The Dirac operator under collapse to a smooth manifold

Saskia Roos

University of Potsdam

Analysis on Manifolds, Adelaide, 30. September 2019 Collapsing manifolds
 Dirac eigenvalues

Gromov-Hausdorff convergence

Let $\mathcal{M}(n, d)$ be the space of all closed *n*-dimensional Riemannian manifolds with $|\sec^{M}| \leq 1$ and $\operatorname{diam}(M) \leq d$.

Collapsing manifolds
 Dirac eigenvalues

Gromov-Hausdorff convergence

Let $\mathcal{M}(n, d)$ be the space of all closed *n*-dimensional Riemannian manifolds with $|\sec^{M}| \leq 1$ and $\operatorname{diam}(M) \leq d$.

Theorem (Gromov '81)

Any sequence $(M_i, g_i)_{i \in \mathbb{N}}$ contains a subsequence that converges with respect to the Gromov-Hausdorff distance to a compact metric space B.

Gromov-Hausdorff convergence

Let $\mathcal{M}(n, d)$ be the space of all closed *n*-dimensional Riemannian manifolds with $|\sec^{M}| \leq 1$ and $\operatorname{diam}(M) \leq d$.

Theorem (Gromov '81)

Any sequence $(M_i, g_i)_{i \in \mathbb{N}}$ contains a subsequence that converges with respect to the Gromov-Hausdorff distance to a compact metric space B.

Assumption

The limit space B is a smooth manifold.

1. Collapsing manifolds 2. Dirac eigenvalues

Structure of Collapse

Theorem (Cheeger-Fukaya-Gromov '92)

Let $(M_i, g_i)_{i \in \mathbb{N}}$ be a convergent sequence in $\mathcal{M}(n, d)$ with a smooth limit space (B, h). Then for all *i* sufficiently large there are metrics \tilde{g}_i on M_i and \tilde{h}_i on *B* such that

$$\lim_{i \to \infty} \|\tilde{g}_i - g_i\|_{C^1} = 0, \qquad \lim_{i \to \infty} \|\tilde{h}_i - h\|_{C^1} = 0.$$

and $f_i: (M_i, \tilde{g}_i) \to (B, \tilde{h}_i)$ is a Riemannian affine fiber bundle,

The Dirac operator

Let (M, g) be a spin manifold and ΣM the spinor bundle. The Dirac operator acts on spinors $\varphi \in \Gamma(\Sigma M)$ as

$$D arphi = \sum_{i=1}^n \gamma(e_i)
abla_{e_i} arphi,$$

for a local orthonormal frame (e_1, \ldots, e_n) .

The Dirac operator

Let (M, g) be a spin manifold and ΣM the spinor bundle. The Dirac operator acts on spinors $\varphi \in \Gamma(\Sigma M)$ as

$$D arphi = \sum_{i=1}^n \gamma(e_i)
abla_{e_i} arphi,$$

for a local orthonormal frame (e_1, \ldots, e_n) .

Schrödinger-Lichnerowicz formula: $D^2 = \nabla^* \nabla + \frac{1}{4}$ scal.

The Dirac operator

Let (M, g) be a spin manifold and ΣM the spinor bundle. The Dirac operator acts on spinors $\varphi \in \Gamma(\Sigma M)$ as

$$D arphi = \sum_{i=1}^n \gamma(e_i)
abla_{e_i} arphi,$$

for a local orthonormal frame (e_1, \ldots, e_n) .

Schrödinger-Lichnerowicz formula: $D^2 = \nabla^* \nabla + \frac{1}{4}$ scal.

Proposition (Lott '02)

Let (M, g) be a closed spin manifold and $(g_i)_{i \in \mathbb{N}}$ be a sequence of Riemannian metrics such that $\lim_{i\to\infty} ||g_i - g||_{C^1} = 0$. Then $\lim_{i\to\infty} \sigma(D_i) = \sigma(D)$. Let $f : (M,g) \rightarrow (B,h)$ be a Riemannian affine fiber bundle and assume that (M,g) has a fixed spin structure.

There is an induced spin structure on each fiber $f^{-1}(p)$, $p \in B$. But there is no induced spin structure on B in general. Let $f : (M,g) \rightarrow (B,h)$ be a Riemannian affine fiber bundle and assume that (M,g) has a fixed spin structure.

There is an induced spin structure on each fiber $f^{-1}(p)$, $p \in B$. But there is no induced spin structure on B in general.

