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Topological K -theory

Topological K -theory is a generalised cohomology theory.

For compact Hausdorff X , define Kn(X ) = [X ,Ωn Fred];

Bott periodicity: Kn(X ) ∼= Kn+2(X );

There is a notion of algebraic K -theory K∗ such that
K ∗(X ) = K∗(C (X )).

As with all generalised cohomology theories, there exists a notion of
“twist” for K -theory.
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Pennig and Dadarlat

David Brook (UofA) Higher Twisted K -theory June 18, 2019 3 / 21



The Cuntz algebra

The Cuntz algebra O∞ with infinitely many generators is defined to be
the C ∗-algebra generated by a set of isometries {Si}i∈N acting on a
separable Hilbert space satisfying

k∑
i=1

SiS
∗
i ≤ I

for all k ∈ N.

Pennig and Dadarlat show that O∞ ⊗K provides a geometric
interpretation of the higher twists: twists of K ∗(X ) can be identified with
algebra bundles over X with fibre O∞ ⊗K.
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Physical motivation

Let M be a spacetime, and O an algebra bundle over M with fibre
O∞ ⊗K.

If {Ui}i∈I is a trivialising open cover for O consisting of
contractible sets, then locally the K -theory of O is given by

Kn(Ui × (O∞ ⊗K)) = (K 0(Ui )⊗ Kn(O∞ ⊗K))

⊕ (K 1(Ui )⊗ Kn+1(O∞ ⊗K))

= (K 0(Ui )⊗ Kn(O∞))

⊕ (K 1(Ui )⊗ Kn+1(O∞))

= Kn(Ui ).

Locally, the K -theory of O is given by that of the spacetime, while globally
they are different.
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Higher twisted K -theory

Definition

Let X be a compact Hausdorff space and Eδ → X an algebra bundle with
fibre O∞ ⊗K representing a twist δ of K ∗(X ). The K -theory of X twisted
by δ is Kn(X ; δ) := Kn(C (X , Eδ)).
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A higher Dixmier-Douady invariant

Theorem (Pennig-Dadarlat 2016)

Let X be a finite connected CW complex such that H∗(X ,Z) is
torsion-free. Then

BunO∞⊗K(X ) ∼= H1(X ,Z2)⊕
⊕
k≥1

H2k+1(X ,Z).

Define higher Dixmier-Douady invariants

δk : BunO∞⊗K(X )→ H2k+1(X ,Z)

using this result.
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Results for SU(n)

Theorem

For any non-zero h5 ∈ H5(SU(n + 1),Z) relatively prime to n! (n > 1),
K ∗(SU(n + 1), h5) is isomorphic to Z|h5| tensored with an exterior algebra
on n − 1 odd generators.

More generally, if h ∈ Hodd(SU(n),Z) is non-zero then K ∗(SU(n), h) is a
finite abelian group and all elements have order a divisor of a power of |h|.

Outline of proof

The first statement is proved via induction on n. The base case n = 2 can
be proved using the Atiyah-Hirzebruch spectral sequence, and the
inductive step follows from the Segal spectral sequence.
The second statement also follows from the Segal spectral sequence.
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Atiyah-Hirzebruch spectral sequence

Theorem

Let X be a finite CW complex with torsion-free cohomology and
h ∈ H2n+1(X ,Z). There is a strongly convergent Atiyah-Hirzebruch
spectral sequence converging to K ∗(X , h) with E2-term

Ep,q
2 = Hp(X ,Kq(pt)).

The differential d2n+1 : H j(X ,Z)→ H j+2n+1(X ,Z) is given by a twisted
Steenrod operation: d2n+1(x) = Sq2n+1(x) + x ∪ h.
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Atiyah-Hirzebruch spectral sequence

The existence of the spectral sequence is established via the skeletal
filtration of X , using the p-skeleton X p to define the filtration

Kn
p (X ) = ker[Kn(X , h)→ Kn(Eh|X p−1)]

of Kn(X , h).

Standard arguments show that the E2 term is of the form
Ep,q
2 = Hp(X ,Kq(pt)).

