Curvature for Hilbert modules, Kasparov modules and spectral triples

Adam Rennie joint work with Bram Mesland and Walter van Suijlekom

October 2, 2019

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Tori

Let us start with the usual flat metric on the non-commutative torus. Define a conformally related metric using M = b Id, with $b \in A_{\theta}$ positive and invertible. Then using a frame (ω_j) for the new metric, the curvature is

$$egin{aligned} &R_{\mathcal{M}}(\omega_k)\ &=\sum_{r,l}\omega_r\otimes(1-\Psi)(\omega_l\omega_k)ig(2b^2\partial_r(b)b^{-1}\partial_l(b)b^{-1}-b^2\partial_l\partial_r(b)b^{-1}ig)\ &+\sum_{r,l}\omega_r\otimes(1-\Psi)(\omega_l\omega_r)ig(-2b\partial_l(b)b^{-1}\partial_k(b)+b\partial_l\partial_k(b)ig)\ &-\sum_{r,l}\omega_r\otimes(1-\Psi)(\omega_r\omega_k)b\partial_l(b)\partial_l(b)b^{-1}. \end{aligned}$$

This is different to what is obtained from the heat kernel analogy. A careful analysis by lochum and Masson has shown that for rational tori the second heat kernel coefficient computes the scalar curvature (divided by 6) PLUS a range of other terms coming from the non-scalar principal symbol.

We compute the scalar curvature as

$$\begin{split} &\sum_{r,k} \langle R(\omega_r, \omega_k) \omega_k, \omega_r \rangle \\ &= -(n-1) \sum_r \left(b \partial_r^2(b) + b^2 \partial_r^2(b) b^{-1} \right) - n(n-1) \sum_r b \partial_r(b) \partial_r(b) b^{-1} \\ &+ 2(n-1) \sum_r \left(b^2 \partial_r(b) b^{-1} \partial_r(b) b^{-1} + b \partial_r(b) b^{-1} \partial_r(b) \right). \end{split}$$

If $\theta = 0$ and $b = e^u$ we obtain the classical result

$$\sum_{r,k} \langle R(\omega_r, \omega_k) \omega_k, \omega_r \rangle$$

= $-2(n-1)e^{2u}\Delta(u) - (n-1)(n-2)e^{2u}(\nabla(u))^2.$

If $\theta = 0$ and $b = e^u$ we obtain the classical result

$$\sum_{r,k} \langle R(\omega_r, \omega_k) \omega_k, \omega_r \rangle$$

= -2(n-1)e^{2u} \Delta(u) - (n-1)(n-2)e^{2u} (\nabla(u))².

Classically the curvature is an antisymmetric 2-form-valued endomorphism and so the diagonal entries are zero. In the noncomm case

$$egin{aligned} &(\omega_k|R(\omega_k)) = \sum_l (1-\Psi)(\omega_l\omega_k)ig(2b^2[\partial_k(b),b^{-1}\partial_l(b)b^{-1}]\ &+b^2[b^{-1},\partial_l\partial_r(b)]ig). \end{aligned}$$

The curvature tensor for the Podleś sphere was computed using the frame coming from the columns of the matrix corepresentation t_{ij}^1 of $SU_q(2)$. The metric is *q*-deformed, and while the junk is $(\sum \omega_j \omega_j^*)A$, it is given by

$$\begin{pmatrix} q & 0 \\ 0 & q^{-1} \end{pmatrix} \mathcal{A}$$

We find

$$R = \sum_{i,r} (-1)^{1+i} |\omega_i
angle \otimes \omega_i^* \wedge \omega_r \otimes \langle \omega_r |,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A Weitzenbock formula

Suppose that $(\mathcal{A}, \mathcal{H}, \mathcal{D}) = (\mathcal{A}^{\circ}, L^{2}(X_{\mathcal{A}}, \phi), \mathcal{D})$. Nuisance.