Example

•
$$f: S^5 \to \mathbb{CP}^2$$
. Here $f^* w_2(\mathbb{CP}^2) = 0$, but $w_2(\mathbb{CP}^2) \neq 0$.
• $S^1 \times S^2 / \mathbb{Z}_2 \to \mathbb{RP}^2$, where $(x, y) \backsim (x', y')$ iff
 $x = \overline{x'}, \ y = -y'$.

Collapsing manifolds
 Dirac eigenvalues

Affine parallel spinors

The induced metrics on the fibers of a Riemannian affine fiber bundle $f : (M, g) \rightarrow (B, h)$ are parallel with respect to ∇^{aff} . \implies There exists an induced connection ∇^{aff} on ΣM .

Affine parallel spinors

The induced metrics on the fibers of a Riemannian affine fiber bundle $f: (M,g) \rightarrow (B,h)$ are parallel with respect to ∇^{aff} . \implies There exists an induced connection ∇^{aff} on ΣM .

 $S^{\text{aff}} := \{ \varphi \in L^2(\Sigma M) : \nabla^{\text{aff}} \varphi = 0 \}$ is the space of affine parallel spinors.

Affine parallel spinors

The induced metrics on the fibers of a Riemannian affine fiber bundle $f: (M,g) \rightarrow (B,h)$ are parallel with respect to ∇^{aff} . \implies There exists an induced connection ∇^{aff} on ΣM .

 $S^{\text{aff}} := \{ \varphi \in L^2(\Sigma M) : \nabla^{\text{aff}} \varphi = 0 \}$ is the space of affine parallel spinors.

The Dirac operator D acts diagonal wrt. to the splitting

$$L^2(\Sigma M) = S^{\operatorname{aff}} \oplus (S^{\operatorname{aff}})^{\perp}.$$

Affine parallel spinors

The induced metrics on the fibers of a Riemannian affine fiber bundle $f: (M,g) \rightarrow (B,h)$ are parallel with respect to ∇^{aff} . \implies There exists an induced connection ∇^{aff} on ΣM .

 $S^{\text{aff}} := \{ \varphi \in L^2(\Sigma M) : \nabla^{\text{aff}} \varphi = 0 \}$ is the space of affine parallel spinors.

The Dirac operator D acts diagonal wrt. to the splitting $L^2(\Sigma M) = S^{\text{aff}} \oplus (S^{\text{aff}})^{\perp}.$

Proposition (R. '18)

There exists a Clifford bundle \mathcal{P} over B and an isometry

$$Q: S^{\mathsf{aff}} \to L^2(\mathcal{P}).$$

Previous results I

Theorem (Ammann '98)

Let $(f_i : (M_i, g_i) \to (B, h_i))_{i \in \mathbb{N}}$ be a collapsing sequence of Riemannian S^1 -bundles. Assume that (M_i, g_i) is a closed (n + 1)-dimensional spin manifold.

Previous results I

Theorem (Ammann '98)

Let $(f_i : (M_i, g_i) \to (B, h_i))_{i \in \mathbb{N}}$ be a collapsing sequence of Riemannian S^1 -bundles. Assume that (M_i, g_i) is a closed (n + 1)-dimensional spin manifold. Let I_i be the length of the fibers and F_i be the curvature 2-form of $f_i : M_i \to B$. If

• $||I_iF_i||_{\infty} \xrightarrow{i \to \infty} 0$,

• $\limsup_{i\to\infty} \|\operatorname{grad} I_i\|_{\infty} < \frac{1}{2},$

then $\lim_{i\to\infty} \sigma(D^{M_i}_{|(S_i^{\text{aff}})^{\perp}}) = \{\pm\infty\},\$

Previous results I

Theorem (Ammann '98)

Let $(f_i : (M_i, g_i) \to (B, h_i))_{i \in \mathbb{N}}$ be a collapsing sequence of Riemannian S^1 -bundles. Assume that (M_i, g_i) is a closed (n + 1)-dimensional spin manifold. Let I_i be the length of the fibers and F_i be the curvature 2-form of $f_i : M_i \to B$. If

• $||I_iF_i||_{\infty} \xrightarrow{i \to \infty} 0$,

•
$$\limsup_{i\to\infty} \| \operatorname{grad} I_i \|_{\infty} < \frac{1}{2}$$
,
then $\lim_{i\to\infty} \sigma(D_{|(S_i^{\operatorname{aff}})^{\perp}}^{M_i}) = \{\pm\infty\}$,
and $\sigma(D_{|S_i^{\operatorname{aff}}}^{M_i})$ converges to $\sigma(D^B)$ if *n* is even and to
 $\sigma(D^B \oplus -D^B)$ if *n* is odd.

