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Wess-Zumino-Witten Models

WZW models describe (closed) strings on a Lie group G:

g : Σ −→ G.

Here, Σ is the worldsheet (a Riemann surface) and G is the target
space (a connected Lie group). g−1dg = g∗ϑ is the pullback of
the canonical (g-valued) 1-form to Σ. The WZW action is:

SWZW =
k

8π

∫
Σ
κ
(
g−1dg , ?

(
g−1dg

))
− k

2πi

∫
Γ
κ
(
g̃−1dg̃ , d

(
g̃−1dg̃

))
.

Here, κ is the Killing form (or something similar), ? is the Hodge
star on Σ, ∂Γ = Σ and g̃ : Γ→ G extends g .
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Classical Equations of Motion

The EOMs turn out to be

∂J (z) = ∂J (z) = 0,

where
J (z) = kg−1∂g , J (z) = −k∂gg−1,

and (z , z) are local complex coordinates on Σ.

Because the 1-forms J (z) and J (z) are g-valued, we decompose
along a basis Ta of g:

J (z) =
∑
a

Ja (z)⊗ Ta, J (z) =
∑
a

J
a

(z)⊗ Ta.

[From now on, all holomorphic results have an antiholomorphic
partner!]
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Quantisation

For path-integral quantisation, we need the (euclidean) Feynman
amplitudes e−SWZW to be well-defined. This may constrain the
coupling constant k , depending on H3 (G;Z).

eg. G compact, simply-connected and semisimple means
H3 (G;Z) ∼= Z and k is constrained to be an integer.

Canonical quantisation of the Fourier modes of the fields

Ja (z) =
∑
n∈Z

Janz
−n−1

results in the untwisted affine Kac-Moody algebra ĝ:[
Jam, J

b
n

]
=
[
Ja, Jb

]
m+n

+ mκ
(
Ja, Jb

)
δm+n,0k .

The space H of quantum states is a ĝ-module.
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CFTs and VOAs
The Sugawara construction defines modes

Ln =
1

2 (k + h∨)

∑
a,b

κ−1
(
Ja, Jb

)∑
r∈Z

: Jar J
b
n−r : ,

where h∨ is the dual Coxeter number and : · · · : denotes normal
ordering. These give a copy of the Virasoro algebra

[
Lm, Ln

]
= (m − n) Lm+n +

m3 −m

12
δm+n,0c ,[

Lm, J
a
n

]
= −nJam+n, c =

k dim g

k + h∨
.

and so we get a conformal field theory or vertex operator algebra.

When G is compact, simply-connected and semisimple, k ∈ N and
the VOA-reps are the integrable ĝ-modules. There are only finitely
many integrable modules and their category is semisimple.
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Example: G = GL (1) or U (1)

Since H3 (GL (1)) = H3 (U (1)) = 0, there is no constraint on k .
The CFT/VOA structure arises from ĝl (1) = û (1):

[
am, an

]
= mδm+n,0k, Ln =

1

2k

∑
r∈Z

: aran−r : , c = 1.

Bounding the energy of the quantum states below leads us to
highest weight states:

a0

∣∣λ〉 = λ
∣∣λ〉, an

∣∣λ〉 = 0 (n > 0).

Such a state spans a rep for a Borel subalgebra b from which we
construct Verma modules Vλ:

Vλ = Ind
û(1)
b C

∣∣λ〉.
Verma modules are irreducible!
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Characters and Partition Functions
Given that every Verma module defines an irreducible VOA-rep, we
expect that the quantum state space has the form

H =

∫
R
Vλ ⊗ Vλ dλ.

The character of a module is the function (write q = e2πiτ )

χ
Vλ

(
q
)

= tr
Vλ

qL0−c/24 =
eiπλ

2τ

η (q)
, η (q) = q1/24

∞∏
i=1

(
1− qi

)
,

which records the energy of the quantum states (on the cylinder).
The partition function is the character of the quantum state space:

Z [q] =

∫
R

∣∣χ
Vλ

(
q
)∣∣2 dλ =

∫
R
∣∣eiπλ2τ

∣∣2 dλ∣∣η (q)
∣∣2 =

1
√

2 Im τ
∣∣η (q)

∣∣2 .
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Consistency Conditions 1

For the CFT to be well-defined when Σ is a torus, the partition
function must be a modular function — it must be invariant under
SL (2;Z), ie. the S- and T -transformations

S: τ 7−→ −1

τ
, T: τ 7−→ τ + 1.

