String^c Structures and Modular Invariants

t

Haibao Duan, Fei Han and Ruizhi Huang

National University of Singapore

Table of contents

- 1. Backgrounds : (rational) genera, liftings of structure groups and Witten genus $% \left({{\left[{{{\left[{{{\left[{{{c}} \right]}} \right]_{{\rm{c}}}}} \right]}_{{\rm{c}}}}_{{\rm{c}}}} \right)} \right)$
- 2. Algebraic topology of String^c-structures and Generalized Witten Genus of Various Levels
- 3. Applications of generalized vanishing theorem

Section 1

Backgrounds : (rational) genera, liftings of structure groups and Witten genus

Genera

• A (rational) genus

 $\varphi:\Omega^{SO}\otimes\mathbb{Q}\to\mathbb{Q}$

from the (rational) cobordism ring of oriented manifolds, by definition, is a ring homomorphism such that $\varphi(1) = 1$.

• (Hirzebruch) Each genus uniquely corresponds to and is defined by a characteristic power series

$$Q(z) = 1 + a_2 z^2 + a_4 z^4 + \cdots,$$

where "z" can be viewed as formal Chern root.

A-hat genus of spin manifolds : Atiyah-Singer index theorem

• \hat{A} -genus, by definition, corresponds to the characteristic power series

$$Q(z) = \frac{z/2}{\sinh(z/2)} = 1 - \frac{z^2}{24} + \frac{7z^4}{5760} - \frac{31z^6}{967680} + \cdots,$$

 (Atiyah-Singer index theorem) Let M be a 4k-dimensional closed oriented smooth spin manifold (i.e. ω₂(M) = 0), then

$$\operatorname{Ind} D \otimes E = \int_M \hat{A}(M) \cdot \operatorname{ch}(E \otimes \mathbb{C}),$$

where D is the Dirac operator and here twisted by the real vector bundle E over M.

• In particular, the \hat{A} -genus of a spin manifold is an integer.

Generalization of Atiyah-Singer (I) : From Spin to Spin^c

- A closed oriented manifold M is called $Spin^{c}$ if there is an element $c \in H^{2}(M; \mathbb{Z})$ such that the mod 2 reduction $\rho_{2}(c) = \omega_{2}(M)$.
- To specify a Spin^c-structure (M, c) on M is equivalent to specify a pair (M, ξ), where

$$\mathbb{C} \to \xi \to M$$

is the complex line bundle corresponding to c. May denote $M = (M, \xi, c)$.

• (Spin^c Atiyah-Singer) Let *M* be a 2*k*-dimensional closed oriented smooth *Spin*^c, then

$$\mathrm{Ind} \mathcal{D}^{c} = \int_{M} \hat{A}(M) \cdot e^{\frac{1}{2}c}.$$

• In particular, $\hat{A}(M) \cdot e^{\frac{1}{2}c}$ of a Spin^c manifold is an integer.

Generalization of Atiyah-Singer (II) : From Spin to String

• Consider the Whitehead tower of BSO

$$\cdots \rightarrow BString \xrightarrow{\frac{p_1}{2}} BSpin \xrightarrow{\omega_2} BSO.$$

• (Witten (virtual) bundle, 1988) For M^{4k} ,

$$\Theta(T_{\mathbb{C}}M) = \bigotimes_{m=1}^{+\infty} S_{q^{2m}}(\widetilde{T_{\mathbb{C}}M}),$$

where $q = e^{\pi i \tau}$ ($\tau \in \mathbb{H}$), $T_{\mathbb{C}}M = TM \otimes \mathbb{C}$, $\widetilde{T_{\mathbb{C}}M} = T_{\mathbb{C}}M - \mathbb{C}^{4k}$, and the **total symmetric powers** of any bundle *E*

$$S_t(E) = 1 + tE + t^2S^2(E) + \cdots$$

• (Index theorem with **Witten form (genus)**; Zagier, '86) If *M*^{4k} is *String*, then

$$\operatorname{Ind} \operatorname{\not\! D}^L = \int_M \operatorname{\mathcal W}(M) := \widehat{A}(M) \cdot \operatorname{ch}(\Theta(T_{\mathbb C}M))$$

is an integral modular form of weight 2k over $SL(2,\mathbb{Z})$.

