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Some basics

• (M, g) : a compact Riemannian manifold without boundary, dim d .

• ∆ : Laplace-Beltrami operator associated with the metric g .

• {−λ2
k : k ≥ 0} : sequence of distinct eigenvalues of ∆,

0 = λ0 ≤ λ1 < λ2 < · · · < λk < · · · −→ ∞.

• Eλ : eigenspace of −λ2, i.e., ∆ = −λ2 on Eλ, λ = λ0, λ1, · · · .

It is known that

dim(Eλk ) = mk <∞, L2(M) =
⊕
k

Eλk .
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Some examples

Example 1: The d-torus Td

∆ =
d∑

j=1

∂2

∂x2
j

, λ2
k = k , k = 0, 1, 2, · · · ,

Eλk = span{e(n · x), e(−n · x) : n ∈ Zd , |n|2 = k}

Example 2: The Euclidean d-sphere Sd

λ2
k = k(k + d − 1), k = 0, 1, 2, · · · ,

Eλk = {spherical harmonics of degree k}.
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The general questions

High energy asymptotics

For eigenfunctions ϕλ ∈ Eλ,

What is the large scale behaviour of ϕλ as λ→∞?

How do the eigenfunctions ϕλ “grow” or “concentrate”?

For example, what can one say about

I how large ϕλ can be?

I the set where ϕλ is large?

I the set where it vanishes?

These questions are inherently qualitative, but their quantitative
reformulations are many!
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I. Semiclassical Wigner measures

Fix an ordered orthonormal basis {ψk,j : 1 ≤ j ≤ mk} of Eλk .

Get an ordered ONB
⋃

k{ψk,j : 1 ≤ j ≤ mk} of L2(M).

Associate to the ONB a sequence of distributions on T ∗M: each
wave function ψk,j defines a probability measure

|ψk,j(x)|2 dVol(x),

which can be lifted to a probability measure dUk,j on T ∗M.

Questions of interest

1. What are all the weak∗ limit points of {dUk,j}?

2. Is a given limiting measure “easily accessible”?
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Semiclassical invariant measures (ctd)
Typically, one expects most of the eigenfunctions to equidistribute, i.e.,∫

E
|ϕλ(x)|2dVol(x) ≈ Vol(E )

Vol(M)
for most large λ,

but can there be exceptional subsequences leading to other invariant
measures?

Shnirelman (1974)

Colin de Verdiere (1985)

Zelditch (1987, · · · )
Helffer-Martinez-Robert (1987)

Sarnak (1995, · · · )
Anantharaman (2004, · · · )
Lindenstrauss (2006, · · · )
Hassell (2010) · · ·
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II. Lebesgue norms of eigenfunctions

Relevant questions

(Linear estimates) For 2 ≤ p ≤ ∞, find δ(p) such that

sup
ϕλ∈Eλ

||ϕλ||p
||ϕλ||2

= O((1 + λ)δ(p)).

(Bilinear and multilinear versions) For example, find κ(p) such that

||ϕλϕµ||p/2 ≤ C (1 + λ)κ(p)||ϕλ||2||ϕµ||2,

for ϕλ ∈ Eλ, ϕµ ∈ Eµ.

Sogge (1988)

Sogge and Zelditch (2002)

Burq, Gerard and Tzvetkov (2004, 2005, · · · )
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Lebesgue norms (ctd) : Linear estimates

Sogge (1988) : general compact Riemannian manifold (M, g)

Theorem (Sogge 1988) for d = 2

||ϕλ||p
||ϕλ||2

= O((1 + λ)δ(p)), 2 ≤ p ≤ ∞,

where

δ(p) =


1

2
− 2

p
for 6 ≤ p ≤ ∞,

1

4
− 1

2p
for 2 ≤ p ≤ 6.


∃ manifolds (M, g) for which estimates are sharp, e.g. M = S2.

Connections with Stein-Tomas L2 restriction theorem.
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III. Growth of restricted Lebesgue norms

• Σ ⊆ M : A smooth embedded submanifold of dimension n, equipped
with canonical measure endowed by the metric g .