The d2n+1 differential must be a universal cohomology operation raising
degree by 2n + 1 defined for spaces with a given h ∈ H2n+1(X ,Z).
Standard arguments in homotopy theory show that these operations are
classified by

Hp+2n+1(K (Z, p)× K (Z, 2n + 1),Z),

from which we conclude that d2n+1(x) = Sq2n+1(x) + x ∪ h.
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Segal spectral sequence

Theorem

Let F
ι−→ E

π−→ B be a fibre bundle of CW complexes, and let
h ∈ Hodd(E ,Z). Then there is a homological spectral sequence

Hp(B,Kq(F , ι∗h))⇒ K∗(E , h)

and a corresponding cohomological spectral sequence

Hp(B,Kq(F , ι∗h))⇒ K ∗(E , h).

These spectral sequences are strongly convergent if the ordinary
(co)homology of B is bounded.
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Differentials in Segal spectral sequence

Theorem

In the setting of the homology Segal spectral sequence, suppose that

ι∗ is an isomorphism on H2n+1 so that the twisting class on E can be
identified with the restricted twisting class on F ,

the differentials d2, · · · , d r−1 leave E 2
r ,0 = Hr (B,K0(F , ι∗h))

unchanged, and

there is a class x ∈ E 2
r ,0 which comes from a class α ∈ πr (B) under

the Hurewicz map πr (B)→ Hr (B,K0(F , ι∗h)).

Then d r (x) ∈ E r
0,r−1 is the image of α under the composition of the

boundary map ∂ : πr (B)→ πr−1(F ) in the long exact sequence of the
fibration and the Hurewicz map πr−1(F )→ Kr−1(F , ι∗h).
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Proof

Without loss of generality, take B to be S r and E = (Rr × F ) ∪ F , where
Rr × F is π−1 of the open r -cell in B. Then the spectral sequence comes
from the long exact sequence

· · · → Kr (F , ι∗h)
ι∗−→Kr (E , h)→ Kr (E ,F , h)

∼= Kr (E \ F , h) ∼= K0(F , ι∗h)
∂−→ Kr−1(F , ι∗h)→ · · ·

where we identify K0(F , ι∗h) with Hr (B,K0(F , ι∗h)).

Hence the
differential d r is simply the boundary map in this sequence, and the result
follows from the naturality of the Hurewicz homomorphism which implies
the commutativity of the diagram

πr (B) πr−1(F )

Hr (B,K0(F , ι∗h)) Kr−1(F , ι∗h).

∂

Hurewicz Hurewicz

∂
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Higher twisted K -homology

Proposition

If the higher twisted K -homology of X is torsion, then the higher twisted
K -theory and higher twisted K -homology of X are (non-canonically)
isomorphic.

Proof

Higher twisted K -theory is the operator algebraic K -theory of a section
algebra A, and higher twisted K -homology is the KK -theory KK∗(A,O∞).
These groups are related by a special case of the universal coefficient
theorem in KK -theory, which can be stated as

0→ Ext1Z(K•+1(A),Z)→ KK•(A,O∞)→ HomZ(K•(A),Z)→ 0.

If KK•(A,O∞) is torsion then K•(A) is also torsion, and hence the groups
agree except for a degree shift.
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Base case: 5-twisted K -theory of SU(3)

Let h5 ∈ H5(SU(3),Z).

2 Z 0 0 Zc3 0 Zc5 0 0 Zc3 ∧ Zc5

1 0 0 0 0 0 0 0 0 0

0 Z 0 0 Zc3 0 Zc5 0 0 Zc3 ∧ Zc5

0 1 2 3 4 5 6 7 8

The only non-trivial differential is d5(x) = Sq5(x) + x ∪ h5.
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Base case: 5-twisted K -theory of SU(3)

2 0 0 0 0 0 Z|h5| 0 0 Z|h5|

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 Z|h5| 0 0 Z|h5|

0 1 2 3 4 5 6 7 8

Hence K 0(SU(3), h5) ∼= Z|h5| and K 1(SU(3), h5) ∼= Z|h5|. So
K ∗(SU(3), h5) is of the form Z|h5| tensored with Zc for some odd
generator c .
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Inductive step

Assume that n > 2 and that the result holds for smaller values of n. The
Segal spectral sequence associated to the fibration

SU(n)
ι−→ SU(n + 1)→ S2n+1

gives

E 2
p,q = Hp(S2n+1,Kq(SU(n), h5))⇒ K∗(SU(n + 1), h5).

