = \oplus_{k \in \mathbb{Z}} J_X(\alpha) \Big|_{\ell_k}.$$

Proposition: The quantisation of a cylinder polarised by circles is \mathbb{C}^{b_s} , where b_s is the number of Bohr-Sommerfeld leaves.

- Elliptic singularities give no contribution (Poincaré lemma).
 - 1. $hol_{\nabla\omega}(\gamma) = e^{i2\pi\theta(X)} = e^{i2\pi(x^2+y^2)}$ and holonomy is nontrivial over a dense set: $H^0(S_P^{\bullet}(L)) = 0$.
 - 2. Since the origin is a fixed point, the operator J_X is the null operator when restricted to the origin (trivial holonomy).
 - 3. Hence for each contractible neighbourhood of the origin that does not contain any other Bohr-Sommerfeld leaf, elliptic singularities give no contribution to quantisation (first proved by Hamilton using different techniques).

Proposition: The quantisation of an open disk polarised by circles is \mathbb{C}^{b_s} , where b_s is the number of nonsingular Bohr-Sommerfeld leaves.

• Focus-focus:

- 1. **Theorem:** (Zung) There exists a neighbourhood of a focusfocus singular fibre over which a Hamiltonian S^1 -action is defined and its vector field is one of the generators of the polarisation given by the nondegenerate integrable system.
- 2. Poincaré lemma: In a small enough neighbourhood W of a singular point of a focus-focus Bohr-Sommerfeld fibre J_X is the null operator over the points where $\{hol_{\nabla}\omega(\gamma) = 1\}$.

Proposition: In the neighbourhood of ℓ_{ff} over which a Hamiltonian S^1 -action is defined there exists a neighbourhood V containing only ℓ_{ff} as a Bohr-Sommerfeld fibre such that $\check{H}^0(V; \mathcal{J}|_V) = \{0\}.$

- The first, nonlocal, obstacle is that $\{hol_{\nabla}\omega(\gamma) = 1\}$ is not a submanifold, and one needs to prove that J_X is the null operator over the points where $\{hol_{\nabla}\omega(\gamma) = 1\}$.
- Another approach would be to prove only the exactness of J_X and check out convergence over the singular points of $\{hol_{\nabla}\omega(\gamma) = 1\}.$

- Hyperbolic:
 - 1. **Theorem 1:**(*Miranda and Solha*)

All cohomology groups vanish near a singularity of purely hyperbolic type in dimension 2 and 4.

For $X(g) = ifg + \alpha(X)$ a solution is given by $g = \tilde{g} - G$, where \tilde{g} is obtained as a formal solution via Taylor series, $X(\tilde{g}) = if\tilde{g} + \alpha(X) + T$, and $G = \int_{-\ln\gamma}^{0} e^{-ift}T \circ \phi_t dt$ is a solution for flat functions: X(G) = ifG + T.

For higher degrees, one has to solve a system of equations of this type together with compatibility conditions (that are not only necessary, but sufficient). Künneth formula

- Let $((-1,1) \times S^1, dx \wedge dy, \langle \frac{\partial}{\partial y} \rangle)$ and $(M, \omega = d\theta, L, \nabla, P)$ arbitrary.
- $\mathcal{L} \to ((-1,1) \times S^1 \times M, dx \wedge dy + \omega)$ is a prequantum line bundle.

Theorem:

The map $\Psi : H^k(S_{\langle \frac{\partial}{\partial y} \rangle \oplus P}^{\bullet}(\mathscr{L})) \to H^{k-1}(S_P^{\bullet}(L))$ defined by $\Psi([\bar{\alpha}]) = \left[J_{\frac{\partial}{\partial y}}(\bar{\alpha}) \Big|_{\{hol_{\nabla}\omega(\gamma)=1\}} \right]$ is an isomorphism.

- If the first factor, N, is an elliptic or focus-focus local model, J_X implies that $Q(N \times M) = \{0\}$ for any M (exact, $\omega = d\theta$).
- The Hamiltonian S^1 -action has nontrivial holonomy over a dense set, and the set $\{hol_{\nabla^{\omega}}(\gamma) = 1\}$ are fixed points: the operator J_X is the null operator when restricted to $\{hol_{\nabla^{\omega}}(\gamma) = 1\}$.