Yet another question

How well-behaved is ϕλ restricted to Σ?

In particular, study growth of Lebesgue norms of ϕλ on Σ. Look for
optimal exponents α(p,Σ) such that

||ϕλ||Lp(Σ) ≤ C (1 + λ)α(p)||ϕλ||L2(M).

Reznikov (2004)

Burq, Gerard, Tzvetkov (2007)

Hu (2009)
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Restricted eigenfunction growth (ctd)

A representative result (BGT 2007, Hu 2009)

For d = 2, and γ : [0, 1]→ M a smooth curve, there exists a constant C
such that

||ϕλ||Lp(γ) ≤ C (1 + λ)αp ||ϕλ||L2(M),

where

α(p) =


1

2
− 1

p
if 4 ≤ p ≤ ∞,

1

4
if 2 ≤ p ≤ 4.


Sharp for M = S2;

any curve γ for 4 ≤ p ≤ ∞.

geodesic curve γ for 2 ≤ p < 4.

Versions available for general Σ and n.
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Eigenfunction restriction from surfaces to curves

1
4

1
4

1
2

1
2

α

1
p

α(p)

Optimal growth of Lebesgue norms
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Comparisons

An improvement over the Sobolev trace theorem: e.g., for p = 2,

I the trace theorem gives a bound (1 + λ)
1
2 ,

I BGT-H gives (1 + λ)
1
4 .

I indicates an improvement of the trace theorem when taken from the
subclass of Laplace-Beltrami eigenfunctions.

Partial averaging effect on the Weyl pointwise bound: for p =∞,

||ϕλ||L∞(M) ≤ C (1 + λ)
1
2 ||ϕλ||L2(M).

I the Weyl law is sharp for M = S2.

I can view BGT-H as a result of averaging |ϕλ| along a curve γ.

I gain of λ
1
4 if averaged say in L4(γ); compare with ||ϕλ||L4(M) = O(λ

1
8 ).
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Sharpness, or lack thereof ...

BGT-H bound is sharp in general (as in M = S2), but

need not be sharp for all γ:

I estimate improves if γ has non-vanishing geodesic curvature in any M.

I for example, α(2) becomes 1
6 instead of 1

4 .

not necessarily optimal even for every M and some γ:

I for example, M = T2.

I L2 → L∞ Weyl bound improves from λ
1
2 to λε, any ε > 0.

I results in an improvement on BGT-H.
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Formulation of the problem

A question of restriction

Suppose E ⊆ M is a set,

I of specified size, in terms of Hausdorff dimension

I equipped with some structure (to be determined)

I supports a probability measure µ,

but not necessarily a submanifold.

How do Lebesgue norm estimates change when the Laplace-Beltrami
eigenfunctions are restricted to E?

Specifically, we look for estimates of the form

||ϕλ||Lp(E ,µ) ≤ C (1 + λ)α(p)||ϕλ||L2(M).

Malabika Pramanik (UBC) Fractal restriction of eigenfunctions 09-2019 16 / 36



Plan

Background and context

Statement of the main result

I Discussion of sharpness

I The probabilistic setup

Overview of the proof

Malabika Pramanik (UBC) Fractal restriction of eigenfunctions 09-2019 17 / 36



Statement of the main result
a submanifold Σ ⊆ M of dimension n ≤ d ,

small 0 ≤ ε < 1,

p0 :=
4n(1− ε)
d − 1

.

Theorem (Eswarathasan-P 2019)

There exists a probability measure space (Ω,X ,P∗):

For P∗-a.e. ω ∈ Ω, ∃ a Cantor-type set Eω ( Σ of Hausdorff dimension
n(1− ε) and a constant Cω > 0 such that

||ϕλ||Lp(Eω) ≤ Cω(1 + λ)αpΦp(λ)||ϕλ||L2(M), with

αp :=


d − 1

4
if 2 ≤ p ≤ p0,

d − 1

2
− n(1− ε)

p
if p0 ≤ p ≤ ∞.


