A higher chromatic analogue of the J-homomorphism

Craig Westerland

University of Melbourne

20 March 2012

Stable homotopy groups

Recall: For a topological space *X*, the stable homotopy groups of *X* are

$$\pi_k^{\mathcal{S}}(X) := \lim_{n \to \infty} \pi_{n+k} \Sigma^n X = \pi_k \left(\lim_{n \to \infty} \Omega^n \Sigma^n X \right) =: \pi_k(QX)$$

where $\Omega^n Y = Map_*(S^n, Y)$.

Completely unattainable goal: Compute $\pi_k^S(S^0)$, $\forall k$.

Chromatic homotopy theory: Separates $\pi_k^S(S^0)$ into "chromatic layers," and then seeks to understand these layers. Classically, the Adams conjecture on the image of *J* is rephrased as a question about the *first* chromatic layer.

The J-homomorphism

Define $J_n: O(n) \to \Omega^n S^n$ as the map

$$(M:\mathbb{R}^n\to\mathbb{R}^n)\mapsto (J_n(M)=M\cup\{\infty\}:S^n\to S^n).$$

In the limit over *n*, we get $J: O \rightarrow QS^0$.

Theorem (Bott periodicity)

<i>k</i> mod 8	0	1	2	3	4	5	6	7
$\pi_k O$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	0	\mathbb{Z}	0	0	0	\mathbb{Z}

Theorem (Adams, Quillen)

 π_*J is an injection if $* = 0, 1 \mod 8$. Further, in dimension 4n - 1, $im(\pi_*J)$ is \mathbb{Z}/m where m is the denominator of $B_{2n}/4n$.

Equivalently (p > 2): $im(\pi_*J)_p = \mathbb{Z}/p^{k+1}$ if $* + 1 = 2(p-1)p^k m$, where *m* is coprime to *p*.

Idea of the proof

Let $K = K\mathbb{Z}_p$ be *p*-adic *K*-theory, and K(1) = K/p be mod *p K*-theory.

Then, for each $k \in \mathbb{Z}_{p}^{\times}$, there is a natural transformation (*Adams operation*) $\psi^{k} : K \to K$, uniquely characterised by

Theorem

There is a ring isomorphism $K(1)_*K \cong C(\mathbb{Z}_p^{\times}, \mathbb{F}_p)$ which carries ψ^k to the operation $\psi^k(f)(x) = f(kx)$.

Here $C(\mathbb{Z}_{\rho}^{\times}, \mathbb{F}_{\rho})$ is the ring of continuous functions $f : \mathbb{Z}_{\rho}^{\times} \to \mathbb{F}_{\rho}$. We recall that $\mathbb{Z}_{\rho}^{\times}$ is topologically cyclic, with topological generator $g := \zeta(1 + \rho)$, where $\zeta \in \mathbb{Z}_{\rho}^{\times}$ is a primitive $\rho - 1^{\text{st}}$ root of unity.

Note: The map $\psi^g - 1 : K \to K$ is surjective in $K(1)_*$ with kernel consisting of those functions $f : \mathbb{Z}_p^{\times} \to \mathbb{F}_p$ with f(gx) = f(x); i.e., the constant functions. This is rank 1 over \mathbb{F}_p .

Thus the homotopy fibre of $\psi^g - 1$ has $K(1)_*$ which is rank one, the same as that of a sphere.

Corollary

There is a fibre sequence
$$L_{K(1)}S^0 \longrightarrow K \xrightarrow{\psi^g - 1} K$$

One checks that $\psi^g - 1 : \pi_{2j}K \to \pi_{2j}K$ is multiplication by p^{k+1} in \mathbb{Z}_p when $j = (p-1)p^k m$. The long exact sequence in homotopy in dimension 2k is then:

$$\cdots \longrightarrow 0 \longrightarrow \mathbb{Z}_{\rho} \xrightarrow{\rho^{k+1}} \mathbb{Z}_{\rho} \longrightarrow \mathbb{Z}/\rho^{k+1} \longrightarrow 0 \longrightarrow \cdots$$

Moral: The image of *J* is the homotopy of the K(1)-local sphere (in positive dimensions).

Interlude on localisation

For a cohomology theory *E*, a spectrum *X* is *E*-acyclic if $E_*X = 0$. Another spectrum *Y* is *E*-local if for all *E*-acyclics *X*, [X, Y] = 0.

Examples

• $\widetilde{H}_*(\mathbb{R}P^\infty, \mathbb{Q}) = 0$, so $\Sigma^\infty \mathbb{R}P^\infty$ is $H\mathbb{Q}$ -acyclic.

• E is definitionally E-local.

Write E - Loc for the subcategory of *Spectra* consisting of *E*-local spectra.

Theorem (Bousfield)

There exists a functor L_E : Spectra $\rightarrow E$ – Loc which is the identity on E – Loc.

