# Curvature for Hilbert modules, Kasparov modules and spectral triples 

Adam Rennie<br>joint work with Bram Mesland and Walter van Suijlekom

October 2, 2019

## Tori

Let us start with the usual flat metric on the non-commutative torus. Define a conformally related metric using $M=b I d$, with $b \in \mathcal{A}_{\theta}$ positive and invertible. Then using a frame $\left(\omega_{j}\right)$ for the new metric, the curvature is

$$
\begin{aligned}
& R_{M}\left(\omega_{k}\right) \\
& =\sum_{r, l} \omega_{r} \otimes(1-\Psi)\left(\omega_{l} \omega_{k}\right)\left(2 b^{2} \partial_{r}(b) b^{-1} \partial_{l}(b) b^{-1}-b^{2} \partial_{l} \partial_{r}(b) b^{-1}\right) \\
& +\sum_{r, l} \omega_{r} \otimes(1-\Psi)\left(\omega_{l} \omega_{r}\right)\left(-2 b \partial_{l}(b) b^{-1} \partial_{k}(b)+b \partial_{l} \partial_{k}(b)\right) \\
& -\sum_{r, l} \omega_{r} \otimes(1-\Psi)\left(\omega_{r} \omega_{k}\right) b \partial_{l}(b) \partial_{l}(b) b^{-1}
\end{aligned}
$$

This is different to what is obtained from the heat kernel analogy. A careful analysis by lochum and Masson has shown that for rational tori the second heat kernel coefficient computes the scalar curvature (divided by 6) PLUS a range of other terms coming from the non-scalar principal symbol.

We compute the scalar curvature as

$$
\begin{aligned}
& \sum_{r, k}\left\langle R\left(\omega_{r}, \omega_{k}\right) \omega_{k}, \omega_{r}\right\rangle \\
& =-(n-1) \sum_{r}\left(b \partial_{r}^{2}(b)+b^{2} \partial_{r}^{2}(b) b^{-1}\right)-n(n-1) \sum_{r} b \partial_{r}(b) \partial_{r}(b) b^{-1} \\
& +2(n-1) \sum_{r}\left(b^{2} \partial_{r}(b) b^{-1} \partial_{r}(b) b^{-1}+b \partial_{r}(b) b^{-1} \partial_{r}(b)\right)
\end{aligned}
$$

If $\theta=0$ and $b=e^{u}$ we obtain the classical result

$$
\begin{aligned}
& \sum_{r, k}\left\langle R\left(\omega_{r}, \omega_{k}\right) \omega_{k}, \omega_{r}\right\rangle \\
& =-2(n-1) e^{2 u} \Delta(u)-(n-1)(n-2) e^{2 u}(\nabla(u))^{2}
\end{aligned}
$$

If $\theta=0$ and $b=e^{u}$ we obtain the classical result

$$
\begin{aligned}
& \sum_{r, k}\left\langle R\left(\omega_{r}, \omega_{k}\right) \omega_{k}, \omega_{r}\right\rangle \\
& =-2(n-1) e^{2 u} \Delta(u)-(n-1)(n-2) e^{2 u}(\nabla(u))^{2}
\end{aligned}
$$

Classically the curvature is an antisymmetric 2-form-valued endomorphism and so the diagonal entries are zero. In the noncomm case

$$
\begin{aligned}
\left(\omega_{k} \mid R\left(\omega_{k}\right)\right)=\sum_{l}(1- & \Psi)\left(\omega_{l} \omega_{k}\right)\left(2 b^{2}\left[\partial_{k}(b), b^{-1} \partial_{l}(b) b^{-1}\right]\right. \\
& \left.+b^{2}\left[b^{-1}, \partial_{l} \partial_{r}(b)\right]\right)
\end{aligned}
$$

The curvature tensor for the Podleś sphere was computed using the frame coming from the columns of the matrix corepresentation $t_{i j}^{1}$ of $S U_{q}(2)$. The metric is $q$-deformed, and while the junk is $\left(\sum \omega_{j} \omega_{j}^{*}\right) \mathcal{A}$, it is given by

$$
\left(\begin{array}{cc}
q & 0 \\
0 & q^{-1}
\end{array}\right) \mathcal{A}
$$

We find

$$
R=\sum_{i, r}(-1)^{1+i}\left|\omega_{i}\right\rangle \otimes \omega_{i}^{*} \wedge \omega_{r} \otimes\left\langle\omega_{r}\right|
$$

## A Weitzenbock formula

Suppose that $(\mathcal{A}, \mathcal{H}, \mathcal{D})=\left(\mathcal{A}^{\circ}, L^{2}\left(X_{\mathcal{A}}, \phi\right), \mathcal{D}\right)$. Nuisance.
Since $\mathcal{C}_{\mathcal{D}}\left(\mathcal{A}^{\circ}\right) \cong \mathcal{C}_{\mathcal{D}}(\mathcal{A})^{\circ}$ we can just consider right actions of $\mathcal{C}_{\mathcal{D}}(\mathcal{A})$. Use $c_{R}: L^{2}\left(X_{\mathcal{A}}, \phi\right) \otimes_{\mathcal{A}} \mathcal{C}_{\mathcal{D}}(\mathcal{A}) \rightarrow L^{2}\left(X_{\mathcal{A}}, \phi\right)$ to denote this action.