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Eigenfunction restriction to fractals: d = 2, n = 1

1
4(1−ε)

1
4

1
4

1
2

1
2

δ

1
p

α(p, ε)

α(p, 0)

Growth of Lebesgue norms

Malabika Pramanik (UBC) Fractal restriction of eigenfunctions 09-2019 19 / 36



A discussion of the growth rates

Our exponent αp = d−1
2 −

n(1−ε)
p for large p is consistent with:

I δ(p, d) = d−1
2 −

d
p when Σ = M (Sogge 1988).

I δ(p, n) = d−1
2 −

n
p for submanifold Σ ⊆ M of dim n (BGT 2007).

Many sets E with the same restriction estimate as BGT-H:

I if d = n = 2, ε = 1/2, many 1-dim subsets of M not in a curve,

I if d = 2, n = 1, ε = 0, Lebesgue-null but full-dim subsets of a curve

For ε = 0 and n = d , there are Lebesgue-null subsets E ⊆ M s.t.

||ϕλ||Lp(E ,µ) and ||ϕλ||Lp(M)

obey the same bound for large p, up to a log loss.
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Remarks on sharpness

(Work in progress) The exponent αp of λ is sharp:

I for 2n(1− ε) < d − 1, for all 2 ≤ p ≤ ∞.

I for 2n(1− ε) ≥ d − 1 for the restricted range of large p ≥ p0.

The source of the non-optimality is p0, an artifact of the proof
technique (more on this soon).

The function Φp(λ) of sub-polynomial growth is explicit.
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Random Cantor sets
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Parameters of the Cantor construction
Need

a sequence of large constants Nk , say

Nk = Nk , Mk = N1N2 · · ·Nk .

a sequence of small constants εk , say

εk =

{
1
k if ε = 0,

ε if ε > 0.

For k ≥ 1, choose a random binary sequence

Yk = {Yk(ik) : 1 ≤ ik ≤ Nk}

whose entries are iid Bernoulli with

P(Yk(ik) = 1) = pk = N−εkk .
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Construction of the Cantor-type sets (ctd) : d = 2, n = 1

The marker of selection

Xk(ik) = Xk−1(ik−1)Yk(ik), ik = (i1, · · · , ik−1).

Define intervals

Ik(ik) = α(ik) +
[
0,

1

Mk

]
, where

α(ik) =
i1 − 1

N1
+

i2 − 1

N1N2
+ · · ·+ ik − 1

N1N2 · · ·Nk
.

Start with F0 = [0, 1]n, and set

Fk =
⋃
{Ik(ik) : Xk(ik) = 1} , F =

∞⋂
k=1

Fk

If F 6= ∅, lift F ⊆ [0, 1] to E ⊆ Σ via a coordinate chart.
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The measure space of Cantor sets + The Cantor measures

P : the product probability measure
∏∞

k=1 Pk , where Pk is the iid Bernoulli
probability on Yk .

For Mk and εk chosen as above,

P(F 6= ∅) > 0.

P∗ : P, conditional on the event that F 6= ∅:

P∗(A) =
P∗(A ∩ {F 6= ∅})

P(F 6= ∅)
.

Equip every F with the natural Cantor measure µ:

µk =
1Fk

|Fk |
, µk

∗−→µ.
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BGT-H proof for d = 2, n = 1: an overview

Step 1: Preparation

Step 2: The method of TT ∗

Step3: Integration kernel estimates

Step 4: Young’s convolution inequality

Malabika Pramanik (UBC) Fractal restriction of eigenfunctions 09-2019 27 / 36



Step 1: Preparation of the operator

Parametrix for a smooth, spectral projector

A local representation of ϕλ

Reduction to an oscillatory integral operator:

Tλf (x) =

∫
e iλψ(x ,y)a(x , y) f (y) dy , x ∈ R2,

where ψ(x , y) = −dg (x , y). Now restrict x = x(s) ∈ Σ.