Using η (−1/τ) =
√
−iτη (τ) and η (τ + 1) = eiπ/12η (τ), we

check:

S :
√

Im τ 7−→
√

Im τ

|τ |
∣∣η (q)

∣∣2 7−→ |τ | ∣∣η (q)
∣∣2,

T :
√

Im τ 7−→
√

Im τ
∣∣η (q)

∣∣2 7−→ ∣∣η (q)
∣∣2.

Thus, Z [q] =
1

√
2 Im τ

∣∣η (q)
∣∣2 is modular invariant.
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Consistency Conditions 2

The S-transformation of the Verma module characters may be
written in the form

χ
Vλ

(
−1/τ

)
=

∫
R

SλµχVµ

(
τ
)
dµ, Sλµ = e2πiλµ.

A second consistency check is that the Verlinde formula gives
non-negative structure constants:

N ν
λµ =

∫
R

SλσSµσS∗σν
S0σ

dσ =

∫
R

e2πi(λ+µ−ν)σ dσ = δ (λ+ µ− ν)

⇒ Vλ × Vµ =

∫
R
N ν
λµ Vν dν = Vλ+µ.

These are, in fact, the dimensions of certain spaces of “conformal
blocks”!
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U (1): The Compactification

The WZW model on GL (1) has:

• A continuous spectrum.

• Completely reducible modules.

• A modular-invariant partition function.

• A continuum Verlinde formula.

What happens when we replace GL (1) by U (1)?

• String theorists: Compactification leads to momentum
quantisation, hence a discrete spectrum.

• Geometers: Highest weight states correspond to global sections
of a certain line bundle, hence the periodic boundary condition
picks out a discrete spectrum.

• Algebraists: The algebra (VOA) is extended by a simple current
whose untwisted modules give rise to a discrete spectrum.
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Algebraic Compactification
We have seen the fusion rules Vλ × Vµ = Vλ+µ which imply that
every module is invertible in the fusion ring.

The VOA corresponding to ĝl (1) = û (1) may be extended by
invertible elements:

Wλ ∼
⊕
j∈Z

Vjλ (û (1) ∼ V0).

The irreducible modules of the extended algebra have the form

W[µ] ∼
⊕
j∈Z

Vµ+jλ (µ ∈ R/λR).

These are untwisted when the extended algebra acts with integer
modes (the energies of the states all differ by integers). Need:

λ2 ∈ Z, λµ ∈ Z.
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Consistency for U (1)

When λ2 ∈ Z, the WZW model on U (1) has:

• A discrete spectrum.

• Completely reducible modules.

• A modular-invariant partition function

Zλ[q] =
λ2∑
j=0

∣∣χ
W[j/λ]

(
q
)∣∣2.

• A discrete Verlinde formula for extended algebra modules.

The algebraic picture then is that compactifying the target space
leads to an extension of the symmetries by invertible elements of
the fusion ring.
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Example: GL (1|1)

We’d like to think now about the simplest examples of WZW
models on Lie supergroups. Here, the algebra is under control but
the geometry is poorly understood (by physicists). Nevertheless,
we’ll see that a parallel geometric formulation is expected.

Why do we want a geometric formulation?

• To get the spectrum in more general examples.

• To understand stringy motivations and applications to
AdS/CFT.

• To extend to open strings and D-brane physics.

• To make contact with plenty of cool math — eg.
Borel-Weil-Bott, Freed-Hopkins-Telemann.

