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Tori

Let us start with the usual flat metric on the non-commutative
torus. Define a conformally related metric using M = bId, with
b ∈ Aθ positive and invertible. Then using a frame (ωj) for the
new metric, the curvature is

RM(ωk)

=
∑
r ,l

ωr ⊗ (1−Ψ)(ωlωk)
(
2b2∂r (b)b−1∂l(b)b−1 − b2∂l∂r (b)b−1

)
+
∑
r ,l

ωr ⊗ (1−Ψ)(ωlωr )
(
− 2b∂l(b)b−1∂k(b) + b∂l∂k(b)

)
−
∑
r ,l

ωr ⊗ (1−Ψ)(ωrωk)b∂l(b)∂l(b)b−1.



This is different to what is obtained from the heat kernel analogy.
A careful analysis by Iochum and Masson has shown that for
rational tori the second heat kernel coefficient computes the scalar
curvature (divided by 6) PLUS a range of other terms coming from
the non-scalar principal symbol.

We compute the scalar curvature as∑
r ,k

〈R(ωr , ωk)ωk , ωr 〉

= −(n − 1)
∑
r

(
b∂2

r (b) + b2∂2
r (b)b−1

)
− n(n − 1)

∑
r

b∂r (b)∂r (b)b−1

+ 2(n − 1)
∑
r

(
b2∂r (b)b−1∂r (b)b−1 + b∂r (b)b−1∂r (b)

)
.



If θ = 0 and b = eu we obtain the classical result∑
r ,k

〈R(ωr , ωk)ωk , ωr 〉

= −2(n − 1)e2u∆(u)− (n − 1)(n − 2)e2u(∇(u))2.

Classically the curvature is an antisymmetric 2-form-valued
endomorphism and so the diagonal entries are zero. In the
noncomm case

(ωk |R(ωk)) =
∑
l

(1−Ψ)(ωlωk)
(
2b2[∂k(b), b−1∂l(b)b−1]

+ b2[b−1, ∂l∂r (b)]
)
.



If θ = 0 and b = eu we obtain the classical result∑
r ,k

〈R(ωr , ωk)ωk , ωr 〉

= −2(n − 1)e2u∆(u)− (n − 1)(n − 2)e2u(∇(u))2.

Classically the curvature is an antisymmetric 2-form-valued
endomorphism and so the diagonal entries are zero. In the
noncomm case

(ωk |R(ωk)) =
∑
l

(1−Ψ)(ωlωk)
(
2b2[∂k(b), b−1∂l(b)b−1]

+ b2[b−1, ∂l∂r (b)]
)
.



The curvature tensor for the Podleś sphere was computed using
the frame coming from the columns of the matrix corepresentation
t1
ij of SUq(2). The metric is q-deformed, and while the junk is

(
∑
ωjω

∗
j )A, it is given by (

q 0
0 q−1

)
A.

We find

R =
∑
i ,r

(−1)1+i |ωi 〉 ⊗ ω∗i ∧ ωr ⊗ 〈ωr |,



A Weitzenbock formula

Suppose that (A,H,D) = (A◦, L2(XA, φ),D). Nuisance.

Since CD(A◦) ∼= CD(A)◦ we can just consider right actions of
CD(A). Use cR : L2(XA, φ)⊗A CD(A)→ L2(XA, φ) to denote this
action.

Given a right connection ∇X on XA and a left connection ∇Ω on
Ω1
D(A), define a connection Laplacian by

∆(x) = Ψ ◦ (∇X ⊗ 1 + 1⊗∇Ω) ◦ ∇X ∈ X ⊗A J2
D(A).

Recall that in our main examples the junk is just A and so ∆ is a
map on XA.



Given the set-up above, we find a frame (xj)
N
j=1 for the module

XA. This is a (finite) set of generators such that for all x ∈ XA,
x =

∑
j xj(xj |x)A.

Then p = ((xi |xj)A) is a projection and XA ∼= pAN . Any
(represented) connection is of the form

∇D(x) =
∑
j

xj ⊗ [D, (xj |x)A] + xj ⊗ B j
klω

l(xk |x)A,

where (ωl) is a frame for Ω1
D(A), B j

kl ∈ A.

When J2
D(A) = A as in the main examples, we obtain a

Weitzenbock type result.



Proposition

Suppose that J2
D(A) = A.

If ∇Ω is the Levi-Civita connection then D2 −∆ is A-linear. In
this case the difference is

D2 −∆ =
∑
j ,k

cR

(
xk ⊗m(1−Ψ)

(
[D, (xk |xj)A][D, (xj |xm)A]

)
(xm|x)A

)
+
∑
k,j ,l

cR

(
xk ⊗ dΨ(Bkl

j ωl)(xj |x)A

)
+
∑

k,l ,m,p

cR

(
xm ⊗m(1−Ψ)

(
Bmp
k ωpB

kl
j ωl

)
(xj |x)A

)

Need to relate the curvature to the curvature of Ω1
D(A).
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Thanks for listening!




