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Mapping spaces
For M and N topological spaces, we consider the space

M
N : f : N M f is continous .

Theorem (Chas & Sullivan ’99)
For M a compact, oriented d-manifold, letting

H : H d denote the d-shifted homology,

H M
S

1

carries the structure of a 2 -Batalin-Vilkovisky algebra.

In particular, we have a multiplication
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Coloured Operads
A coloured topological operad O consist of

Spaces O ;k of k-ary morphisms for all k .
A Space Ob O of colours.
For k ,m and i 1, . . . ,k , commutative diagrams

O ;k m 1 O ;k Ob O O ;m ��

��

i�� O ;m

evin
��

O ;k
evi ���� Ob O

along with certain coherence laws.
Letting k m 1 gives categories internal to topological

spaces. Taking Ob O yields classical operads
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The Little Disk Operad
An example operad is the Little n-Disk Operad.

Disk
n
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operadic data: Ob Disk

n
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k
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fi :
k
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D
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D
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fi is a dilation and translation
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Cleaving Data:
Consider T ,P where T is a binary, rooted planar tree, and P

a decoration at each internal vertex of T with an affine, oriented
hyperplane of n 1.

If T ,P cleave N, we assign the subsets of N that is the
result of the cleaving procedure as timber to N. These are
labelled according to the leafs of T
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Cleaving Data:
Consider T ,P where T is a binary, rooted planar tree, and P

a decoration at each internal vertex of T with an affine, oriented
hyperplane of n 1.
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P3 P1

Each hyperplane bisect n 1 into a negative and a positive
part
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For the respective direction of the tree, we use the decoration
to cleave the corresponding bisection of n 1 into new
subspaces



Cleaving Data:
Consider T ,P where T is a binary, rooted planar tree, and P

a decoration at each internal vertex of T with an affine, oriented
hyperplane of n 1.

P3

P2

P1
P3

P2

P1

P2

P3

P2

P3

P2 P2

P3
P3

P2

P1 P1

P3

P1

P1P1

P = {P1, P2, P3}

The data T ,P cleave n 1 if all hyperplanes intersect the
subspace they cleave non-trivially



Cleaving Data:
Consider T ,P where T is a binary, rooted planar tree, and P

a decoration at each internal vertex of T with an affine, oriented
hyperplane of n 1.

P3

P2

P1
P3

P2

P1

P2

P3

P2

P3

P2 P2

P3
P3

P2

P1 P1

P3

P1

P1P1

P = {P1, P2, P3}

The data T ,P cleave N
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Cleaving Data:
Consider T ,P where T is a binary, rooted planar tree, and P

a decoration at each internal vertex of T with an affine, oriented
hyperplane of n 1.
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If T ,P cleave N, we assign the subsets of N that is the
result of the cleaving procedure as timber to N. These are
labelled according to the leafs of T



The Cleavage Operad
Any N

n 1, defines a cleavage operad Cleav N :

Ob Cleav N is given by timber associated to any cleaving
data T ,P of N

Cleav N U;k will be a subquotient of the set

T ,P T is k -ary and T ,P cleaves U Ob Cleav N

We take the subset where each timber Ni of T ,P has
Ni finite . Let T ,P T ,P if all their timber

N1, . . . ,Nk and N1, . . . ,Nk
satisfiy Ni N

i
for all

i 1, . . . ,k
The above are given topology by seeing that S

n

parametrize affine, oriented hyperplanes.
i -composition is induced by grafting indexing trees.
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Action in Symbols
Taking the functor M dualizes to the pullback-diagram

M
N

T ,P
��

��

M
N k

res
��

M
π0 β T ,P

φ
�� k

i 1 M
Ni

We see M
N

T ,P f M
N

f is constant along β T ,P

.

So Cleav N acts on M
N through the correspondences

M
N M

N

T ,P
� ��� ��

M
N k

Working homotopically leads us to an actual stable map

Cleav Sn ;k M
S

n k

M
S

n

S
dim M k 1
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Cleavage Homotopy Type
Disk

n
represents the homotopy class of En-operads.