Previous results II

Theorem (Lott '02)

Let $(f_i : (M_i, g_i) \to (B, h_i))_{i \in \mathbb{N}}$ be a collapsing sequence of Riemannian affine bundles. Assume that (M_i, g_i) is a spin manifold in $\mathcal{M}(n, d)$.

Then there exists a subsequence such that

•
$$\lim_{i\to\infty} \sigma(D_{|(S_i^{aff})^{\perp}}^{M_i}) = \{\pm\infty\},\$$

• $\lim_{i\to\infty} \sigma(|D_{S_i^{aff}}^{M_i}) = \sigma(|D_L^B|),\$ where $D_L^B = \sqrt{\Delta + \mathcal{V}}$ acts on $L^2(\mathcal{P}, \chi \operatorname{dvol}^B).$

Previous results II

Theorem (Lott '02)

Let $(f_i : (M_i, g_i) \to (B, h_i))_{i \in \mathbb{N}}$ be a collapsing sequence of Riemannian affine bundles. Assume that (M_i, g_i) is a spin manifold in $\mathcal{M}(n, d)$.

Then there exists a subsequence such that

•
$$\lim_{i\to\infty} \sigma(D_{|(S_i^{\operatorname{aff}})^{\perp}}^{M_i}) = \{\pm\infty\},\$$

• $\lim_{i\to\infty} \sigma(|D_{S_i^{\operatorname{aff}}}^{M_i}) = \sigma(|D_L^B|),\$ where $D_L^B = \sqrt{\Delta + \mathcal{V}}$ acts on $L^2(\mathcal{P}, \chi \operatorname{dvol}^B).$

Remark

Above results also apply to the Hodge Dirac operator $\not\!\!D = d + d^*$ on differential forms.

Previous results II

Theorem (Lott '02)

Let $(f_i : (M_i, g_i) \to (B, h_i))_{i \in \mathbb{N}}$ be a collapsing sequence of Riemannian affine bundles. Assume that (M_i, g_i) is a spin manifold in $\mathcal{M}(n, d)$.

Then there exists a subsequence such that

•
$$\lim_{i\to\infty} \sigma(D_{|(S_i^{\operatorname{aff}})^{\perp}}^{M_i}) = \{\pm\infty\},\$$

• $\lim_{i\to\infty} \sigma(|D_{S_i^{\operatorname{aff}}}^{M_i}) = \sigma(|D_L^B|),\$ where $D_L^B = \sqrt{\Delta + \mathcal{V}}$ acts on $L^2(\mathcal{P}, \chi \operatorname{dvol}^B).$

Remark

Above results also apply to the Hodge Dirac operator $\not \!\!\!D = d + d^*$ on differential forms. There exist also analogous results for singular limit spaces. Collapsing manifolds
 Dirac eigenvalues

Example: Hodge Dirac vs. spin Dirac

Consider the collapsing sequence $(T^2, ds^2 + \frac{1}{i^2}e^{2\cos(s)}dt)_{i\in\mathbb{N}}$ with limit space (S^1, ds^2) .

Example: Hodge Dirac vs. spin Dirac

Consider the collapsing sequence $(T^2, ds^2 + \frac{1}{i^2}e^{2\cos(s)}dt)_{i\in\mathbb{N}}$ with limit space (S^1, ds^2) .

Hodge Dirac:

Affine parallel forms: $S^{aff} = \{f(s)\} \cup \{\alpha(s)d(s)\}.$

$$\mathcal{D}_{S^{\operatorname{aff}}}^{i}(f + \alpha \mathrm{d}s) = \frac{\partial f}{\partial s} \mathrm{d}s + \frac{\partial}{\partial s} \left(e^{\cos(s)} \alpha \right).$$

Example: Hodge Dirac vs. spin Dirac

Consider the collapsing sequence $(T^2, ds^2 + \frac{1}{i^2}e^{2\cos(s)}dt)_{i\in\mathbb{N}}$ with limit space (S^1, ds^2) .

Hodge Dirac:

Affine parallel forms: $S^{aff} = \{f(s)\} \cup \{\alpha(s)d(s)\}.$

$$\mathcal{D}_{\mathsf{S}^{\mathsf{aff}}}^{i}(f + \alpha \mathrm{d}s) = \frac{\partial f}{\partial s} \mathrm{d}s + \frac{\partial}{\partial s} \left(\mathrm{e}^{\mathrm{cos}(s)} \alpha \right).$$

Calculated numerically: $\{0; 0, 99; 1, 137\} \in \lim_{i \to \infty} \sigma(\mathcal{D}_{S^{\text{aff}}}^i)$. But $\sigma(\mathcal{D}^{S^1}) = \mathbb{Z}$.

