Dynamical invariants of foliated manifolds

Lachlan MacDonald

Supervisor: Adam Rennie

University of Wollongong

September 30, 2019

Motivating question

Can we probe the global behaviour of an integrable system by calculating path integrals?

3

Foliated manifolds

Let *M* be a manifold. A subbundle $E \subset TM$ is said to be *integrable* if $\Gamma^{\infty}(M; E)$ is closed under Lie brackets.

By the Frobenius theorem, an integrable subbundle E of TM integrates to a family

$$\mathcal{F} := \{ (L_{\lambda}, i_{\lambda} : L_{\lambda} \hookrightarrow M) \}_{\lambda \in \Lambda}, \qquad M = \bigcup_{\lambda \in \Lambda} i_{\lambda} (L_{\lambda})$$

of *M* into disjoint, connected, immersed submanifolds called *leaves*. E = TF, the tangent bundle to the leaves.

The pair (M, \mathcal{F}) is referred to as a *foliated manifold*. The rank p of $T\mathcal{F}$ is the *leaf dimension* of \mathcal{F} and the rank q = n - p of the normal bundle $N := TM/T\mathcal{F}$ is called the *codimension*.

Foliated manifolds

• • • • • • • •

Foliated manifolds

3

<ロ> (日) (日) (日) (日) (日)

The Godbillon-Vey invariant

Let *M* be equipped with a metric and let *N* be orientable. Then *N* identifies with a subbundle of *M* such that $TM = N \oplus T\mathcal{F}$. Define a connection ∇^{\flat} on *N* by

$$\nabla_X^{\flat}(Y) := [X_{T\mathcal{F}}, Y]_N + \left(\nabla_{X_N}^{LC} Y\right)_N.$$

The connection ∇^{\flat} is:

A Bott connection, in the sense that in any foliated coordinate system in which

$$\nabla^{\flat} = \boldsymbol{d} + \boldsymbol{\alpha},$$

one has $\alpha|_{T\mathcal{F}} \equiv 0$. Globally, ∇^{\flat} is flat along leaves.

2 Torsion-free, in the sense that for all $X, Y \in \Gamma^{\infty}(M; N)$ one has

$$T^{
abla^{\flat}}(X,Y) :=
abla^{\flat}_X(Y) -
abla^{\flat}_Y(X) - [X,Y]_N \equiv 0.$$

The Godbillon-Vey invariant

The Riemannian metric g on M restricts to a Euclidean structure on N, whose determinant defines a trivialisation $\omega : \Lambda^q(N) \to M \times \mathbb{R}$.

The form $\omega \in \Gamma^{\infty}(M; \Lambda^q(N^*))$ extends by zero to $\Lambda^q(TM)$ to define a *transverse volume form* $\omega \in \Omega^q(M)$.

In the trivialisation of $\Lambda^q(N^*)$ determined by ω , the induced connection $(\nabla^{\flat})^{(q)}$ on $\Lambda^q(N^*)$ has the form

$$(\nabla^{\flat})^{(q)} = d + \eta$$

globally, for some $\eta \in \Omega^1(M)$. The curvature of $(\nabla^{\flat})^{(q)}$ is $d\eta \in \Omega^2(M)$.

The Godbillon-Vey invariant

Since ∇^\flat is flat along leaves, Bott's vanishing theorem implies that

$$(d\eta)^{q+1}=0$$

in $\Omega^*(M)$, so the form

 $\eta \wedge (d\eta)^q$

is closed, defining a class

$$gv := [\eta \wedge (d\eta)^q] \in H^{2q+1}_{dR}(M).$$

The class gv is called the *Godbillon-Vey invariant* of (M, \mathcal{F}) .

Let $F^+(N)$ denote positively oriented transverse frame bundle for N, and let $P := F^+(N)/SO(q)$. P is called the *bundle of transverse metrics*.

The fibre $F^+(N)_x$ over $x \in M$ consists of all positively oriented linear isomorphisms $\phi : \mathbb{R}^q \to N_x$. The fibre P_x consists of classes $[\phi]$.

Any $[\phi] \in P_x$ determines a metric $\langle \cdot, \cdot \rangle_{[\phi]}$ on N_x defined by

$$\langle n_1, n_2 \rangle_{[\phi]} := \phi^{-1}(n_1) \cdot \phi^{-1}(n_2), \qquad n_1, n_2 \in N_x.$$

Thus a smooth section $\sigma: M \to P$ is the same thing as a smooth Euclidean structure for N.

Let $\alpha^{\flat} \in \Omega^1(F^+(N); \mathfrak{gl}(q, \mathbb{R}))$ and $R^{\flat} \in \Omega^2(F^+(N); \mathfrak{gl}(q, \mathbb{R}))$ be the connection and curvature forms of ∇^{\flat} , and let

$$\alpha^{\flat} = \alpha^{\flat}_{a} + \alpha^{\flat}_{s}, \qquad R^{\flat} = R^{\flat}_{a} + R^{\flat}_{s}$$

be their decompositions into antisymmetric and symmetric components respectively.

Define $\underline{WO}_q := \Lambda(h_1, h_3, \dots, h_{q'}) \otimes \mathbb{R}[c_1, \dots, c_q]_q$. Define a differential d defined on generators by

$$dc_i = 0,$$
 for all i ,

 $dh_i = c_i$, for *i* odd.

Then \underline{WO}_q is a differential graded algebra.

Theorem (Bott-Guegorlet)

The formulae

$$c_i \mapsto \operatorname{Tr}\left((R^{\flat})^i\right) \in \Omega^{2i}(P),$$

$$h_i \mapsto i \int_0^1 \operatorname{Tr} \left(\alpha_s^{\flat} (tR_s^{\flat} + R_a^{\flat} + (t^2 - 1)(\alpha_s^{\flat}))^{i-1} \right) dt \in \Omega^{2i-1}(P)$$

define homomorphisms $\phi_{\nabla^\flat}: \underline{WO}_q \to \Omega^*(P)$ and $\psi_{\nabla^\flat,\sigma} := \sigma^* \circ \phi_{\nabla^\flat}$, and the the diagram

commutes. The induced maps on cohomology do not depend on ∇^{\flat} or σ .

< 🗇 🕨

In particular, the Godbillon-Vey invariant is represented in \underline{WO}_q by $h_1c_1^q$.

We have

$$\phi_{\nabla^{\flat}}(h_1c_1^q) = \mathsf{Tr}(\alpha^{\flat}) \wedge \mathsf{Tr}(R^{\flat})^q$$

and

$$\psi_{\nabla^{\flat},\sigma}(h_1c_1^q) = \sigma^* \big(\operatorname{Tr}(\alpha^{\flat}) \wedge \operatorname{Tr}(R^{\flat})^q\big)$$
$$= \eta \wedge (d\eta)^q.$$

The Godbillon-Vey invariant is closely related to the dynamics of (M, \mathcal{F}) .

Holonomy

To study the dynamical behaviour of a general foliation (M, \mathcal{F}) , we consider its *holonomy groupoid* \mathcal{G} .

An element of \mathcal{G} is an equivalence class $u = [\gamma]$ of some smooth immersed path $\gamma : [0,1] \to M$ for which $\gamma'(t) \in T\mathcal{F}$ for all $t \in [0,1]$.

Two such paths γ_1 and γ_2 are deemed equivalent if they have the same endpoints and if their parallel transport maps $P_{\gamma_i}^{\nabla^\flat} : N_{s(\gamma_i)} \to N_{r(\gamma_i)}$ coincide for any Bott connection ∇^\flat .

The set \mathcal{G} of all such $u = [\gamma]$ can be equipped with a natural (non-Hausdorff) differential topology.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

Holonomy

Let r and s be maps on \mathcal{G} defined by

$$r([\gamma]) = \gamma(1),$$

 $s([\gamma]) = \gamma(0).$

Then we have an inversion

$$[\gamma]\mapsto [\gamma]^{-1}:=[\gamma^{-1}]$$

and a partially defined multiplication

$$[\gamma_1][\gamma_2] := [\gamma_1 \gamma_2].$$

So G is a *Lie groupoid*. It is the *natural symmetry object* associated to (M, \mathcal{F}) , and it acts naturally (via parallel transport) on the vector bundle N and, therefore, on the bundle P.

Characteristic classes for ${\cal G}$

Cover (M, \mathcal{F}) with foliated charts U_i , and for each such U pick a local transversal T_i . Then $T := \bigcup_i T_i$ is a *q*-dimensional submanifold which intersects each leaf of \mathcal{F} , and which is everywhere transverse to \mathcal{F} .

One can then study G via the action of a (pseudo)group Γ on T. In these terms, we want a commuting diagram

There have been a number of different attempts at such a construction.

15 / 23

The Connes-Moscovici map

Connes and Moscovici construct a characteristic map

$$H^*(\underline{WO}_q) \to HC^*(C_c^{\infty}(P_T) \rtimes \Gamma).$$

In particular they give a formula for the Godbillon-Vey invariant when $T = \mathbb{R}$. In this case $P_T \cong T \times \mathbb{R}^*_+$.

Theorem (Connes-Moscovici)

The Godbillon-Vey invariant is represented by the cyclic cocycle

$$gv(a^0, a^1) := \int_{arphi \in \Gamma} a^0 \cdot (arphi^* a^1) \cdot \frac{d}{dx} (\log arphi'(x)) \cdot \frac{1}{t} dt \wedge dx$$

on $C_c^{\infty}(P_T) \rtimes \Gamma$.

The Connes-Moscovici formula comes from considering the trivial connection on $T = \mathbb{R}$. It hard to relate to the geometry of (M, \mathcal{F}) .

A characteristic map for ${\cal G}$

It is more *geometrically meaningful* to work with the full holonomy groupoid \mathcal{G} instead of the reduced $T \rtimes \Gamma$.

Conjecture

There exist explicit formulae, in terms of ∇^{\flat} and its curvature, for maps $\phi^{\mathcal{G}}_{\nabla^{\flat}}$, σ^{*} and $\psi^{\mathcal{G}}_{\nabla^{\flat},\sigma}$ such that the diagram

commutes.

A characteristic map for ${\cal G}$

Theorem (M.)

There exist explicit formulae for a characteristic map $\phi_{\nabla^{\flat}}^{\mathcal{G}} : \underline{WO}_{q} \to \Omega^{*}(\mathcal{G}_{P}^{(*)})$ in terms of ∇^{\flat} and its curvature. The induced map on cohomology does not depend on ∇^{\flat} .

When (M, \mathcal{F}) is codimension 1, the Godbillon-Vey form $\phi_{\nabla^{\flat}}^{\mathcal{G}}(h_1c_1)$ on \mathcal{G} can be used to construct the following cyclic cocycle.

Theorem (M.)

When (M, \mathcal{F}) is codimension 1, the formula

$$gv(a^0,a^1) := \int_{u_0 u_1 \in P} a^0(u_0) a^1(u_1) rac{1}{t} dt \wedge R^{\mathcal{G}}_{u_1}$$

defines a cyclic cocycle on $C_c^{\infty}(\mathcal{G}_P)$.

くほと くほと くほと

A geometric interpretation

Recall that $u = [\gamma]$ is the class of a leafwise path γ in M.

Theorem (M.)

The differential form $R^{\mathcal{G}}$ on \mathcal{G} can be realised as a path integral of the Bott curvature R^{\flat} . More specifically

$$\mathsf{R}^{\mathcal{G}}_u = \int_{\gamma} \mathsf{R}^{\flat}$$

where γ is a representative of u.

The Godbillon-Vey cyclic cocycle can now be written

$$g {m v}({m a}^0,{m a}^1) := \int_{\gamma_0 \gamma_1 \in {m P}} {m a}^0(\gamma_0) {m a}^1(\gamma_1) rac{1}{t} dt \wedge \int_{\gamma_1} {m R}^{lat}$$

and is one step closer to the classical representative $\alpha^{\flat} \wedge R^{\flat}$.

Relationship with noncommutative index theory

The path integrated curvature $\int_{\gamma} R^{\flat}$ can be encoded in a semifinite spectral triple.

Theorem (M., Rennie)

There exists a semifinite spectral triple $(C_c^{\infty}(\mathcal{G}_P), \mathcal{H}, \mathcal{B})$ for $C_c^{\infty}(\mathcal{G}_P)$ whose Chern character is the Godbillon-Vey cyclic cocycle. The Chern character is computed using the semifinite local index formula of Carey-Gayral-Rennie-Sukochev.

The spectral triple $(C_c^{\infty}(\mathcal{G}_P), \mathcal{H}, \mathcal{B})$ is constructed using \mathcal{G} -equivariant KK-theory, and exhibits the Godbillon-Vey cyclic cocycle as a fundamentally *noncommutative* phenomenon. The idea of using equivariant KK-theory to access such data goes back to Connes.

Relationship with noncommutative index theory

- H = L²(H^{*} ⋊ G; gv), where H^{*} is the (co)horizontal bundle over P determined by ∇^b, and where gv is a G-invariant differential form on H^{*} determined by α^b ∧ R^b,
- **2** the action of \mathcal{G} on H^* is by

$$\gamma \cdot h := P_{\gamma}^{\nabla^{\flat}} h + \int_{\gamma} R^{\flat}$$

③ the operator \mathcal{B} is Clifford multiplication by the basepoint:

 $(\mathcal{B}\xi)(h) := h \cdot \xi(h), \qquad \xi \in C^{\infty}_{c}(H^{*}), \ h \in H^{*}.$

• $C^{\infty}_{c}(\mathcal{G}_{P})$ acts on \mathcal{H} by convolution, and

$$[\mathcal{B},f]_{\gamma}=f(\gamma)\int_{\gamma}R^{\flat}\cdot$$

The road ahead

The commuting diagram

remains incomplete, and has been so for at least 40 years.

Using the global-geometric object \mathcal{G} instead of its étale versions, we have some geometric clues about how to complete it:

- path integrals,
- (2) "parallel transport equivariant" KK-theory.

Thank you for your attention.

・ 何 ト ・ ヨ ト ・ ヨ ト