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Symmetric Spaces Connection with C*-Algebras K-Theory Classification

Symmetric spaces appear naturally in many instances and provide
an interesting class of manifolds.

They can be completely classified (depending a little on how
exactly you define them). E. Cartan did this in the 20s of the last
century for Riemannian symmetric spaces, when homological
methods were still in a primordial state.

The aim of the following is to report on how this classification can
be obtained through K-theory.

Our invariant here will classify morphism as well and thus slightly
improves upon the classical invariant.

Along a similar line of reasoning, inductive limits can be classified
as well.

All new results in the following, unaccounted for, are joint with
Dennis Bohle.
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Symmetric Spaces Connection with C*-Algebras K-Theory Classification

Standard definition

Definitions of ‘Symmetric Space’ vary. The probably most
traditional one:

Definition

A Riemannian manifold M is called a Riemannian symmetric space
if for each point x ∈ M there exists an involution sx (a ‘symmetry’)
which is an isometry of M, and has x as an isolated fixed point.

By elementary geometry, Euclidian space, the hyperbolic plane, or
the (real) spheres are examples in this class of spaces. A beautiful
result going back to E. Cartan states

Theorem

A Riemannian manifold M is locally symmetric iff its curvature
tensor R is parallel, ∇R = 0.
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More concretely

By appropriately composing symmetries, one can reach each point
m ∈ M from a given point o ∈ M by an isometry. Symmetric
spaces are hence homogeneous, and thus of the form G/K , where
G is a Lie group and K is the isotropy group of a fixed point o.

In such a situation, one symmetry at a fixed point gives all the
others, and all symmetric spaces in this talk are obtained in the
following manner: Pick

a Lie group G , and

an order 2 automorphism Σ of G (the master symmetry)

Then G/K , where K denotes the fixed point group of Σ is a
(Riemannian, if K is compact) symmetric space.
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Lie algebra level

Denote by g the Lie algebra of G , and by σ the derivative of Σ at
the unit element of G . Then

g = m⊕ k

where k and m are the 1 and -1 eigenspaces of σ, respectively.

This is the Cartan decomposition of g.
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Producing a ternary product

The space k in the Cartan decomposition g = m⊕ k is a Lie
subalgebra, the Lie algebra of the isotropy group K .

The space m can be identified with the tangent space of G/K at
the point eK . It is not a Lie subalgebra.

It has, however, the remarkable property that for any choice of
elements m1,2,3 ∈ m,

[m1, [m2,m3]] ∈ m

For this reason, m is called a Lie triple system.
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The hermitian case

The complex variant of a symmetric space is

Definition

A Riemannian symmetric space M is said to be Hermitian if M has
a complex structure allowing to turn the Riemannian structure into
a Hermitian structure.

(I.e. a Kähler manifold which, as a Riemannian manifold, is
symmetric)
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A rough classification

Roughly half the symmetric spaces are Hermitian.

Both these halves can be divided further into symmetric spaces of
compact and non-compact type, so that about 25% of the
symmetric spaces are Hermitian and of non-compact type.

This latter class can be embedded as bounded symmetric domains
into Cn, for which the role of the isometry group is taken by the
group of biholomorphic automorphisms.
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Connection with C*-Algebras
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An example

The open unit ball Dn of the space of n× n matrices with complex
entries, Mn(C), is such a bounded symmetric domain.

It can be written as

Dn = SU(n, n)/S(U(n)× U(n))

The action of the group SU(n, n) on Dn is

Z 7−→ (AZ + B)(A′Z + B ′)−1,

where the typical element U ∈ SU(n, n) was written as(
A B
A′ B ′

)

These are the biholomorphic automorphisms and look quite like
Möbius transforms.
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Infinite dimensions

This last example can be extended to an infinite dimensional
set-up.

Let A be a C*-algebra and denote by Aut(D) the group of all
biholomorphic automorphisms of the open unit ball D of A.

Then D can be written as

D = Aut(D)/Iso(A)

where Iso(A) denotes the group of (Banach space) isometries of
A. It coincides with the fixed points of an Aut(D), order 2
autmorphism Σ, defined through

ΣΦ(a) = −Φ(−a).

Thus, each such D is a symmetric space in a more general sense.
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Approaching the C*-product

Let G/K be a symmetric space. Recall that in the Cartan
decomposition g = m⊕ k, the space m carried a Lie triple product.

In the case of the open unit ball of a C*-algebra A, the Cartan
decomposition is

aut(D) = m⊕ iso(A),

and m can be identified with A itself.