Given a right connection $\nabla^{X}$ on $X_{\mathcal{A}}$ and a left connection $\nabla^{\Omega}$ on $\Omega_{\mathcal{D}}^{1}(\mathcal{A})$, define a connection Laplacian by

$$
\Delta(x)=\psi \circ\left(\nabla^{x} \otimes 1+1 \otimes \nabla^{\Omega}\right) \circ \nabla^{x} \in X \otimes_{\mathcal{A}} J_{\mathcal{D}}^{2}(\mathcal{A}) .
$$

Recall that in our main examples the junk is just $\mathcal{A}$ and so $\Delta$ is a map on $X_{\mathcal{A}}$.

Given the set-up above, we find a frame $\left(x_{j}\right)_{j=1}^{N}$ for the module $X_{\mathcal{A}}$. This is a (finite) set of generators such that for all $x \in X_{\mathcal{A}}$, $x=\sum_{j} x_{j}\left(x_{j} \mid x\right)_{\mathcal{A}}$.
Then $p=\left(\left(x_{i} \mid x_{j}\right)_{\mathcal{A}}\right)$ is a projection and $X_{\mathcal{A}} \cong p \mathcal{A}^{N}$. Any (represented) connection is of the form

$$
\nabla_{\mathcal{D}}(x)=\sum_{j} x_{j} \otimes\left[\mathcal{D},\left(x_{j} \mid x\right)_{\mathcal{A}}\right]+x_{j} \otimes B_{k l}^{j} \omega^{\prime}\left(x_{k} \mid x\right)_{\mathcal{A}}
$$

where $\left(\omega^{\prime}\right)$ is a frame for $\Omega_{\mathcal{D}}^{1}(\mathcal{A}), B_{k l}^{j} \in \mathcal{A}$.
When $J_{\mathcal{D}}^{2}(\mathcal{A})=\mathcal{A}$ as in the main examples, we obtain a Weitzenbock type result.

## Proposition

Suppose that $J_{\mathcal{D}}^{2}(\mathcal{A})=\mathcal{A}$.
If $\nabla^{\Omega}$ is the Levi-Civita connection then $\mathcal{D}^{2}-\Delta$ is $\mathcal{A}$-linear. In this case the difference is

$$
\begin{aligned}
\mathcal{D}^{2}-\Delta & =\sum_{j, k} c_{R}\left(x_{k} \otimes m(1-\Psi)\left(\left[\mathcal{D},\left(x_{k} \mid x_{j}\right)_{\mathcal{A}}\right]\left[\mathcal{D},\left(x_{j} \mid x_{m}\right)_{\mathcal{A}}\right]\right)\left(x_{m} \mid x\right)_{\mathcal{A}}\right) \\
& +\sum_{k, j, l} c_{R}\left(x_{k} \otimes \mathrm{~d}_{\Psi}\left(B_{j}^{k l} \omega_{l}\right)\left(x_{j} \mid x\right)_{\mathcal{A}}\right) \\
& +\sum_{k, l, m, p} c_{R}\left(x_{m} \otimes m(1-\Psi)\left(B_{k}^{m p} \omega_{p} B_{j}^{k l} \omega_{l}\right)\left(x_{j} \mid x\right)_{\mathcal{A}}\right)
\end{aligned}
$$

Need to relate the curvature to the curvature of $\Omega_{\mathcal{D}}^{1}(\mathcal{A})$.

## References

圊 J．Bhowmick，D．Goswami，S．Mukhopadhyay，Levi－Civita connections for a class of spectral triples，arXiv：1809．06721v1．
固 M．Dubois－Violette，J．Madore，T．Masson，On curvature in noncommutative geometry，J．Math．Phys．37，no．8，（1996）．
圊 B．lochum，T．Masson，Heat asymptotics for nonminimal Laplace type operators and applications to noncommutative tori，arXiv：1707．09657v2．
囯 J．Kaad，W．van Suijlekom，Riemannian submersions and factorization of Dirac operators，arXiv：1610．02873．
E G．Landi，An Introduction to noncommutative spaces and their topology，Lecture Notes in Physics：Monographs，m51， Springer－Verlag，Berlin Heidelberg， 1997.

Thanks for listening!

