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Genera

A (rational) genus

ϕ : ΩSO ⊗Q→ Q

from the (rational) cobordism ring of oriented manifolds, by

definition, is a ring homomorphism such that ϕ(1) = 1.

(Hirzebruch) Each genus uniquely corresponds to and is defined by a

characteristic power series

Q(z) = 1 + a2z
2 + a4z

4 + · · · ,

where “z” can be viewed as formal Chern root.
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A-hat genus of spin manifolds : Atiyah-Singer index theorem

Â-genus, by definition, corresponds to the characteristic power series

Q(z) =
z/2

sinh(z/2)
= 1− z2/24 + 7z4/5760− 31z6/967680 + · · · ,

(Atiyah-Singer index theorem) Let M be a 4k-dimensional closed

oriented smooth spin manifold (i.e. ω2(M) = 0), then

Ind /D ⊗ E =

∫
M

Â(M) · ch(E ⊗ C),

where /D is the Dirac operator and here twisted by the real vector

bundle E over M.

In particular, the Â-genus of a spin manifold is an integer.
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Generalization of Atiyah-Singer (I) : From Spin to Spinc

A closed oriented manifold M is called Spinc if there is an element

c ∈ H2(M;Z) such that the mod 2 reduction ρ2(c) = ω2(M).

To specify a Spinc -structure (M, c) on M is equivalent to specify a

pair (M, ξ), where

C→ ξ → M

is the complex line bundle corresponding to c . May denote

M = (M, ξ, c).

(Spinc Atiyah-Singer) Let M be a 2k-dimensional closed oriented

smooth Spinc , then

Ind /D
c

=

∫
M

Â(M) · e 1
2 c .

In particular, Â(M) · e 1
2 c of a Spinc manifold is an integer.
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Generalization of Atiyah-Singer (II) : From Spin to String

Consider the Whitehead tower of BSO

· · · → BString
p1
2→ BSpin

ω2→ BSO.

(Witten (virtual) bundle, 1988) For M4k ,

Θ(TCM) =
+∞⊗
m=1

Sq2m(T̃CM),

where q = eπiτ (τ ∈ H), TCM = TM ⊗ C, T̃CM = TCM − C4k ,

and the total symmetric powers of any bundle E

St(E ) = 1 + tE + t2S2(E ) + · · · .

(Index theorem with Witten form (genus) ; Zagier, ’86) If M4k is

String , then

Ind /D
L

=

∫
M

W(M) := Â(M) · ch(Θ(TCM))

is an integral modular form of weight 2k over SL(2,Z).
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Recall definition of modular form

Let Γ be a subgroup of SL(2,Z).

A modular form over Γ is a holomorphic function f on H such that

f (
aτ + b

cτ + d
) = (cτ + d)k f (τ)

for any τ ∈ H and (
a b

c d

)
∈ Γ.

In this talk, we are actually using its Fourier expansion.
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Witten-Bott-Taubes-Liu’s Rigidity Theorem

Witten-Bott-Taubes-Liu’s Rigidity Theorem

Let X be a closed smooth connected manifold which admits a nontrivial

S1 action. Let P be an elliptic differential operator on X commuting with

the S1 action. Then the kernel and cokernel of P are finite dimensional

representation of S1. The equivariant index of P is the virtual character

of S1 defined by

Ind(g ,P) = tr|gkerP − tr|gcokerP,

for g ∈ S1. We call that P is rigid with respect to this circle action if

Ind(g ,P) is independent of g .

Theorem

The Witten operators BM ⊗Θ1(TCM),D ⊗Θ2(TCM) are rigid.

This implies in particular the Rarita-Schwinger operator D⊗TCM is rigid.
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Liu’s Vanishing Theorem

Liu’s Vanishing Theorem (appended by Dessai)

Theorem

If M is a smooth string manifold and admits an nontrivial action of of

S3, then the Witten genus vanishes

ΨW (M, τ) = 0.

A profound development of the classical result by Atiyah-Hirzebruch :

If M is spin and admits a smooth S1 action, then the A-hat genus

vanishes :

Â(M) = 0.

Vast development of rigidity and vanishing theorems : Liu-Ma-Zhang

family and foliation cases, Dessai spinc case, Liu-Yu Z/k case, Mathai-H.

noncompact case...
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The Question : ? = String c

BString

��

?

��
BSpin

��

twisted by c
 BSpinc

��
N4k //

;;

DD

BSO M2k //

;;

EE

BSO

(Question :) can we fill in the “ ?” in the diagram ?

Stringc -structures ? Twisted Witten genera ? Index theorem ?