Example: Hodge Dirac vs. spin Dirac

Consider the collapsing sequence $(T^2, ds^2 + \frac{1}{i^2}e^{2\cos(s)}dt)_{i\in\mathbb{N}}$ with limit space (S^1, ds^2) .

Hodge Dirac:

Affine parallel forms: $S^{aff} = \{f(s)\} \cup \{\alpha(s)d(s)\}.$

$$\mathcal{D}_{\mathsf{S}^{\mathsf{aff}}}^{i}(f + \alpha \mathrm{d}s) = \frac{\partial f}{\partial s} \mathrm{d}s + \frac{\partial}{\partial s} \left(e^{\mathsf{cos}(s)} \alpha \right).$$

Calculated numerically: $\{0; 0, 99; 1, 137\} \in \lim_{i \to \infty} \sigma(\mathcal{D}^{i}_{S^{\text{aff}}})$. But $\sigma(\mathcal{D}^{S^{1}}) = \mathbb{Z}$.

Spin Dirac:

By Ammann's result:
$$\lim_{i \to \infty} \sigma(D^i_{S^{aff}_i}) = \sigma(D^{S^1} \oplus -D^{S^1}).$$

Main result

Theorem (R. '18)

Let $(f_i : (M_i, g_i) \to (B, h_i))_{i \in \mathbb{N}}$ be a collapsing sequence of Riemannian affine fiber bundles sucht that (M_i, g_i) is a spin manifold in $\mathcal{M}(n, d)$. Then there exists a Clifford bundle \mathcal{P} over Band a first order elliptic self-adjoint differential operator

$$D_R^B = D^{T\infty} + \gamma(Z_\infty) + \gamma(A_\infty)$$

with coefficients in $C^{0,\alpha}$ on \mathcal{P} such that

$$\sigma(D_{|S_i^{\operatorname{aff}}}^{M_i}) \xrightarrow{i \to \infty} \sigma(D_R^B)$$

Special case

Corollary

If in addition,

- the holonomy of the vertical bundles is trivial,
- the instrinsic curvature of the fibers is flat,
- the horizontal distribution is integrable,

in the limit, then there is an induced spin structure on B and the spectrum of $\sigma(D^{M_i}_{|S^{\rm aff}})$ converges to the spectrum of

$$\begin{cases} D^B \oplus D^B, & \text{if } n \text{ is even and } \dim(B) \text{ is odd}, \\ D^B, & \text{else.} \end{cases}$$

Main problem: The operators D^{M_i} are not defined on the same space.

 \Rightarrow Need to find isometries to a common space.

Main problem: The operators D^{M_i} are not defined on the same space.

- \Rightarrow Need to find isometries to a common space.
- **Idea:** Switch to Spin(*n*)-principal bundles

Main problem: The operators D^{M_i} are not defined on the same space.

 \Rightarrow Need to find isometries to a common space.

Idea: Switch to Spin(*n*)-principal bundles Let P_i be the Spin(*n*)-principal bundle of (M_i, g_i) , let g_i^P be a Riemannian metric on P_i such that $(P_i, g_i^P) \rightarrow (M_i, g_i)$ is a Riemanian submersion.

Main problem: The operators D^{M_i} are not defined on the same space.

 \Rightarrow Need to find isometries to a common space.

Idea: Switch to Spin(*n*)-principal bundles Let P_i be the Spin(*n*)-principal bundle of (M_i, g_i) , let g_i^P be a Riemannian metric on P_i such that $(P_i, g_i^P) \rightarrow (M_i, g_i)$ is a Riemanian submersion.

Let $\theta_n : \text{Spin}(n) \to \Sigma_n$ be the complex canonical spinor representation.

Main problem: The operators D^{M_i} are not defined on the same space.

 \Rightarrow Need to find isometries to a common space.

Idea: Switch to Spin(*n*)-principal bundles Let P_i be the Spin(*n*)-principal bundle of (M_i, g_i) , let g_i^P be a Riemannian metric on P_i such that $(P_i, g_i^P) \rightarrow (M_i, g_i)$ is a Riemanian submersion.

Let θ_n : Spin $(n) \rightarrow \Sigma_n$ be the complex canonical spinor representation.

 $\operatorname{Spin}(n) \curvearrowright L^2(P_i, g_i^P) \otimes \Sigma_n$ by isometries.

Main problem: The operators D^{M_i} are not defined on the same space.

 \Rightarrow Need to find isometries to a common space.