Is there any relation between Lie triple and C*-products, both
defined on m?

The answer to this question is yes.
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JB*-Triple product

The Lie triple product can be obtained through 8 C*-products,
involving 4 applications of the the C*-involution.

We can do better than that by invoking the complex structure on
D, i.e. multiplication with i :

[a, [b, c]]− i [a, [ib, c]] =
ab∗c + cb∗a

2
.

Definition

A closed subspace of a C*-algebra A is called a JC*-triple iff for all
a, b, c ∈ A

{a, b, c} :=
ab∗c + cb∗a

2
∈ A.
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JB*-Triple systems

There is an intrinsic variant of the definition of a JC*-triple —
almost!

Definition

A Banach space Z together with a trilinear, continuous and w.r.t.
the outer variables symmetric mapping {·, ·, ·} : Z 3 → Z is called a
JB*-triple, iff

(a) ||{x , x , x}|| = ||x ||3 for all x ∈ Z ,

(b) With the operator x�y defined on Z by (x�y)(z) = {x , y , z},
ix�y is a derivation,

(c) x�x has non-negative spectrum, and exp(it(x�x)) is a
1-parameter group of isometries.



Symmetric Spaces Connection with C*-Algebras K-Theory Classification

JB*-Triple systems

There is an intrinsic variant of the definition of a JC*-triple —
almost!

Definition

A Banach space Z together with a trilinear, continuous and w.r.t.
the outer variables symmetric mapping {·, ·, ·} : Z 3 → Z is called a
JB*-triple, iff

(a) ||{x , x , x}|| = ||x ||3 for all x ∈ Z ,

(b) With the operator x�y defined on Z by (x�y)(z) = {x , y , z},
ix�y is a derivation,

(c) x�x has non-negative spectrum, and exp(it(x�x)) is a
1-parameter group of isometries.



Symmetric Spaces Connection with C*-Algebras K-Theory Classification

JB*-Triple systems

There is an intrinsic variant of the definition of a JC*-triple —
almost!

Definition

A Banach space Z together with a trilinear, continuous and w.r.t.
the outer variables symmetric mapping {·, ·, ·} : Z 3 → Z is called a
JB*-triple, iff

(a) ||{x , x , x}|| = ||x ||3 for all x ∈ Z ,

(b) With the operator x�y defined on Z by (x�y)(z) = {x , y , z},
ix�y is a derivation,

(c) x�x has non-negative spectrum, and exp(it(x�x)) is a
1-parameter group of isometries.



Symmetric Spaces Connection with C*-Algebras K-Theory Classification

JB*-Triple systems

There is an intrinsic variant of the definition of a JC*-triple —
almost!

Definition

A Banach space Z together with a trilinear, continuous and w.r.t.
the outer variables symmetric mapping {·, ·, ·} : Z 3 → Z is called a
JB*-triple, iff

(a) ||{x , x , x}|| = ||x ||3 for all x ∈ Z ,

(b) With the operator x�y defined on Z by (x�y)(z) = {x , y , z},
ix�y is a derivation,

(c) x�x has non-negative spectrum, and exp(it(x�x)) is a
1-parameter group of isometries.



Symmetric Spaces Connection with C*-Algebras K-Theory Classification

JB*-Triple systems

There is an intrinsic variant of the definition of a JC*-triple —
almost!

Definition

A Banach space Z together with a trilinear, continuous and w.r.t.
the outer variables symmetric mapping {·, ·, ·} : Z 3 → Z is called a
JB*-triple, iff

(a) ||{x , x , x}|| = ||x ||3 for all x ∈ Z ,

(b) With the operator x�y defined on Z by (x�y)(z) = {x , y , z},
ix�y is a derivation,

(c) x�x has non-negative spectrum, and exp(it(x�x)) is a
1-parameter group of isometries.



Symmetric Spaces Connection with C*-Algebras K-Theory Classification

Finite dimensional Cartan factors

The open unit balls of the following JB*-triples are the classical,
indecomposable, bounded symmetric domains:

Example

I complex n ×m-matrices Mn,m(C),

II skew-symmetric, complex n × n-matrices (symplectic
factor)

III symmetric complex n × n-matrices,

IV the n + 1-dimensional spin factor which is the closed
linear span of selfadjoint matrices 1, s1, . . . , sn
satisfying

si sj + sjsi = 2δij1

for all i , j ∈ {1, . . . , n}
V,VI two exceptional Cartan factors in dimensions 16 and

27, which are no JC*-triples.
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V,VI two exceptional Cartan factors in dimensions 16 and
27, which are no JC*-triples.
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Hilbert C*-Modules

Example

Let (E , 〈·, ·〉`) be a left (full) Hilbert C*-Module.