Applications ?
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Partial answer

A Spinc (M, ξ, c) is Stringc of Chen-H-Zhang

if M = M4k and p1(M)− 3c2 = 0 (rationally) ;

if M = M4k+2 and p1(M)− c2 = 0 (rationally).

(Generalized Witten bundle) For M4k ,

Θ(TCM, ξR ⊗ C) = Θ(TCM)⊗ Λ(+,0)(ξ)⊗ Λ(+,1)(ξ)⊗ Λ(−,1)(ξ);

For M4k+2,

Θ(TCM, ξR ⊗ C) = Θ(TCM)⊗ Λ(−,0)(ξ),

where

Λ(±,0)(ξ) =
∞⊗
n=1

Λ±q2n(ξ̃R ⊗ C), Λ(±,1)(ξ) =
∞⊗
n=1

Λ±q2n−1 (ξ̃R ⊗ C),

and the total exterior powers of any bundle E

Λt(E ) = 1 + tE + t2Λ2(E ) + · · · .
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Partial answer

(Generalized Witten form (genus))

Wc(M) =

∫
M

Wc(M) := Â(M)e
1
2 cch(Θ(TCM, ξR ⊗ C)).

They are also indices of some so-called generalized Witten

operators, and are integral modular forms of weight 2k over

SL(2;Z) when M is Stringc in the sense of CHZ.
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Our (further) answer of the question :

1. to give complete answer to the Stringc -structures in the mentioned

spirit ;

2. to construct Stringc -groups ;

3. to exploit the algebraic topology of Stringc structures ;

4. to construct generalized Witten genera which are integral modular

forms (up to constants) for Stringc -manifolds ;

5. to prove vanishing theorems analogous to those for String-manifolds

and CHZ’s Stringc ;

6. apply vanishing theorem to almost complex manifolds and

symplectic manifolds.
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Algebraic topology of BSpinc

By definition, the topological group Spinc(n) is the central extension

of SO(n) by U(1) ; alternatively, we have the principal bundle

Spin(n)
i→ Spinc(n)

π→ S1.

For free loop space LX = map(S1,X ), we have the canonical

fibration

ΩX
i→ LX

p→ X ,

where p is the evaluation map.

LSpin, LSpinc , etc, are so-called loop groups.
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Algebraic topology of BSpinc , contiuned : Cohomology

H i=?(−;Z) 1 2 3 4

Spin(n) 0 0 Z{µ3} 0

LSpin(n) 0 Z{x2} Z{µ3} Z{x2
2}

Spinc(n) Z{s1} 0 Z{µ3} Z{s1µ3}
LkSpin

c(n) Z{s1} Z{x2} Z{s1x2} ⊕
Z{µ3}

Z{s1µ3} ⊕ Z{x2
2}

BSpin(n) 0 0 0 Z{q4}
BSpinc(n) 0 Z{c2} 0 Z{c2

2} ⊕ Z{q4}
BLSpin(n) 0 0 Z{µ3} Z{q4}
BLSpinc(n) Z{s1} Z{c2} Z{s1c2} ⊕ Z{µ3}

Remark : we have Spinc -classes c2
2 , q4 (2q4 + c2

2 = p1) ; LSpinc -class

s1c2, µ3 ; etc.

Duan (2018) has completely determined all the Spinc -classes.

General LSpin (LSpinc)-classes are still mysterious.
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Algebraic topology of BSpinc , contiuned : “transgression”

The free evaluation map

ev : S1 × LX → X

is defined by ev((t, λ)) = λ(1).

Define the free (cohomology) suspension (“transgression”)

ν : Hn+1(X )→ Hn(LX )

by the formula ev∗(x) = 1⊗ p∗(x) + s1⊗ ν(x) for any x ∈ Hn+1(X ).

Lemma (Duan-H-Huang)

ν : H4(BSpinc(n);Z)→ H3(BLSpinc(n);Z) satisfies

ν(q4) = µ3 − s1c2, ν(c2
2 ) = 2s1c2.

In particular,

ν(
p1 − (2k + 1)c2

2
) = µ3 − (2k + 1)s1c2, for any k ∈ Z.
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A : general Stringc structure via classifying spaces

From now on, let (Mn, ξ, c = e(ξ)) be a Spinc -triple. For any k ∈ Z,

M is level 2k + 1 (strong) Stringc if the characteristic class

p1(M)− (2k + 1)c2

2
= 0.

M is level 2k + 1 (weak) Stringc if the characteristic class

µ3(LM)− (2k + 1)sc = 0,

where µ3, s is the “loop” of q4 and u2 respectively.