Idea: Switch to Spin(*n*)-principal bundles Let P_i be the Spin(*n*)-principal bundle of (M_i, g_i) , let g_i^P be a Riemannian metric on P_i such that $(P_i, g_i^P) \rightarrow (M_i, g_i)$ is a Riemanian submersion.

Let $\theta_n : \text{Spin}(n) \to \Sigma_n$ be the complex canonical spinor representation.

 $\operatorname{Spin}(n) \curvearrowright L^2(P_i, g_i^P) \otimes \Sigma_n$ by isometries.

There is an isometry $\left(L^2(P_i, g_i^P) \otimes \Sigma_n\right)^{\operatorname{Spin}(n)} \to L^2(\Sigma M_i).$

By an equivariant version of Gromov's compactness result, there is a convergent subsequence

$$(P_i, g_i^P) \xrightarrow{i \to \infty} (B^P, h^P)$$

such that (B^P, h^P) is a Riemannian manifold and $\text{Spin}(n) \curvearrowright (B^P, h^P)$ by isometries.

By an equivariant version of Gromov's compactness result, there is a convergent subsequence

$$(P_i, g_i^P) \xrightarrow{i \to \infty} (B^P, h^P)$$

such that (B^P, h^P) is a Riemannian manifold and Spin $(n) \curvearrowright (B^P, h^P)$ by isometries. By an equivariant version of Cheeger-Gromov-Fukaya's results, there are metrics h_i^P on B^P such that

$$(P_i, g_i^P) \xrightarrow{\tilde{f}_i} (B^P, h_i^P) \ \downarrow \qquad \qquad \downarrow \ (M_i, g_i) \xrightarrow{f_i} (B, h_i),$$

 $\lim_{i\to\infty} \|h_i^P - h^P\|_{C^1} = 0$ and $\tilde{f}_i : P_i^P \to B^P$ is a Riemannian affine fiber bundle.

Collapsing manifolds
 Dirac eigenvalues

Sketch of the proof III

There is an isometry

$$L^2(P_i, g_i^P)^{\operatorname{aff}} \to L^2(B^P, h_i^P).$$

Collapsing manifolds
 Dirac eigenvalues

Sketch of the proof III

There is an isometry

$$L^2(P_i, g_i^P)^{\operatorname{aff}} \to L^2(B^P, h_i^P).$$

In total we obtain

Now $(Q_i \circ D_{S_i^{\text{aff}}}^{M_i} \circ Q_i^{-1})_{i \in \mathbb{N}}$ is a sequence of operators on \mathcal{P} and $Q_i \circ D_{S_i^{\text{aff}}}^{M_i} \circ Q_i^{-1} = D^{T_i} + \gamma(Z_i) + \gamma(A_i).$

Now
$$(Q_i \circ D_{S_i^{\text{aff}}}^{M_i} \circ Q_i^{-1})_{i \in \mathbb{N}}$$
 is a sequence of operators on \mathcal{P} and
 $Q_i \circ D_{S_i^{\text{aff}}}^{M_i} \circ Q_i^{-1} = D^{T_i} + \gamma(Z_i) + \gamma(A_i).$

Proposition

The coefficients of D^{T_i} , Z_i and A_i are uniformly bounded in $C^1(B)$.

 \Rightarrow There is a subsequence such that the spectrum converges.

 \square

Collapsing manifolds
 Dirac eigenvalues

Example: Convergence to Dirac eigenvalues

Let (G, g) be a closed simply-connected *n*-dimensional Lie group with a biinvariant metric. Fix a maximal torus T^k and consider $B := T^k \cap G$ with the induced quotient metric *h*.

Example: Convergence to Dirac eigenvalues

Let (G, g) be a closed simply-connected *n*-dimensional Lie group with a biinvariant metric. Fix a maximal torus T^k and consider $B \coloneqq \tau k \ G$ with the induced quotient metric h. Collapse along the T^k fibers

$$(G,g_i) \xrightarrow{i\to\infty} (B,h).$$

Example: Convergence to Dirac eigenvalues

Let (G, g) be a closed simply-connected *n*-dimensional Lie group with a biinvariant metric. Fix a maximal torus T^k and consider $B := T^k G$ with the induced quotient metric *h*. Collapse along the T^k fibers

$$(G,g_i) \xrightarrow{i \to \infty} (B,h).$$

Check:

- vertical bundle has trivial holonomy,
- fibers are embedded flat tori,
- horizontal distribution is integrable in the limits.

Thus, the $\sigma(D^i_{|S^{\text{aff}}_i})$ converges to the spectrum of D^B , resp. $D^B \oplus -D^B$. 1. Collapsing manifolds

2. Dirac eigenvalues

Thank you!