Mostly, we just want to know everything...
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Algebraic Preliminaries

In the absence of geometric understanding, let’s try to build up a
WZW model using only algebra...

gl (1|1) has defining representation

E =

(
1 0
0 1

)
, N =

(
1 0
0 −1

)
︸ ︷︷ ︸

even

, ψ+ =

(
0 1
0 0

)
, ψ− =

(
0 0
1 0

)
︸ ︷︷ ︸

odd

and non-zero (anti)commutators[
N, ψ+

]
= 2ψ+,

[
N, ψ−

]
= −2ψ−,

{
ψ+, ψ−

}
= E .

Verma modules Vn,e are labelled by eigenvalues of N and E . They
are irreducible if e 6= 0 (typical) and reducible if e = 0 (atypical).
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Representation Rings

Sadly, the representation ring of gl (1|1) generated by irreducibles
contains non-semisimple modules:

Vn,e ⊗ Vn′,−e = Pn+n′ (e 6= 0).

Here, Pn denotes an indecomposable with Loewy diagram

An

An+1 An−1

An

where An denotes the irreducible quotient of Vn+1/2,0.

Pn is the projective cover of An (and Vn−1/2).
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The Affine Kac-Moody Superalgebra

The non-vanishing relations of the affine modes are[
Nr ,Es

]
= rkδr+s,0,

[
Nr , ψ

±
s

]
= ±ψ±r+s ,{

ψ+
r , ψ

−
s

}
= Er+s + rkδr+s,0

and we again have Virasoro modes

Ln =
1

k

∑
r∈Z

: NrEn−r − ψ+
r ψ
−
n−r : − 1

2k
En +

1

2k2

∑
r∈Z

: ErEn−r :

with c = 0.

Now, the Verma modules Vn,e are irreducible (typical) for e/k /∈ Z
and are reducible (atypical) for e/k ∈ Z. Atypical irreducible
quotients are denoted by An,e and their projective covers by Pn,e .
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Supercharacters
Supercharacters are obtained by taking supertraces:

str
V
M = tr

Veven
M − tr

Vodd
M, V = Veven ⊕ Vodd,

χ
V

(
x ; y ; z ; q

)
= str

V
xkyE0zN0qL0−c/24.

Typical irreducibles (and Verma modules) have supercharacter

χ
Vn,e

(
x ; y ; z ; q

)
= ixky eznqne/k+e2/2k2 ϑ1

(
z ; q
)

η (q)3
,

where ϑ1

(
z ; q
)

is a Jacobi theta function. Atypical characters are
obtained from a BGG-resolution, eg. :

· · · −→ Vn−5/2,0 −→ Vn−3/2,0 −→ Vn−1/2,0 −→ An,0 −→ 0

⇒ χ
An,0

=
∞∑
j=0

(−1)j χ
Vn−j−1/2,0

.
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Consistency Conditions 1
A simple suggestion for the modular invariant is

Z [x ; y ; z ; q] =

∫∫
R2

∣∣χ
Vn,e

(
x ; y ; z ; q

)∣∣2 dn de

k
.

The atypical irreducibles contribute by decomposing the characters
of the atypical Verma modules.

This will be modular-invariant if the S-matrix is unitary:

x = e2πit , y = e2πiν , z = e2πiµ, q = e2πiτ ,

χ
Vn,e

(
t − µν

τ
;
ν

τ
;
µ

τ
;−1

τ

)
=

∫∫
R2

S(n,e)(n′,e′)χVn′,e′

(
t; ν;µ; τ

) dn′ de ′
k

,

∫∫
R2

S(n,e)(n′,e′)S∗(n′′,e′′)(n′,e′)

dn′ de ′

k
= δ

(
n′′ = n

)
δ
(
e ′′ = e

)
.
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Consistency Conditions 2
Creutzig and DR found the S-matrix. Recall that

χ
Vn,e

(
x ; y ; z ; q

)
= ixky eznqne/k+e2/2k2 ϑ1

(
z ; q
)

η (q)3
,

ϑ1

(µ
τ

;−1

τ

)
=
√
−iτeiπµ

2/τϑ1

(
µ; τ

)
, η

(
−1

τ

)
=
√
−iτη (τ).