The chromatic program: understand $\pi_*^S(S^0)$ via $\pi_*(L_{K(n)}S^0)$, where K(n) is height *n Morava K-theory*.

A generalisation of the J-homomorphism

Theorem (Morava, Hopkins-Miller)

There is a spectrum E_n and a group G_n acting on E_n with

$$L_{K(n)}S^0\simeq E_n^{hG_n}.$$

• When n = 1, $E_1 = K$ and $G_1 = \mathbb{Z}_p^{\times}$, giving the above.

• The homotopy of *E_n* is

$$\pi_* E_n \cong W(\mathbb{F}_{p^n})[[u_1,\ldots,u_{n-1}]][u^{\pm 1}].$$

This is a complete local ring with residue field

$$\pi_* K(n) = \mathbb{F}_{p^n}[u^{\pm 1}].$$

When n > 1, G_n is much more complicated than Z_p[×]: the units in a maximal order in a rank n² p-adic division algebra.

Motivation

Our goal: Reproduce some version of the K-theory calculation (i.e., using \mathbb{Z}_{p}^{\times} , not G_{n}) at higher chromatic levels. Our method is more naive, and based around the following:

Theorem (Snaith)

There is a map $\beta: S^2 \to \Sigma^{\infty} \mathbb{C}P^{\infty}_+$ such that

 $K\simeq \Sigma^{\infty}\mathbb{C}P^{\infty}_{+}[\beta^{-1}].$

Idea: $\Sigma^{\infty} \mathbb{C} P^{\infty}_+$ is the "free cohomology theory generated by line bundles." This "generates" *K* by the splitting principle. Further, the invertibility of β (the *Bott class*) forces (complex) Bott periodicity.

A higher chromatic analogue should have:

- An analogue of the Bott map and Snaith's theorem.
- \mathbb{Z}_p^{\times} worth of "Adams operations."
- An interpretation in terms of continuous functions on \mathbb{Z}_p^{\times} .

The Picard group

For a symmetric monoidal category (C, \otimes) with unit *S*, one defines an abelian group

$$\mathsf{Pic}(C) := \{X \in C \mid \exists Y \text{ such that } X \otimes Y \cong S\} / \cong$$

Examples

1 Pic(*Vect*/
$$k$$
) = { k } \cong 0.

- **2** Pic(Vect(X)) \cong Pic(X) (line bundles).
- **3** Pic(*Spectra*) = { S^n } $\cong \mathbb{Z}$.
- Pic_n := Pic(K(n) Loc) is very interesting. For instance,
 Pic₁ = Z_p ⊕ Z/(2p 2) if p > 2 (Hopkins-Mahowald-Sadofsky).

An example is the *Gross-Hopkins* or *Brown-Comenetz* dual of S^0 . The functor $I(X) = \text{Hom}(\pi_*(X), \mathbb{Q}/\mathbb{Z})$ satisfies Brown-representability, and so is represented by a spectrum *I*; I(X) = [X, I]. It turns out that $L_{K(n)}I \in \text{Pic}_n$.

Theorem (W.)

There exists $G \in \text{Pic}_n$ and $\rho : G \to \Sigma^{\infty} L_{K(n)} K(\mathbb{Z}_p, n+1)_+ =: X_n$ with the following properties:

2 The natural action of $k \in \mathbb{Z}_p^{\times}$ on $X_n[\rho^{-1}]$ yields, in $K(n)_*$, the formula $\psi^k f(x) = f(kx)$.

3) If
$$n = 1$$
, then $G = S^2$ and $\rho = \beta$.

3 If
$$p > \frac{n^2 + n + 2}{2}$$
, then $G = \Sigma^{2\frac{p'' - 1}{p - 1} + n - n^2} L_{K(n)}I$.

•
$$[G^j, X_n[\rho^{-1}]] \cong \mathbb{Z}_p$$
 for every $j \in \mathbb{Z}$.

Parts 1 and 2 give a fibre sequence $L_{K(n)}S^0 \longrightarrow X_n[\rho^{-1}] \xrightarrow{\psi^g - 1} X_n[\rho^{-1}]$, just as before. Property 5 then implies:

Corollary

$$[G^{j}, L_{\mathcal{K}(n)}S^{0}] = \mathbb{Z}/p^{k+1}$$
 if $j + 1 = (p-1)p^{k}m$, where m is coprime to p.

Questions

- What sort of cohomology theory is $X_n[\rho^{-1}]$? Does it have anything to do with *n*-bundle gerbe modules?
- 2 Is there a concrete description of *G*? That is, can we understand the "Bott periodicity" that we've imposed upon $X_n[\rho^{-1}]$?
- Solution 3 Can we conclude anything about $\pi_*(S^0)$, K(n)-locally?

A higher chromatic analogue of the J-homomorphism

Craig Westerland

University of Melbourne

20 March 2012