(Roughly: A Hilbert space for which scalars come from a
C*-algebra)

Denote by 〈·, ·〉r the canonical form, acting on the right of E .Then

{x , y , z} :=
〈x , y〉`z + x〈y , z〉r

2

turns E into a JB*-triple.
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Ternary Rings of Operators

Hilbert C*-modules E are precisely those JB*-triple which embed
into a C*-algebra A, and satisfy the more restrictive condition

[x , y , z ] := xy∗z ∈ E for all x , y , z ∈ E .

Definition

Objects in a category of Hilbert C*-modules in which morphisms
are required to respect the product [·, ·, ·] are usually called Ternary
Rings of Operators (TROs)
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K-theory
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Trouble with JB*-triples

We turn to the definition of K-theory for JB*-triples.

The space of n × n matrices with entries from a JB*-triples is in
general no longer a JB*-triple.

So, right from scratch, there is no hope to define K-theory directly
along the lines of C*-theory.

Matrix spaces of TROs, on the other hand, do remain in this
category. (By work of Hamana, Neal, and Russo, this is
characteristic.)

As it will turn out shortly, this is good enough.
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First Stop: K-theory for TROs

To each TRO X there are left and right C*-algebras, L(X ) and,
respectively, R(X ), acting on X . This point is of course obvious,
when for you, TROs are Hilbert C*-modules.

Note that the assignment of these C*-algebras is functorial when
TRO-morphisms are used.

These algebras are Morita equivalent and so we may define

K∗(L(X )) = K∗(R(X )) =: KTRO
∗ (X )

and accordingly for morphisms.

This yields K-theory for TROs with all the well-known properties.
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Enveloping TROs

Theorem

For every JB*-triple Z there is a universal morphism to a TRO
denoted TRO(Z ) and called the enveloping TRO of Z

This construction provides a functor TRO(·), which is exact,
continuous, and respects homotopy.

Important message: These enveloping TROs can be calculated for
a number of important examples.

Method is either through operator space techniques (Bunce &
Timoney) or, algebraically, by transforming standard generators
and relations (‘grids’) for JB*-factors into matrix units and their
relations (Bohle & W).

Results of this calculation are next.
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Result of a calculation

Theorem

The enveloping TROs of the Cartan factors are the following

Mm,n(C), m, n ≥ 2 Mm,n(C)⊕Mn,m(C),
embedding A 7→ A⊕ A>.

Hilbert space H, of dimension N:
⊕N−1

n=0 L(
∧n+1 H,

∧n H),
embedding h 7→ a(h), the annihilation operators.

Symmetric and symplectic factors of MN(C)
Matrix algebra MN(C), canonical embedding.

Spin factor of dimension n + 1 M2n(C) (n even),
M2n(C)⊕M2n(C) (n odd), embedding as in the
construction of the CAR-algebra.

Exceptional factors The null space.
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Defining K-theory for JB*-triples

Definition

Denote by Ψ the functor that provides each JB*-triple with its
enveloping TRO. Define, for a JB*-triple Z and a JB*-morphism φ,

K JB∗
∗ (Z ) = KTRO

∗ (Ψ(Z )),

as well as
K JB∗
∗ (φ) = KTRO

∗ (Ψ(φ))

This functor has the usual properties that one would expect from
it, except, of course, stability, which already had a bad start.
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K-groups of the Cartan factors

Corollary

The K-groups of the Cartan factors are:

Z2 (case of rectangular m × n-Matrices)

ZN (for Hilbert spaces of dimension N)

Z (for both, symmetric and symplectic factors)

Z (odd dimensional spin factors), and
Z2 (for the even-dimensional spin factors)

This is not good enough for a classification, and more work is
ahead.
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Classification
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Classifying finite dimensional TROs

In the process of producing K-groups we usually throw away quite
an amount of information.

In C*-theory, for example, the K-cycles belonging to projections of
the algebra itself retain sufficient information in order to classify
those of finite dimensions. We will call this subset the scale of A.