Since h5 is relatively prime to (n − 1)!, by the inductive assumption
K∗(SU(n), h5) ∼= Z|h5| ⊗ ∧(x1, · · · , xn−2) for some odd generators xi . We
just need to show that the spectral sequence collapses.
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Collapse of the spectral sequence

The only potentially non-zero differential is d2n+1, which comes from the
Hurewicz maps and the long exact sequence in homotopy for the fibration.
This long exact sequence contains

π2n+1(SU(n + 1))→ π2n+1(S2n+1)
∂−→ π2n(SU(n))→ π2n(SU(n + 1)),

so we see that the boundary map ∂ : Z→ Zn! has kernel of index n!.

The
Hurewicz map of interest is

π2n(SU(n))→ K2n(SU(n), h5) ∼= K0(SU(n), h5).

Since this is a map Zn! → Z|h5|, if gcd(|h5|, n!) = 1 then this map must be
trivial and hence the differential is trivial. Thus if gcd(|h5|, n!) = 1 then
K∗(SU(n + 1), h5) is isomorphic to Z|h5| tensored with an exterior algebra
on n − 1 odd generators as required.
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Hurewicz map of interest is

π2n(SU(n))→ K2n(SU(n), h5) ∼= K0(SU(n), h5).

Since this is a map Zn! → Z|h5|, if gcd(|h5|, n!) = 1 then this map must be
trivial and hence the differential is trivial. Thus if gcd(|h5|, n!) = 1 then
K∗(SU(n + 1), h5) is isomorphic to Z|h5| tensored with an exterior algebra
on n − 1 odd generators as required.
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Proof of second statement

Generalising the computation of K ∗(SU(3), h5) shows that
K i (SU(n), h2n−1) is a torsion group whose elements have order a divisor of
a power of |h2n−1|.

Again applying the Segal spectral sequence to the
fibration over S2n+1 in cohomology gives

Ep,q
2 = Hp(S2n+1,Kq(SU(n), h2n−1))⇒ K ∗(SU(n + 1), h2n−1).

But Kq(SU(n), h2n−1) is torsion with all elements of order a divisor of a
power of |h2n−1|, and so the same is true for E2 and thus E∞. Finally,
even if there are non-trivial extension problems to solve in order to obtain
K ∗(SU(n + 1), h2n−1), the result is still true.
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Other work

Developed a product on higher twisted K -theory which provides a
graded module structure of K ∗(X , δ) over K ∗(X );

Formulated higher twisted K -theory using Fredholm operators;

Constructed explicit geometric representatives for higher twists given
by cohomology classes in special cases:

For spheres via the clutching construction;
For 5-twists which can be decomposed into the cup product of a
2-class and a 3-class;

Computed the higher twisted K -theory of spheres, including an
explicit generator of the non-trivial K 1 group via Fredholm operators;

Performed computations in some cases where the cohomology
contains torsion, including real projective space;

Computed the 5-twisted K -theory of SU(2)-bundles over 4-manifolds,
which are relevant in the setting of spherical T-duality.
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Applications

Classical twisted K -theory is relevant in the study of D-branes in
string theory; in the presence of a B-field, D-brane charges take
values in a twisted K -theory group.

Work by Bouwknegt, Evslin and Mathai shows that spherical
T -duality induces an isomorphism on higher twisted K -theory. They
also explain that higher twisted K -theory corresponds to the set of
conserved charges of a class of branes in Type IIB string theory.

The Cuntz algebra O∞ can be replaced by other algebras to obtain a
different class of twists, such as the CAR algebra which is relevant in
quantum mechanics.

A major result by Freed, Hopkins and Teleman is that the Verlinde
ring of representations of loop groups is equal to the equivariant
twisted K -theory of a compact Lie group. There likely exist
generalisations of this result to the higher twisted setting, and this is
currently being studied by Pennig and Evans.
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