A geodesic polar change of coordinates:

Tλf (x(s)) =

∫ c2ε

c1ε

(
T r
λ fr
)
(x(s)) r dr , where

T r
λ f (x(s)) =

∫
S1

e iλψr (x ,ω)ar (x(s), ω)f (ω) dω.
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Step 2: The method of TT ∗

If we knew

||T r
λ f ||Lp(γ) ≤ Cλδ(p)− 1

2

(∫
S1

|f (ω)|2 dω
) 1

2
,

then Minkowski =⇒

||Tλf ||Lp(γ) ≤
∫ c2ε

c1ε
||T r

λ fr ||Lp(γ) dr

≤ Cλδ(p)− 1
2

∫ c2ε

c1ε
||fr ||L2(S1) dr ≤ Cλδ(p)− 1

2 ||f ||2.

Thus aim to show

||T r
λ ||2L2(S1)→Lp(γ) = ||T r

λ (T r
λ )∗||Lp′ (γ)→Lp(γ) ≤ Cλ2δ(p)−1.
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Step 3: Integration kernel estimates

Write T r
λ (T r

λ )∗ as an integral operator,

Tλf (x(t)) =

∫ b

a
K (t, s)f (x(s)) ds, with

An explicit integration kernel

K (t, s) =

∫
S1

e iλ[ψr (x(t),ω)−ψr (x(s),ω)] ar (x(t), ω) ar (x(s), ω) dω.

Method of stationary phase implies

|K (t, s)| . (1 + λ|t − s|)−
1
2 = K̃λ(t − s).

Summary

T r
λ (T r

λ )∗ is pointwise bounded by a convolution operator.
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Step 4: Young’s convolution inequality

For 1 ≤ p0, q0, r0 ≤ ∞,

||f ∗ K̃λ||r0 ≤ ||f ||p0 ||K̃λ||q0 provided
1

p0
+

1

q0
=

1

r0
+ 1.

Setting p0 = p′, r0 = p and q0 = p/2, get

||Tλ||Lp′ (γ)→Lp(γ) ≤ ||K̃λ||Lp/2[0,1], 2 ≤ p ≤ ∞.

Since
K̃λ(t) = (1 + λ|t|)−1/2,

its Lp-norms are easily computable.
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What works for us, what doesn’t

BGT-H steps involving

I Preparation of the spectral projection

I The method of TT ∗

I Stationary phase on the integration kernel of TT ∗

go through with essentially no changes, but

there is no Young’s inequality for µ!
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Proof distinctions: a generalized Young’s inequality

• that does not use translation invariance of the underlying measure.

The replacement

Given

Tf (x) =

∫
K (x , y)f (y) dµ(y)

and a choice of exponents 1 ≤ q, r , s ≤ ∞ satisfying

1

s
+

1

q
=

1

r
+ 1,

we have
||Tf ||Lr (µ) ≤ A

1− s
r

s B
s
r
s ||f ||Lq(µ), provided

As := sup
x

[∫
|K (x , y)|s dµ(y)

] 1
s

, Bs := sup
y

[∫
|K (x , y)|s dµ(x)

] 1
s

are finite.
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A fractal version of Young’s inequality

For us

As = Bs = sup
u

∫
(1 + λ|u − v |)−

s
2 dµ(v),

where µ is the Cantor measure.

A.s. upper bounds on As and Bs translate to operator bounds on Tλ.

Estimation involves:

I approximation of As and Bs using the absolutely continuous µk .

I representing the approximation as a sum of partially deterministic
components and centred random variables

I large deviation inequalities, after suitable conditioning.
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Ongoing work and concluding remarks

Improvement of p0:

I need to harness the oscillation in K (t, s)

I a stationary phase on random Cantor-type fractals.

Improvement of αp in special cases:

I e.g. when E is a random subset of a curve γ ⊆ M of nonvanishing
geodesic curvature.

What if E is deterministic and self-similar?

I e.g. E is the Cantor middle third subset of a curve γ?
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Thank you!
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