This is similar for TROs. The finite dimensional ones are all of the
form Mm1,n1(C)⊕Mm2,n2(C)⊕ · · · ⊕Mmk ,nk (C). And so:

Example

For a finite dimensional TRO as above, K-groups, enhanced by the
scales of their left and right C*-algebras, are

(Z,m1, n1)⊕ · · · ⊕ (Z,mk , nk), m = {1, . . . ,m}

These objects do comprise sufficient information as to be
classifying.
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Isn’t this all really about pairs of C*-algebras?

Example

The TROs T = M1,2(C)⊕M2,1(C) and U = M1,1(C)⊕M2,2(C)
are non-isomorphic.

Nonetheless, we have R(T ) = M2 ⊕M1 ' M1 ⊕M2 = R(U), and
L(T ) = M1 ⊕M2 = L(U)
This yields the two non-isomorphic double-scaled ordered groups

K0(T ) = (Z2,N2
0,{(0, 0), (0, 1), (0, 2), (1, 1), (1, 2)},
{(0, 0), (1, 0), (1, 1), (2, 0), (2, 1)})

and

K0(U) = (Z2,N2
0,{(0, 0), (0, 1), (0, 2), (1, 1), (1, 2)},
{(0, 0), (0, 1), (0, 2), (1, 1), (1, 2)}).
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Tripotents and roots

Definition

Let Z be a JB*-triple. An element u ∈ Z is called tripotent iff
{u, u, u} = u.

When Z is embedded into its enveloping TRO, a tripotent u
becomes tripotent w.r.t. the TRO-product. But this means that
the element 〈u, u〉` is a projection in the left C*-algebra of
TRO(Z ) and thus gives rise to an element of K JB∗

0 (Z ). We denote
the the set of these classes in K JB∗

0 (Z ) by ΣZ .

The root system of one of the Lie algebras underlying a (finite
dimensional) JB*-triple, is very closely related to a certain subset
(‘grids’) of the tripotent elements.

The JB*-scale we are discussing then is an imprint which root
lattices leave on K JB∗

0 (Z ).
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Ordering the K0-group

Just for the sake of distinguishing Cartan factors, the invariants
described so far would have been sufficient.

In order to treat morphisms, we still need the semigroup K0(Z )+,
consisting of all classes of projections themselves, that is, the set
obtained before, in the final step, the Grothendieck construction is
applied in order to produce K0(Z ).

(K0(Z ),K0(Z )+) then is an ordered group.
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The K-JB* invariant

We finally come to the invariant that classifies the hermitian
symmetric spaces in finite dimensions.

Definition

The K-JB* invariant of a JB*-triple Z is the tuple

(K0(Z ),K0(Z )+,Σ`,Σr ,ΣZ )

featuring both scales, Σ`, and Σr , of the enveloping TRO(Z ) as
well as the set ΣZ of K-classes belonging to the tripotent elements
u ∈ Z .
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The main result

Theorem

Let Z bei a JB*-triple. Then

(a) the K-JB* invariant is functorial, and

(b) it completely classifies the category of finite
dimensional JB*-triples

(c) as well as their inductive limits.

The latter means that any morphism between K-JB*-invariants is
induced from a JB*-morphism.

Note that no similar result holds for Dynkin diagrams.
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The finite dimensional case

Theorem

The K-JB* invariants for the finite dimensional JC*-factors are

(Z2,N2
0,m⊕ n, n⊕m,min{m, n}), rectangular m× n-matrices

(
ZN ,NN

0 ,
⊕N

k=1

(N
k

)
,
⊕N

k=1

( N
k−1

)
,
(N−1

0

)
⊕ . . .⊕

(N−1
N−1

))
,

Hilbert space of dimension N

(Z,N0,N,N,N), symmetric factor in MN

(Z,N0,N,N, {2, 4, · · · , 2k}), 2k ≤ N < 2k + 2,
symplectic factor in MN(
Z,N0, 2

k , 2k ,
{

2k−1, 2k
})

, (2k + 1)-dimensional spin factor,(
Z2,N2

0, 2
k−1 ⊕ 2k−1, 2k−1 ⊕ 2k−1,{

2k−2, 2k−1
}
⊕
{

2k−2, 2k−1
})

,

for the 2k-dimensional spin factor.
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More on inductive limits

Theorem

Each inductive limit of finite dimensional JB*-triples Z admits a
decomposition

Z = H ⊕ S ⊕ P ⊕ E

where H is a direct sum of Hilbert spaces, S a direct sum of spin
factors and E a direct sum of exceptional factors.

The Principal Part P of Z is an inductive limit of symmetric,
symplectic and matricial factors and can be classified by its K-JB*
invariant.

This classifies certain Kac-Moody algebras at the same time.
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