Definition
A coloured operad O is called En if it is weakly equivalent to

the trivial extension

Disk
n

Ob O

Theorem (B.)
The coloured operad Cleav Sn is En 1

Cleav Sn can be twisted by SO n 1 , this leads to

Corollary
H M

S
n

is a n 1 -Batalin-Vilkovisky-algebra
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Group Actions
For a group G acting freely on S

n n 1, The group action
leads to an algebra structure on HG

M
S

n

.

The inclusions of unit spheres

S
1

S
2

gives an inclusion of operads

Cleav S1 Cleav S2

and the limiting action gives a E -structure on
M

S
S

dim M
M S

dim M .
This is a spectrum-level definition of the intersection product

of manifolds, and gives similar statements for HG
M where G

acts freely on S .



Group Actions
For a group G acting freely on S

n n 1, The group action
leads to an algebra structure on HG

M
S

n

.
The inclusions of unit spheres

S
1

S
2

gives an inclusion of operads

Cleav S1 Cleav S2

and the limiting action gives a E -structure on
M

S
S

dim M
M S

dim M .
This is a spectrum-level definition of the intersection product

of manifolds, and gives similar statements for HG
M where G

acts freely on S .



Group Actions
For a group G acting freely on S

n n 1, The group action
leads to an algebra structure on HG

M
S

n

.
The inclusions of unit spheres

S
1

S
2

gives an inclusion of operads

Cleav S1 Cleav S2

and the limiting action gives a E -structure on
M

S
S

dim M
M S

dim M .
This is a spectrum-level definition of the intersection product

of manifolds, and gives similar statements for HG
M where G

acts freely on S .



Group Actions
For a group G acting freely on S

n n 1, The group action
leads to an algebra structure on HG

M
S

n

.
The inclusions of unit spheres

S
1

S
2

gives an inclusion of operads

Cleav S1 Cleav S2

and the limiting action gives a E -structure on
M

S
S

dim M
M S

dim M .

This is a spectrum-level definition of the intersection product
of manifolds, and gives similar statements for HG

M where G

acts freely on S .



Group Actions
For a group G acting freely on S

n n 1, The group action
leads to an algebra structure on HG

M
S

n

.
The inclusions of unit spheres

S
1

S
2

gives an inclusion of operads

Cleav S1 Cleav S2

and the limiting action gives a E -structure on
M

S
S

dim M
M S

dim M .
This is a spectrum-level definition of the intersection product

of manifolds,

and gives similar statements for HG
M where G

acts freely on S .



Group Actions
For a group G acting freely on S

n n 1, The group action
leads to an algebra structure on HG

M
S

n

.
The inclusions of unit spheres

S
1

S
2

gives an inclusion of operads

Cleav S1 Cleav S2

and the limiting action gives a E -structure on
M

S
S

dim M
M S

dim M .
This is a spectrum-level definition of the intersection product

of manifolds, and gives similar statements for HG
M where G

acts freely on S .



Interplay with Khovanov Homology

Take an embedding K : S
n N .

This gives a new operad
Cleav K



Interplay with Khovanov Homology

N2

N1

Take an embedding K : S
n N .This gives a new operad

Cleav K



Interplay with Khovanov Homology
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However, the action on M
S

1
differs from that of Cleav S1



Interplay with Khovanov Homology

In the String Topology action this can be seen as a product...
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Khovanov Homology and TQFTs

Theorem (Tamanoi ’08)
In String Topology, a product followed by a (graded) coproduct

is trivial

In particular, a TQFT-construction of Cohen-Godin has most
associated operations trivial.

For Cleav K this means that no new operations arise in
H M

S
1

from isotoping K S
1 2 away from the unit circle.

For a knot K : S
1 3 the gordian knot operad Gord

K
is

constructed with only slight modifications from Cleav K

Theorem (b. (in progress))
H Gord

K
acts on H M

S
1

to produce a knot invariant

This is a Khovanov homology construction, and a different
flavour of TQFT than Cohen-Godin.
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The knot invariant action comes from a 2-categorical
correspondence structure combining string topology with
cobordisms O v
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M
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M
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correspondence structure combining string topology with
cobordisms O v
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