Then, the S-matrix is

S(n,e)(n′,e′) = −iωe−2πi(ne′/k+n′e/k+ee′/k2) (|ω| = 1)

which is indeed unitary.

This suggests that the quantum state space for GL (1|1) is

H ∼
∫∫
R2

Vn,e ⊗ Vn,e
dn de

k
.



Wess-Zumino-Witten Models Example: G = GL (1) or U (1) Example: GL (1|1) Conclusions

Consistency Conditions 3

The other consistency check is the Verlinde formula. Recall that

χ
A0,0

=
∞∑
j=0

(−1)j χ
V−j−1/2,0

⇒ S0(n,e) =
ω

2 sin (πe/k)
.

The Verlinde formula therefore reads

N
(n3,e3)

(n1,e1)(n2,e2) =

∫∫
R2

S(n1,e1)(n,e)S(n2,e2)(n,e)S∗(n,e)(n3,e3)

S0(n,e)

dn de

k

= δ
(e1 + e2 − e3

k

)[
δ
(
n1 + n2 − n3 + 1/2

)
− δ
(
n1 + n2 − n3 − 1/2

)]
⇒ [Vn1,e1 ]× [Vn2,e2 ] = [Vn1+n2+1/2,e1+e2

]	 [Vn1+n2−1/2,e1+e2
]

(in the Grothendieck ring of fusion). The negative integer
multiplicity here is consistent with supercharacter parity!
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Compactifying GL (1|1)

The WZW model on GL (1|1) has:

• A continuous spectrum.

• Indecomposable modules.

• A modular-invariant partition function.

• A continuum Verlinde formula.

This is identical to GL (1), except for the appearance of
indecomposables.

Are there other Lie supergroups with the same Lie superalgebra?
Yes. In particular, we can (partially) compactify.

We expect (partial) quantisation of the highest weights.
Algebraically, we can ask for simple currents (invertible elements of
the fusion ring) in order to construct extended algebras.
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Algebraic Compactification

Verlinde doesn’t give us the fusion ring, just its Grothendieck
quotient. But, this suffices to determine invertible elements: All
atypical irreducibles An,e are simple currents.

Extending by appropriate atypicals gives a doubly-infinite family of
VOAs including:

• βγ ghosts.

• ŝl (2|1) at levels −1
2 and 1.

• The Bershadsky-Polyakov algebra W
(2)
3 at levels 0 and −5

3 .

• The N = 2 superconformal algebra of central charge ±1.

• The Feigin-Semikhatov algebras W
(2)
n of various levels.

For these cases, the untwisted extended modules form a discrete
set in one “direction” and a continuum in the other.
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Trouble in Paradise

For these compactified theories, one has:

• A (partially) discrete spectrum.

• Reducible but indecomposable modules, but confined to the
atypical sector.

• Extended characters which are mock modular forms.

• Modular-invariant partition functions.

The Verlinde formula, however, fails miserably! This is a
well-known problem in rational logarithmic CFT which indicates
that our understanding of this consistency requirement needs
refining.

Examples like these GL (1|1) compactifications will hopefully
suggest said refinements.
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Conclusions

The algebraic features of the GL (1|1) WZW model have much in
common with those of the GL (1) model:

• Continuous spectrum.

• Characters are modular forms.

• S-transforms are Fourier transforms.

• S-matrix is unitary (partition function is modular invariant).

• Continuum Verlinde formula gives (Grothendieck) fusion.

• Many simple currents giving extended algebras with
modular-invariant partition functions.

This strongly suggests that one should have a geometric
interpretation in terms of compactification/orbifolding/etc...
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Speculation

Advantages of a geometric understanding would include:

• Analysis of quantisation constraints.

• Derivation of the spectrum.

• More direct contact with stringy applications (eg. AdS/CFT).

• Direct contact with applications to algebraic geometry, etc...

Some questions I have:

• Would indecomposable modules be distinguishable in geometric
quantisation?

• Can geometric quantisation resolve the indecomposable
structure in the atypical sectors?

• Can we study D-branes in super-WZW models and study brane
charges, twisted K-theory, etc... ?
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