Remark : CHZ’s Stringc -manifolds rationally are level 3 when M = M4m,

and level 1 when M = M4m+2.
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B : constructing String c
k -groups

Embedding Spinc(n) to “larger” Spin(N) groups. e.g., when k < 0,

Spinc(n)
λ2k+1 //

ρ

��

Spin(n − 4k − 2)

p

��
SO(n)× S1

idSO(n)×∆−2k−1// SO(n)× S1 × · · · × S1︸ ︷︷ ︸
−2k−1

� � χ−2k−1 // SO(n − 4k − 2),

Constructing String c
k (n) by pull-back of topological groups

String c
k (n)

γ2k+1 //

jk

��

String(N)

j

��
Spinc(n)

λ2k+1 // Spin(N),

Hence, String c
k -group is an extension of Spinc(n) by K (Z, 2).

Stolz-Teichner (2004) defined PU(A) as a model of K (Z, 2).

Nikolaus-Sachse-Wockel (2013) Kac-Moody group model of String.
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From “B” to “A”

For each k , we already have the extension

{1} → PU(A)→ String c
k (n)

jk→ Spinc(n)→ {1}.

BString c
k (n)

��

BLString c
k (n)

��
Mn

g
//

77

BSpinc(n)

p1−(2k+1)c2
2

2

��

transgress to
 LMn

Lg
//

88

BLSpinc(n)

u3−(2k+1)s1c2

��
K (Z, 4) LK (Z, 4)

Nonloop/Strong Case Loop/Weak Case
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C : structural theorem of (strong) String c-manifolds

Theorem Stringc (Duan-H-Huang)

A equivalence :

M admits a strong

Stringc -structure

The stable spin principal bundle

associated to M ⊕ ξ⊕(−2k−1)

admits a string structure

for some k ∈ Z

If M is (2k + 1)-level Stringc ,

The distinct level k

strong Stringc -

structures on M

The elements in the image of

ρ∗ : H3(M)→ H3(S(ξ))

1− 1

where ρ : S(ξ)→ M is the circle bundle of ξ.
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C : structural theorem of (weak) Stringc-manifolds

LTheorem Stringc (Duan-H-Huang)

A equivalence :

M admits a weak

Stringc -structure

The structural group of the

LSpinc -principal bundle of LM

can be lifted to LŜpinc(n)

in a reasonable way

If M is (2k + 1)-level weak Stringc ,

The distinct level k

weak Stringc -

structures on M

The elements in the image of

(Lρ)∗ : H2(LM)→ H2(LS(ξ))

1− 1

Remark : Here LŜpinc(n) is a universal central extension extension of

LSpinc(n) by U(1).
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C : summary

Strong/Nonloop point of view Weak/ Loop point of view

G -

Structure

obstruction

characteristic

class

counting (para-

meterized by)

structural

group

lifting to

counting (pa-

rameterized

by)

SO ω1(M) H0(M;Z/2)

Spin ω2(M) H1(M;Z/2) L0SO(n) H0(LM;Z/2)

String p1(M)
2 H3(M;Z) LŜpin(n) H2(LM;Z)

Spinc W3(M) H1(M;Z/2) ⊕
2H2(M;Z)

String c
k

p1(M)−(2k+1)c2

2 Im
(
ρ∗ : H3(M)→

H3(S(ξ))
) LŜpinc(n) Im((Lρ)∗)

Remark : “Strong” implies “Weak”, while the converse holds only under

some conditions.Haibao Duan, Fei Han and Ruizhi Huang Stringc Structures and Modular Invariants
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D : generalized Witten genera

From “D” to “E”, let (M, ξ, c) be a level 2k + 1 (strong)

Stringc -manifold such that 2k + 1 > 0.

Let ~a = (a1, a2, · · · , ar ) ∈ Zr ,~b = (b1, b2, · · · , bs) ∈ Zs be two vectors.

If M = M4m, suppose

3||~a||2 + ||~b||2 = 2k − 2;

if M = M4m+2, suppose

3||~a||2 + ||~b||2 = 2k .

Recall

Λ(±,0)(E ) =
∞⊗
n=1

Λ±q2n(ẼR ⊗ C), Λ(±,1)(E ) =
∞⊗
n=1

Λ±q2n−1 (ẼR ⊗ C).
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D : generalized Witten genera, continued

Generalized Witten bundles

Define (~a,~b)-indexed virtual bundle

Υ~a,~b(TCM, ξR ⊗ C) := Θ(TCM)⊗
r⊗

i=1

(
Λ(+,0)(ξ

⊗ai )⊗ Λ(+,1)(ξ
⊗ai )⊗ Λ(−,1)(ξ

⊗ai )
) s⊗

j=1

Λ(−,0)(ξ
⊗bj ).