Recall definition of modular form

- Let Γ be a subgroup of $SL(2,\mathbb{Z})$.
- A modular form over Γ is a holomorphic function f on \mathbb{H} such that

$$f(\frac{a\tau+b}{c\tau+d}) = (c\tau+d)^k f(\tau)$$

for any $\tau \in \mathbb{H}$ and

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma.$$

• In this talk, we are actually using its Fourier expansion.

Witten-Bott-Taubes-Liu's Rigidity Theorem

Witten-Bott-Taubes-Liu's Rigidity Theorem

Let X be a closed smooth connected manifold which admits a nontrivial S^1 action. Let P be an elliptic differential operator on X commuting with the S^1 action. Then the kernel and cokernel of P are finite dimensional representation of S^1 . The equivariant index of P is the virtual character of S^1 defined by

$$\operatorname{Ind}(g, P) = \operatorname{tr}_g \operatorname{ker} P - \operatorname{tr}_g \operatorname{coker} P,$$

for $g \in S^1$. We call that P is *rigid* with respect to this circle action if Ind(g, P) is independent of g.

Theorem

The Witten operators $B_M \otimes \Theta_1(T_{\mathbb{C}}M), D \otimes \Theta_2(T_{\mathbb{C}}M)$ are rigid.

This implies in particular the *Rarita-Schwinger operator* $D \otimes T_{\mathbb{C}}M$ is rigid.

Liu's Vanishing Theorem

Liu's Vanishing Theorem (appended by Dessai)

Theorem

If M is a smooth string manifold and admits an nontrivial action of of S^3 , then the Witten genus vanishes

 $\Psi_W(M,\tau)=0.$

A profound development of the classical result by Atiyah-Hirzebruch : If M is spin and admits a smooth S^1 action, then the A-hat genus vanishes :

$$\hat{A}(M)=0.$$

Vast development of rigidity and vanishing theorems : Liu-Ma-Zhang family and foliation cases, Dessai spin^c case, Liu-Yu \mathbb{Z}/k case, Mathai-H. noncompact case...

Backgrounds : (rational) genera, liftings of structure groups and Witten genus

Algebraic topology of String^C-structures and Generalized Witten Genus of Van Applications of generalized vanishing theorem

The Question : $? = String^c$

• (Question :) can we fill in the "?" in the diagram ? String^c-structures ? Twisted Witten genera ? Index theorem ? Applications ?

Partial answer

• A Spin^c (M, ξ, c) is **String^c of Chen-H-Zhang**

- if $M = M^{4k}$ and $p_1(M) 3c^2 = 0$ (rationally);
- if $M = M^{4k+2}$ and $p_1(M) c^2 = 0$ (rationally).

• (Generalized Witten bundle) For M^{4k} ,

 $\Theta(T_{\mathbb{C}}M,\xi_{\mathbb{R}}\otimes\mathbb{C}) = \Theta(T_{\mathbb{C}}M)\otimes\Lambda_{(+,0)}(\xi)\otimes\Lambda_{(+,1)}(\xi)\otimes\Lambda_{(-,1)}(\xi);$ For M^{4k+2} ,

$$\Theta(T_{\mathbb{C}}M,\xi_{\mathbb{R}}\otimes\mathbb{C})=\Theta(T_{\mathbb{C}}M)\otimes\Lambda_{(-,0)}(\xi),$$

where

$$\Lambda_{(\pm,0)}(\xi) = \bigotimes_{n=1}^{\infty} \Lambda_{\pm q^{2n}}(\widetilde{\xi_{\mathbb{R}} \otimes \mathbb{C}}), \quad \Lambda_{(\pm,1)}(\xi) = \bigotimes_{n=1}^{\infty} \Lambda_{\pm q^{2n-1}}(\widetilde{\xi_{\mathbb{R}} \otimes \mathbb{C}}),$$

and the total exterior powers of any bundle E

$$\Lambda_t(E) = 1 + tE + t^2\Lambda^2(E) + \cdots$$

Partial answer

• (Generalized Witten form (genus))

$$W_{c}(M) = \int_{M} W_{c}(M) := \hat{A}(M) e^{\frac{1}{2}c} \mathrm{ch}(\Theta(T_{\mathbb{C}}M, \xi_{\mathbb{R}} \otimes \mathbb{C})).$$

They are also indices of some so-called generalized Witten operators, and are integral modular forms of weight 2k over SL(2; Z) when M is String^c in the sense of CHZ.