Since $\mathcal{C}_{\mathcal{D}}(\mathcal{A}^{\circ}) \cong \mathcal{C}_{\mathcal{D}}(\mathcal{A})^{\circ}$ we can just consider right actions of $\mathcal{C}_{\mathcal{D}}(\mathcal{A})$. Use $c_R : L^2(X_{\mathcal{A}}, \phi) \otimes_{\mathcal{A}} \mathcal{C}_{\mathcal{D}}(\mathcal{A}) \to L^2(X_{\mathcal{A}}, \phi)$ to denote this action.

Given a right connection ∇^X on X_A and a left connection ∇^Ω on $\Omega^1_D(\mathcal{A})$, define a connection Laplacian by

$$\Delta(x) = \Psi \circ (
abla^X \otimes 1 + 1 \otimes
abla^\Omega) \circ
abla^X \in X \otimes_\mathcal{A} J^2_\mathcal{D}(\mathcal{A}).$$

Recall that in our main examples the junk is just \mathcal{A} and so Δ is a map on $X_{\mathcal{A}}$.

(日) (同) (三) (三) (三) (○) (○)

Given the set-up above, we find a frame $(x_j)_{j=1}^N$ for the module X_A . This is a (finite) set of generators such that for all $x \in X_A$, $x = \sum_j x_j(x_j|x)_A$.

Then $p = ((x_i|x_j)_A)$ is a projection and $X_A \cong pA^N$. Any (represented) connection is of the form

$$abla_{\mathcal{D}}(x) = \sum_{j} x_{j} \otimes [\mathcal{D}, (x_{j}|x)_{\mathcal{A}}] + x_{j} \otimes B^{j}_{kl} \omega^{l}(x_{k}|x)_{\mathcal{A}},$$

where (ω') is a frame for $\Omega^1_{\mathcal{D}}(\mathcal{A})$, $B^j_{kl} \in \mathcal{A}$.

When $J_{\mathcal{D}}^2(\mathcal{A}) = \mathcal{A}$ as in the main examples, we obtain a Weitzenbock type result.

Proposition

Suppose that $J^2_{\mathcal{D}}(\mathcal{A}) = \mathcal{A}$. If ∇^{Ω} is the Levi-Civita connection then $\mathcal{D}^2 - \Delta$ is \mathcal{A} -linear. In this case the difference is

$$\begin{split} \mathcal{D}^2 - \Delta &= \sum_{j,k} c_R \Big(x_k \otimes m(1-\Psi) \big([\mathcal{D}, (x_k | x_j)_{\mathcal{A}}] [\mathcal{D}, (x_j | x_m)_{\mathcal{A}}] \big) (x_m | x)_{\mathcal{A}} \Big) \\ &+ \sum_{k,j,l} c_R \Big(x_k \otimes \mathrm{d}_{\Psi} (B_j^{kl} \omega_l) (x_j | x)_{\mathcal{A}} \Big) \\ &+ \sum_{k,l,m,p} c_R \Big(x_m \otimes m(1-\Psi) \big(B_k^{mp} \omega_p B_j^{kl} \omega_l \big) (x_j | x)_{\mathcal{A}} \Big) \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Need to relate the curvature to the curvature of $\Omega^1_{\mathcal{D}}(\mathcal{A})$.

References

- J. Bhowmick, D. Goswami, S. Mukhopadhyay, *Levi-Civita* connections for a class of spectral triples, arXiv:1809.06721v1.
- M. Dubois-Violette, J. Madore, T. Masson, On curvature in noncommutative geometry, J. Math. Phys. 37, no. 8, (1996).
- B. lochum, T. Masson, Heat asymptotics for nonminimal Laplace type operators and applications to noncommutative tori, arXiv:1707.09657v2.
- J. Kaad, W. van Suijlekom, *Riemannian submersions and factorization of Dirac operators*, arXiv:1610.02873.
- G. Landi, An Introduction to noncommutative spaces and their topology, Lecture Notes in Physics: Monographs, m51, Springer-Verlag, Berlin Heidelberg, 1997.

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

Thanks for listening!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >