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The Heat Partial Differential Equation on Rn

Definition

The inhomogeneous heat equation on Rn is the partial differential
equation given by

∂u

∂t
+ ∆u = f .

How can we solve this?

Definition

The heat kernel on Rn is given by

Kt(x , y) =
1

(4πt)n/2
e−‖x−y‖

2/4t

for x , y ∈ Rn and t ∈ R+.
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Properties of the Heat Kernel

Given
∂u

∂t
+ ∆u = f ,

the heat kernel

Kt(x , y) =
1

(4πt)n/2
e−‖x−y‖

2/4t

gives rise to solutions to the heat equation in the following sense.

Define u(t, x) :=
´
Rn Kt(x , y)f (y)dy then u(t, x) solves the heat equation

and also has the property lim
t→0

u(t, x) = f (x).

Definition

The heat operator e−t∆ is (e−t∆f )(x) :=
´
Rn Kt(x , y)f (y)dy

Note this definition is not standard. Normally we use functional calculus.
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The Laplacian Operator on a Manifold

Given a manifold M we look for something that, at least in some local
coordinates, looks like the Laplacian operator on Rn.

Definition

A generalised Laplacian ∆ on a Riemannian manifold M is a second
order differential operator such that there exist local coordinates xj with

∆ = −
∑ ∂2

∂x2
j

+ lower order terms.

Now we can ask a question, “does there exist a first order linear
differential operator that squares to a Laplacian?”
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Dirac Operators on Manifolds

Definition

Let S be a complex vector bundle over a Riemannian manifold M. Then a
Dirac operator D : Γ∞(S)→ Γ∞(S) is a first order differential operator
such that D2 = ∆ where ∆ is a generalised Laplacian.

Why Dirac operators over just the normal Laplacian?

• Dirac operators are first order

• Dirac operators occur naturally in mathematics and physics

• Dirac operators tell you about the geometry of M
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The Heat Partial Differential Equation and the Heat
Kernel on Manifolds

Definition

Let S be a complex vector bundle over a Riemannian manifold M and let
D be a Dirac operator on S . Furthermore, let s ∈ Γ∞(S) depending on
some time parameter t. Then a heat equation on M is

∂s

∂t
+ D2s = f (1)

We call this a generalised heat equation.

Like before we look for a solution.

Theorem

There exists a unique Kt(x , y) such that u(t, x) =
´
M Kt(x , y)f (y)dy is a

solution to a generalised heat equation and lim
t→0

u(t, x) = f (x).
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The Heat Operator on Manifolds

We analogously define the heat operator on a manifold.

Definition

Let s ∈ Γ∞(S). The heat operator e−tD
2

is defined to be(
e−tD

2
s
)

(x) :=
´
M Kt(x , y)s(y)dy .

Again this definition is not standard.

Why does this make sense?

Well consider the homogeneous equation ∂u
∂t + D2u = 0⇔ ∂u

∂t = −D2u

and let u(t, x) = e−tD
2
s0. Then

∂

∂t
u(t, x) =

∂

∂t
(e−tD

2
s0)“ = ”− D2e−tD

2
s0 = −D2u(t, x)

for some initial condition s0 and thus it satisfies the heat equation.
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Integral Kernels

The heat operator is an operator which belongs to a much wider class of
operators called smoothing operators.

Definition

Let S1 and S2 be vector bundles over M. A bounded operator
T : L2(S1)→ L2(S2) is called a smoothing operator if there is a smooth
kernel KT (m,m′) such that

(Ts)(m) =

ˆ
M
KT (m,m′)s(m′)dm′
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Index Theory
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Dirac operators are Fredholm on Compact Manifolds

Definition

Let L be Fredholm. Then the ind(L) := dim ker L− dim coker L.

We have the following theorem.

Theorem

Let S be a complex vector bundle over a Riemannian manifold M and let
D : Γ∞(S)→ Γ∞(S) be a Dirac operator. Suppose also that
S = S+ ⊕ S−, and further that D(Γ∞(S±)) ⊂ Γ∞(S∓). Define
D± := D|S± . Then if M is compact, D+ : Γ∞(S+)→ Γ∞(S−) is
Fredholm.

In fact the above theorem holds in more general settings, more specifically
it holds for any elliptic differential operator of which the Dirac operators
are a subset.
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Atiyah-Singer Index Theorem

The overarching theorem in index theory is called the Atiyah-Singer index
theorem.

Theorem (Atiyah–Singer, 1963)

Let D be a Dirac operator on a compact Riemannian manifold M. Then

ind(D) =

ˆ
M
AS(D)

The left-hand side is analytic, while the right-hand side is purely defined in
terms of the geometry of M.
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Quick proof of the Atiyah-Singer Index theorem
We can prove the Atiyah-Singer index theorem (1963) using properties of
the heat operator e−tD

2
(D is a Dirac operator).

Let M be a compact Riemannian manifold and let K+
t and K−t be smooth

kernels for e−tD
−D+

and e−tD
+D−

respectively. Then

Tr(e−tD
−D+

)− Tr(e−tD
+D−

) =

ˆ
M

(
tr(K+

t (m,m))− tr(K−t (m,m))
)
dm

is independent of t.

By McKean-Singer, as t →∞

Tr(e−tD
−D+

)− Tr(e−tD
+D−

)→ dim kerD+ − dim kerD− = ind(D)

On the other hand, by heat kernel asymptotics at t → 0 we have

ˆ
M

(
tr(K+

t (m,m))− tr(K−t (m,m))
)
dm→

ˆ
M
AS(D)
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Equivariant case and Φ-Index

We now wish to slightly generalise the Atiyah-Singer index theorem to the
case where we have group actions. Firstly we need to generalise the index.

Definition

Let Φ : S → S , and ϕ : M → M, (where S is a vector bundle over a
compact Riemannian manifold M) be diffeomorphisms such that for all
m ∈ M we have

(1) Φ(Sm) ⊂ Sϕ(m)

(2) Φm : Sm → Sϕ(m) linear

and further that Φ ◦ D = D ◦ Φ. Then the Φ-index of D is
indΦ(D) = Tr(Φ on kerD+)− Tr(Φ on kerD−).

Note that if we take ϕ = idM and Φ = idS then indΦ(D) = ind(D).
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The Atiyah-Segal-Singer Index Theorem

Theorem (Atiyah–Segal–Singer, 1968)

Suppose Φ and ϕ correspond to an element of a compact, connected
group acting on M and S . Let D be a Dirac operator on a compact
Riemannian manifold M. Then

indΦ(D) =

ˆ
Mϕ

ASΦ(D)

where Mϕ is the fixed point set of M under ϕ.

Proof: indΦ(D) = Tr(ΦetD
−D+

)− Tr(Φe−tD
+D−

)

=

ˆ
M

(
tr(Φϕ−1(m)K

+
t (ϕ−1(m),m))− tr(Φϕ−1(m)K

−
t (ϕ−1(m),m))

)
dm

=

ˆ
Mϕ

ASΦ(D)

where the second equality follows at t →∞ and the last equality follows
as t → 0 with a localisation argument.
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Compact Manifolds versus Non-Compact Manifolds

Compact Manifold Non-Compact Manifold

All elliptic operators, and in
particular Dirac operators, are

Fredholm

Elliptic operators are not
necessarily Fredholm

There is a canonical Sobolev norm Norms on Sobolev spaces depend
on choices

The trace of a smooth kernel
operator is well-defined

When calculating the trace of a
smooth kernel operator we run
into convergence issues as the

integral might diverge

Nicholas McLean (University of Adelaide) Equivariant Index Theory October 1, 2019 18 / 31



Compact Manifolds versus Non-Compact Manifolds

Compact Manifold Non-Compact Manifold

All elliptic operators, and in
particular Dirac operators, are

Fredholm

Elliptic operators are not
necessarily Fredholm

There is a canonical Sobolev norm Norms on Sobolev spaces depend
on choices

The trace of a smooth kernel
operator is well-defined

When calculating the trace of a
smooth kernel operator we run
into convergence issues as the

integral might diverge

Nicholas McLean (University of Adelaide) Equivariant Index Theory October 1, 2019 18 / 31



Riemannian Manifolds of Bounded Geometry

Definition

Let M be a complete Riemannian manifold. Then M is said to have
bounded geometry if

• M has positive injectivity radius, and

• The curvature tensor of M is uniformly bounded, as are all its
covariant derivatives.

Example: Rn

We can also talk about vector bundles of bounded geometry - just ignore
the first assumption above to get the definition.
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Sobolev Spaces

We need to make precise what spaces we are working with.

Definition

Let M be a Riemannian manifold of bounded geometry and S a complex
vector bundle of bounded geometry with a Dirac operator D. Let k be a
nonnegative integer. The Sobolev space W k(S) is the completion of
Γ∞c (S) in the norm

‖s‖k =

(
‖s‖2

L2 + ‖Ds‖2
L2 + . . .+

∥∥∥Dks
∥∥∥2

L2

)1/2

.

Furthermore, define W−k(S) := (W k(S))∗.
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Construction of the set of uniform operators

Definition

Let M, S be as above. Then U−∞(S) := {T : Γ∞c (S)→ Γ∞(S) |
T is linear and for all k, ` ∈ Z T extends continuously to an operator
W k(S)→W k−`(S)}.

Theorem

Let T ∈ U−∞(S) and s ∈ Γ∞c (S). Then T is smoothing operator with a
bounded smoothing kernel KT (m,m′) such that

Ts(m) =

ˆ
KT (m,m′)s(m′)dm′

Moreover, there is a function v = v(r) that tends to 0 as r →∞ such that

ˆ
M\B(m,r)

∣∣KT (m,m′)
∣∣2 dm′ < v(r),

ˆ
M\B(m,r)

∣∣KT (m′,m)
∣∣2 dm′ < v(r)
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Regular Exhaustions

Regular exhaustions are a way to mimic the behaviour of compact
manifolds on subsets of a non-compact manifold and then see what
happens as we let the size of the subset tend to something arbitrarily large.

Definition

Let K ⊂ M and define Pen+(K , r) := ∪{B(m, r) | m ∈ K}. Furthermore,

define Pen−(K , r) := M \ Pen+(M \ K , r).

Definition

Let (Mi ) be a sequence of increasing compact sets where Mi ⊂ M for all i .
Then (Mi ) is said to be a regular exhaustion of M if for each r ≥ 0 the
quotient

Vol(Pen+(Mi , r))/Vol(Pen−(Mi , r))

tends to 1 as i →∞.
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Example of a Regular Exhaustion

Take M = Rn, then Mi := B(0, i) is a regular exhaustion.

Figure: Black circle = B(0, i) = Mi , Red
circle = Pen+(Mi , r), and Green circle =
Pen−(Mi , r)

Vol(Pen+(Mi , r)) = C (i + r)n

Vol(Pen−(Mi , r)) = C (i − r)n

So,

Vol(Pen+(Mi , r))

Vol(Pen−(Mi , r))
=

C (i + r)n

C (i − r)n

→ 1

as i →∞.
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Linear functionals Associated to Regular Exhaustions

Definition

Let M be a Riemannian manifold of dimension n. Let Ωn
β(M) be the set of

bounded n-forms on M. An element I ∈ Ωn
β(M)∗ is said to be associated

to a regular exhaustion (Mi ) of M if for each bounded n-form α,

lim inf
i→∞

∣∣∣∣〈α, I 〉 − 1

VolMi

ˆ
Mi

α

∣∣∣∣ = 0.

In a sense we are averaging α.