Our (further) answer of the question :

- to give complete answer to the String^c-structures in the mentioned spirit;
- 2. to construct String^{*c*}-groups;
- 3. to exploit the algebraic topology of String^c structures;
- to construct generalized Witten genera which are integral modular forms (up to constants) for String^c-manifolds;
- to prove vanishing theorems analogous to those for String-manifolds and CHZ's String^c;
- 6. apply vanishing theorem to almost complex manifolds and symplectic manifolds.

Section 2

Algebraic topology of String^c-structures and Generalized Witten Genus of Various Levels

Algebraic topology of BSpin^c

• By definition, the topological group **Spin**^c(**n**) is the central extension of *SO*(*n*) by *U*(1); alternatively, we have the principal bundle

 $Spin(n) \xrightarrow{i} Spin^{c}(n) \xrightarrow{\pi} S^{1}.$

• For free loop space $LX = map(S^1, X)$, we have the canonical fibration

 $\Omega X \xrightarrow{i} LX \xrightarrow{p} X,$

where p is the evaluation map.

• LSpin, LSpin^c, etc, are so-called **loop groups**.

Algebraic topology of BSpin^c, contiuned : Cohomology

$H^{i=?}(-;\mathbb{Z})$	1	2	3	4
Spin(n)	0	0	$\mathbb{Z}\{\mu_3\}$	0
LSpin(n)	0	$\mathbb{Z}\{x_2\}$	$\mathbb{Z}\{\mu_3\}$	$\mathbb{Z}\{x_2^2\}$
Spin ^c (n)	$\mathbb{Z}\{s_1\}$	0	$\mathbb{Z}\{\mu_3\}$	$\mathbb{Z}\{s_1\mu_3\}$
$L_kSpin^c(n)$	$\mathbb{Z}\{s_1\}$	$\mathbb{Z}\{x_2\}$	$\mathbb{Z}\{s_1x_2\} \oplus$	$\mathbb{Z}\{s_1\mu_3\}\oplus\mathbb{Z}\{x_2^2\}$
			$\mathbb{Z}\{\mu_3\}$	
BSpin(n)	0	0	0	$\mathbb{Z}\{q_4\}$
$BSpin^{c}(n)$	0	$\mathbb{Z}\{c_2\}$	0	$\mathbb{Z}\{c_2^2\}\oplus\mathbb{Z}\{q_4\}$
BLSpin(n)	0	0	$\mathbb{Z}\{\mu_3\}$	$\mathbb{Z}\{q_4\}$
$DIC_{min}C(m)$	F7 ()	77 (-)	$\mathbb{Z}[x, y] \oplus \mathbb{Z}$	()

- Remark : we have Spin^c-classes c_2^2 , q_4 ($2q_4 + c_2^2 = p_1$); LSpin^c-class s_1c_2 , μ_3 ; etc.
- Duan (2018) has completely determined all the Spin^c-classes.
- General *LSpin* (*LSpin^c*)-classes are still mysterious.

Algebraic topology of BSpin^c, contiuned : "transgression"

• The free evaluation map

$$\operatorname{ev}: S^1 \times LX \to X$$

is defined by $ev((t, \lambda)) = \lambda(1)$.

• Define the free (cohomology) suspension ("transgression")

 $\nu: H^{n+1}(X) \to H^n(LX)$

by the formula $\operatorname{ev}^*(x) = 1 \otimes p^*(x) + s_1 \otimes \nu(x)$ for any $x \in H^{n+1}(X)$.