For M4k ,

Θ~a,~b(TCM, ξR⊗C) := Υ~a,~b(TCM, ξR⊗C)⊗Λ(+,0)(ξ)⊗Λ(+,1)(ξ)⊗Λ(−,1)(ξ);

For M4k+2,

Θ~a,~b(TCM, ξR ⊗ C) := Υ~a,~b(TCM, ξR ⊗ C)⊗ Λ(−,0)(ξ).
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D : generalized Witten genera, continued

Generalized Witten forms

Wc
2k+1,~a,~b

(M) := Â(M)e
c
2

r∏
j=1

cosh
(ajc

2

) s∏
j=1

sinh

(
bjc

2

)
·ch
(

Θ~a,~b(TCM, ξR ⊗ C)
)

;

Generalized Witten genera

W c
2k+1,~a,~b

(M) =

∫
M

Wc
2k+1,~a,~b

(M).

Modularity Theorem

The generalized Witten genera are integral modular forms of weight 2m

over SL(2,Z) up to a scaler 1/2r+s which only depends on k.

Remark : For (M4m, k = 1) and (M4m+2, k = 0), the generalized Witten

forms and genera, and their integrality and modularity reduce to those of

CHZ respectively.
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E : Liu’s type vanishing theorem

Theorem (Duan-H-Huang)

Let (M, ξ, c) be a level 2k + 1 (strong) Stringc -manifold such that

2k + 1 > 0. If M admits an effective positive action of a simply connected

compact Lie group that can be lifted to the Spinc structure, then

W c
2k+1;~a,~b

(M) = 0.

Positive condition of action inspired by Liu

Under the condition of the theorem, we have for G -equivariant

characteristic classes

p1(M)G − (2k + 1)c1(ξ)2
G = α · π∗q,

where π : M ×G EG → BG , and q ∈ H4(BG ) is the canonical generator.

The G -action is positive if α > 0.
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E : Remark on positive condition

p1(M)G − (2k + 1)c1(ξ)2
G = α · π∗q, (α > 0).

An example :

On M = CP2n, consider the Spinc -structure (CP2n, c(ξ)) determined by

the stable almost complex structure

TCP2n ⊕ R2 ∼= O(1)⊕ · · · ⊕ O(1)⊕O(−1)⊕ · · · ⊕ O(−1),

where there are n + 1 many O(1), n-many O(−1). Then

c(ξ) = c1(J) = x and CP2n is Stringc of level 2n + 1.

Now the linear action of SU(2n + 1) on CP2n preserves J, which is

positive (indeed α = 1).
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G : applications to almost complex (a.c.) manifolds

Theorem (Duan-H-Huang)

Let (M, J, c = c1(J)) be a level 2k + 1 (strong) Stringc almost complex

manifold such that 2k + 1 > 0. If M admits an effective positive action of

a simply connected compact Lie group that preserves the almost complex

structure J, then

W c
2k+1;~a,~b

(M) = 0.
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G : applications to almost complex (a.c.) manifolds : a special

case

Theorem (Duan-H-Huang)

Let (M2n, J) be a closed almost complex manifold, which is level 2k + 1

Stringc . Then if

2k − n ≥ 18, and

cn1 (J) 6= 0 rationally,

M does not admit a positive effective action of any simply connected

compact Lie group preserving J.
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H : applications to homotopy projective spaces

A complex homotopy projective space M2n, by definition, is a

manifold M2n ' CPn.

The Petrie conjecture (1972) claims that if S1 acts effectively on a

homotopy complex projective space X 2n, then the total Pontryagin

class p(X 2n) = p(CPn).

The conjecture was proved for X 2n with n ≤ 4, and by Hatorri

(1978) when X 2n admits an S1-invariant stable almost complex

structure with c1 = (n + 1)x .

(Hatorri 1978) when c1 = kx with |k | > n + 1, X 2n admits no S1

action preserving J.
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H : applications to homotopy projective spaces

Dessai proved that :

If X 4n is a homotopy CP2n and p1 > (2n + 1)x2, then X 4n does not

support nontrivial smooth S3 action.

Using our vanishing theorem, we can reprove this result.

Just observe that X 4n is Stringc of level (2n + 1) + 24ρ(X ) and apply the

above corollary.
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I : applications to prequantizable symplectic manifolds

Theorem (Duan-H-Huang)

Let (M, ω, c = [ω]) be a level 2k + 1 (strong) Stringc prequanizable

symplectic manifold such that 2k + 1 > 0. Suppose M admits an

effective symplectic action of a simply connected compact Lie group. If

the action is Hamiltonian and positive, then

W c
2k+1;~a,~b

(M) = 0.
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Thank you very much !
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