Theorem

There exists functionals associated to every regular exhaustion.
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The Functional τ

Let (Mi ) be a regular exhaustion of M a Riemannian manifold with
bounded geometry and let I be associated to the regular exhaustion. Let
T ∈ U−∞(S) with bounded smoothing kernel KT . The n-form
α : m→ tr(KT(m,m)) is therefore bounded. Define τ(T ) := 〈I , α〉 so that
τ is a linear functional on U−∞(S).

Definition

A functional T is said to be a trace on an algebra A if for all a, b ∈ A we
have T (ab) = T (ba).

Theorem

The functional τ is a trace on the algebra U−∞(S)

The proof uses regular exhaustions and also relies on the construction of
the uniform operators and the corresponding theorem which used the
assumption of bounded geometry.
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Roe’s Index theorem
In light of the above we make the following definition.

Definition

indτ (D) := τ(e−tD
−D+

)− τ(e−tD
+D−

), where everything is as above.

Theorem (Roe, 1988)

We have indτ (D) = I (AS(D))

As an intuitive proof, we have the following set of equalities

indτ (D) = τ(e−tD
−D+

)− τ(e−tD
+D−

)

= lim
i→∞

1

vol(Mi )

ˆ
Mi

(
tr(K+

t (m,m))− tr(K−t (m,m))
)
dm

= I (AS(D))

where, like before, the second equality follows at t →∞ and the last
follows as t → 0.
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New work
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Generalising τ to τΦ

The goal is to combine the equivariant approach (i.e., the Φ index) with
Roe’s index theorem.

The obvious approach is the following: use the ideas
of the usual equivariant index theorem proof but we run into a number of
issues almost straight away. Suppose we do proceed in the obvious
direction.

Definition

Let Tt be an element of an algebra of paths of operators in U−∞ with
smoothing kernel Kt and Φ, and ϕ be as in the equivariant case, with Φ
bounded. Let I be associated to (Ui ) a regular exhaustion of a tubular
neighbourhood of the fixed point set Mϕ, and define
αΦ(T ) : m 7→ Φϕ−1(m)Kt(ϕ

−1(m),m) and given αΦ(T ) define
τΦ(T ) := 〈I , αΦ(T )〉.

Lemma

τΦ(t) is a trace on the algebra of paths of operators U−∞(S) as t → 0.
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Generalising τ to τΦ continued

Continuing with our supposition, make the obvious choice of definition

Definition

indτ,Φ(D) := τΦ(e−tD
−D+

)− τΦ(e−tD
+D−

)

which leads ultimately to the “result”

Conjecture

indτ,Φ(D) = 〈IΦ,ASΦ(D)〉, where IΦ is associated to a regular exhaustion
of Mϕ.

Note this is just an adjusted Roe’s theorem adapted for our purposes.
However, the proof that τΦ(S) is a trace on U−∞ is permissible after
adjusting the proof given by Roe but localising to the fixed point set is
complicated.
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Generalising τ to τΦ continued

Continuing with our supposition, make the obvious choice of definition

Definition

indτ,Φ(D) := τΦ(e−tD
−D+

)− τΦ(e−tD
+D−

)

which leads ultimately to the “result”

Conjecture
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Problems

Firstly, even if there is a regular exhaustion on M there need not be a
regular exhaustion on subsets of M. Namely, the fixed point set Mϕ may
not have a regular exhaustion.

Secondly at some point in the proof of the conjecture we wish to
interchange limits to show the expression is independent of t and indeed,
one can show that if we are allowed to interchange said limits, the integral
is always zero, and if we are not then our expression is not independent of
t.

Finally, the resulting integral might depend on which tubular
neighbourhood U of Mϕ we pick when actually we want this to be
independent of this choice.
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Solutions

Currently we are looking to define a trace on a subalgebra U−∞(S) with
desirable properties within which lies the heat kernel. Notably we need to
deal with the restriction to a neighbourhood of the fixed point set and
that the trace we define is independent of this choice of neighbourhood in
the limit. Another item to note is we need the elements of the algebra to
depend on t in a way that resembles Yu’s localisation algebras.

To simplify matters we are first considering group actions with compact
fixed point sets.
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