Lemma (Duan-H-Huang)

 $\nu: H^4(BSpin^c(n); \mathbb{Z}) \to H^3(BLSpin^c(n); \mathbb{Z})$ satisfies

$$u(q_4) = \mu_3 - s_1 c_2, \quad \nu(c_2^2) = 2s_1 c_2.$$

In particular,

 $u(\frac{p_1-(2k+1)c^2}{2}) = \mu_3 - (2k+1)s_1c_2, \text{ for any } k \in \mathbb{Z}.$

Haibao Duan, Fei Han and Ruizhi Huang String^C Structures and Modular Invariants

A : general String^c structure via classifying spaces

From now on, let $(M^n, \xi, c = e(\xi))$ be a Spin^c-triple. For any $k \in \mathbb{Z}$,

• *M* is level 2k + 1 (strong) String^c if the characteristic class

$$\frac{p_1(M) - (2k+1)c^2}{2} = 0$$

• *M* is level 2k + 1 (weak) String^c if the characteristic class

$$\mu_3(LM) - (2k+1)sc = 0,$$

where μ_3 , s is the "loop" of q_4 and u_2 respectively.

Remark : CHZ's String^c-manifolds rationally are level 3 when $M = M^{4m}$, and level 1 when $M = M^{4m+2}$.

B : constructing *String*^{*c*}_{*k*}-groups

• Embedding $Spin^{c}(n)$ to "larger" Spin(N) groups. e.g., when k < 0,

• Constructing $String_k^c(n)$ by pull-back of topological groups

$$\begin{array}{c|c} String_{k}^{c}(n) \xrightarrow{\gamma_{2k+1}} String(N) \\ & \downarrow_{j_{k}} & \downarrow_{j} \\ Spin^{c}(n) \xrightarrow{\lambda_{2k+1}} Spin(N), \end{array}$$

- Hence, $String_k^c$ -group is an extension of $Spin^c(n)$ by $K(\mathbb{Z}, 2)$.
- Stolz-Teichner (2004) defined PU(A) as a model of $K(\mathbb{Z}, 2)$.
- Nikolaus-Sachse-Wockel (2013) Kac-Moody group model of String.

From "B" to "A"

For each k, we already have the extension

$$\{1\} \rightarrow PU(A) \rightarrow String_k^c(n) \xrightarrow{j_k} Spin^c(n) \rightarrow \{1\}.$$

Nonloop/Strong Case

Loop/Weak Case

C : structural theorem of (strong) String^c-manifolds

C : structural theorem of (weak) String^c-manifolds

LTheorem String^c (Duan-H-Huang)

• A equivalence :

• If M is (2k + 1)-level weak String^c,

Remark : Here $L\widehat{Spin^{c}}(n)$ is a universal central extension extension of $ISpin^{c}(n)$ by II(1)

C : summary

	Strong/Nonlo	oop point of view	Weak/ Loop point of view		
G-	obstruction	counting (para-	structural	counting (pa-	
Structure	characteristic	meterized by)	group	rameterized	
	class		lifting to	by)	
SO	$\omega_1(M)$	$H^{0}(M; \mathbb{Z}/2)$			
Spin	$\omega_2(M)$	$H^1(M;\mathbb{Z}/2)$	$L_0SO(n)$	$H^0(LM;\mathbb{Z}/2)$	
String	$\frac{p_1(M)}{2}$	$H^3(M;\mathbb{Z})$	$L\widehat{Spin}(n)$	$H^2(LM;\mathbb{Z})$	
Spin ^c	$W_3(M)$	$egin{array}{ll} H^1(M;\mathbb{Z}/2)&\oplus\ 2H^2(M;\mathbb{Z}) \end{array}$			
String ^c	$\frac{p_1(M)-(2k+1)c^2}{2}$	$\operatorname{Im}(ho^*:H^3(M) ightarrow H^3(S(\xi)))$	LSpin ^c (n)	$\operatorname{Im}((L\rho)^*)$	

Remark : "Strong" implies "Weak", while the converse holds only under

D : generalized Witten genera

From "D" to "E", let (M, ξ, c) be a level 2k + 1 (strong) String^c-manifold such that 2k + 1 > 0.

Let $\vec{a} = (a_1, a_2, \cdots, a_r) \in \mathbb{Z}^r, \vec{b} = (b_1, b_2, \cdots, b_s) \in \mathbb{Z}^s$ be two vectors.

• If $M = M^{4m}$, suppose

$$3||\vec{a}||^2 + ||\vec{b}||^2 = 2k - 2;$$

• if $M = M^{4m+2}$, suppose

 $3||\vec{a}||^2 + ||\vec{b}||^2 = 2k.$

Recall

$$\Lambda_{(\pm,0)}(E) = \bigotimes_{n=1}^{\infty} \Lambda_{\pm q^{2n}}(\widetilde{E_{\mathbb{R}} \otimes \mathbb{C}}), \quad \Lambda_{(\pm,1)}(E) = \bigotimes_{n=1}^{\infty} \Lambda_{\pm q^{2n-1}}(\widetilde{E_{\mathbb{R}} \otimes \mathbb{C}}).$$

D : generalized Witten genera, continued

Generalized Witten bundles

• Define (\vec{a}, \vec{b}) -indexed virtual bundle

$$\begin{split} & \Upsilon_{\vec{a},\vec{b}}(\mathcal{T}_{\mathbb{C}}\mathcal{M},\xi_{\mathbb{R}}\otimes\mathbb{C}) := \Theta(\mathcal{T}_{\mathbb{C}}\mathcal{M})\otimes\\ & \bigotimes_{i=1}^{r} \left(\Lambda_{(+,0)}(\xi^{\otimes a_{i}})\otimes\Lambda_{(+,1)}(\xi^{\otimes a_{i}})\otimes\Lambda_{(-,1)}(\xi^{\otimes a_{i}})\right) \bigotimes_{j=1}^{s}\Lambda_{(-,0)}(\xi^{\otimes b_{j}}). \end{split}$$

• For M^{4k} ,

 $\Theta_{\vec{a},\vec{b}}(T_{\mathbb{C}}M,\xi_{\mathbb{R}}\otimes\mathbb{C}):=\Upsilon_{\vec{a},\vec{b}}(T_{\mathbb{C}}M,\xi_{\mathbb{R}}\otimes\mathbb{C})\otimes\Lambda_{(+,0)}(\xi)\otimes\Lambda_{(+,1)}(\xi)\otimes\Lambda_{(-,1)}(\xi);$

• For M^{4k+2} ,

 $\Theta_{\vec{a},\vec{b}}(\mathcal{T}_{\mathbb{C}}\mathcal{M},\xi_{\mathbb{R}}\otimes\mathbb{C}):=\Upsilon_{\vec{a},\vec{b}}(\mathcal{T}_{\mathbb{C}}\mathcal{M},\xi_{\mathbb{R}}\otimes\mathbb{C})\otimes\Lambda_{(-,0)}(\xi).$

D : generalized Witten genera, continued

• Generalized Witten forms

$$\mathcal{W}_{2k+1,\vec{a},\vec{b}}^{c}(M) := \widehat{A}(M)e^{\frac{c}{2}}\prod_{j=1}^{r}\cosh\left(\frac{a_{j}c}{2}\right)\prod_{j=1}^{s}\sinh\left(\frac{b_{j}c}{2}\right)$$
$$\cdot ch\left(\Theta_{\vec{a},\vec{b}}(T_{\mathbb{C}}M,\xi_{\mathbb{R}}\otimes\mathbb{C})\right);$$

• Generalized Witten genera

$$W^c_{2k+1,\vec{a},\vec{b}}(M) = \int_M \mathcal{W}^c_{2k+1,\vec{a},\vec{b}}(M).$$

Modularity Theorem

The generalized Witten genera are integral modular forms of weight 2m over $SL(2,\mathbb{Z})$ up to a scaler $1/2^{r+s}$ which only depends on k.

Remark : For $(M^{4m}, k = 1)$ and $(M^{4m+2}, k = 0)$, the generalized Witten forms and genera, and their integrality and modularity reduce to those of CHZ respectively.

E : Liu's type vanishing theorem

Theorem (Duan-H-Huang)

Let (M, ξ, c) be a level 2k + 1 (strong) String^c-manifold such that 2k + 1 > 0. If M admits an effective positive action of a simply connected compact Lie group that can be lifted to the Spin^c structure, then

 $W^c_{2k+1;\vec{a},\vec{b}}(M)=0.$

Positive condition of action inspired by Liu

Under the condition of the theorem, we have for G-equivariant characteristic classes

$$p_1(M)_G - (2k+1)c_1(\xi)_G^2 = \alpha \cdot \pi^* q,$$

where $\pi : M \times_G EG \to BG$, and $q \in H^4(BG)$ is the canonical generator. The *G*-action is **positive** if $\alpha > 0$.

E : Remark on positive condition

$$p_1(M)_G - (2k+1)c_1(\xi)_G^2 = \alpha \cdot \pi^* q, \ (\alpha > 0).$$

An example :

On $M = \mathbb{C}P^{2n}$, consider the Spin^c-structure ($\mathbb{C}P^{2n}$, $c(\xi)$) determined by the stable almost complex structure

$$T\mathbb{C}P^{2n}\oplus\mathbb{R}^2\cong\mathcal{O}(1)\oplus\cdots\oplus\mathcal{O}(1)\oplus\mathcal{O}(-1)\oplus\cdots\oplus\mathcal{O}(-1),$$

where there are n + 1 many $\mathcal{O}(1)$, *n*-many $\mathcal{O}(-1)$. Then $c(\xi) = c_1(J) = x$ and $\mathbb{C}P^{2n}$ is String^c of level 2n + 1. Now the linear action of SU(2n + 1) on $\mathbb{C}P^{2n}$ preserves J, which is positive (indeed $\alpha = 1$).

Section 3

Applications of generalized vanishing theorem

G : applications to almost complex (a.c.) manifolds

Theorem (Duan-H-Huang)

Let $(M, J, c = c_1(J))$ be a level 2k + 1 (strong) String^c almost complex manifold such that 2k + 1 > 0. If M admits an effective positive action of a simply connected compact Lie group that preserves the almost complex structure J, then

 $W^c_{2k+1;\vec{a},\vec{b}}(M)=0.$

G : applications to almost complex (a.c.) manifolds : a special case

Theorem (Duan-H-Huang)

Let (M^{2n}, J) be a closed almost complex manifold, which is level 2k + 1 String^c. Then if

- $2k n \ge 18$, and
- $c_1^n(J) \neq 0$ rationally,

M does not admit a positive effective action of any simply connected compact Lie group preserving J.

H : applications to homotopy projective spaces

A complex homotopy projective space M^{2n} , by definition, is a manifold $M^{2n} \simeq \mathbb{C}P^n$.

- The Petrie conjecture (1972) claims that if S¹ acts effectively on a homotopy complex projective space X²ⁿ, then the total Pontryagin class p(X²ⁿ) = p(CPⁿ).
- The conjecture was proved for X²ⁿ with n ≤ 4, and by Hatorri (1978) when X²ⁿ admits an S¹-invariant stable almost complex structure with c₁ = (n + 1)x.
- (Hatorri 1978) when $c_1 = kx$ with |k| > n + 1, X^{2n} admits no S^1 action preserving J.

H : applications to homotopy projective spaces

Dessai proved that : If X^{4n} is a homotopy CP^{2n} and $p_1 > (2n+1)x^2$, then X^{4n} does not support nontrivial smooth S^3 action.

Using our vanishing theorem, we can reprove this result.

Just observe that X^{4n} is String^c of level $(2n + 1) + 24\rho(X)$ and apply the above corollary.

I : applications to prequantizable symplectic manifolds

Theorem (Duan-H-Huang)

Let $(M, \omega, c = [\omega])$ be a level 2k + 1 (strong) String^c prequanizable symplectic manifold such that 2k + 1 > 0. Suppose M admits an effective symplectic action of a simply connected compact Lie group. If the action is Hamiltonian and positive, then

 $W^c_{2k+1;\vec{a},\vec{b}}(M)=0.$

Thank you very much!