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Intuition Behind BCS Theory




Modelling Physical Systems

Most natural (due to Jonathan J Gleason) definition of a physical system is

Definition

A physical system is a collection of observables O(.A) (self-adjoint
elements) in a separable unital complex F*-algebra A.

A state is a positive normalised restricted linear functional w : A — C
which assigns expectation values to observables

@ Physical systems are thus treated using probabilities/statistics

@ Values of observables are measured by machines which have
restrictions ~~ reduces to C* algebra

@ A quantum physical system ~~ non-commutative A

@ A classical Physical system ~» commutative A



Hilbert-Space Representation

@ For a complex Hilbert Space L(H) denotes the set of closed densely
defined linear operators.

Theorem

(Gelfand-Naimak for F*-algebras) For every separable unital F* algebra A
there is a separable Hilbert Space H and isomorphism 7 from A to a
separable unital F*-subalgebra of L(H).

For each w state in A there is a unique positive unit trace operator
p: H— H withw(a) = Tr(pm(a)) =: (n(a)),

@ Choosing a Hilbert Space is like choosing a frame to describe the
system with observables inside L(H) and states as unit trace positive
operators p.



Pure and Mixed States

A state p: H — H is like a probability measure

Can compute Von Neumann Entropy (uncertainty prior to
measurement) of state

5(p) = Tr(pIn p)

Fact: S(p) =0 <= p?> =p < p=|p)(¢| for a normalised ¢
~ called pure states (usual QM)

By spectral theorem, we can write p = > Cn|¢n) (dn| Where ¢, is
an orthonormal basis and ¢, are convex coefficients.

@ So high entropy when states are more mixed i.e. ¢, are uniformly
distributed



Manifolds and Coordinates

@ We each view the universe using a collection varying 3 real numbers
for space and one for time, (x1, x2, x3, t) ~» coordinates

@ Only things we agree (smoothly) on are considered to be real ...

@ Smooth manifolds are precisely spaces which admit smoothly
transitioning local coordinates and forms the global object that
describes the universe as a collective of all perspectives.

@ Assuming non-relativistic conditions we separate space and time to
get space-time manifold M x R



Classification of Spaceforms

@ Suppose the space manifold M is connected and carries a complete
Riemannian metric with constant curvature ~» spaceform

(Killing-Hopf) Each spaceform M is isometric to a quotient of R" (flat), a
sphere (positive curvature) or hyperbolic space (negative curvature) by a
discrete subgroup of isometries acting freely.

@ We will focus on n = 2 and the negative curvature case i.e.
M = H?/G where G < Iso(H?) discrete and acting freely ~
Hyperbolic surface



Hyperbolic Space and Surfaces

@ Hyperbolic space can be represented as upper half plane
HP = {x + iy € C:y > 0} with metric g = (dx? + dy?)/y?
~» Geodesics are semi-circles perpendicular to y = 0 and vertical lines

~ Isot(HP) = PSL(2,R), acting by Mobius transforms with z — —z
(refection) to get orientation reversing ones

0 1 : A0
~+ PSL(2,R) generated by <_1 0) (rotation), <0 1//\>

(dilation) and (é i) (translation)

@ Discrete free subgroups consisting of dilations and translations give
hyperbolic surfaces



FIGURE 3. An elliptic transformation rotates hyperbolic circles
around a fixed center.

N ,

FIGURE 5. A hyperbolic transformation translates between two
fixed points on JH. The axis (unique fixed geodesic) is shown in
gray.



Types of Particles: Electrons

o Elementary free particles are precisely the irreducible unitary
representations of the Poincare Group on a Hilbert Space
~~ they are classified by their mass m > 0 and spin (or helicity)
s=0,1/2,1,3/2,...

@ Integer spin ~» Bosons  Half-Integer spin ~» Fermions

@ Experimentally all spin 1/2 particles are massive and an example is
the electron

@ Electron couples with electromagnetic field (also weak and gravity) so
they have electrical charge q.

@ Technically 'electrons’ don't exist on hyperbolic surfaces ...

10/27



First Quantisation of Electron

@ Fix a complex hermitian line bundle L — M to incorporate coupling
to U(1) for electromagnetic field.

Definition

The Hilbert space #H for a single electron’s state on M are the
square-integrable sections L2(M, L) @ C? where C2 is for spin 1/2.

@ If the line bundle is trivial, no vorticies and global coupling to external
field then we get H = [2(M) ® C?

@ Since M = HP/G, elements of H are precisely ¢ € L?>(HP, L) ® C?
with 1(gx) = 1(x) for all g € G (invariant under G).
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Second Quantisation Multi-Particle Systems

All particles are indistinguishable in quantum theory and so quantum
states must retain probability upon exchange

(Spin-Statistics) Fermions are anti-symmetric under exchange of particle
exchange while Bosons are symmetric.

Definition

If the Hilbert space H represents a single particle then
1 n Fermion system has H? = A"H as Hilbert Space
2 n Boson system has H}) = S"H as Hilbert Space
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If we allow particle numbers to change then we use the Full Fock Space

Definition

For an indefinite number of fermions we have Fermioninc Fock space
Fu = @2 H7 while Bosonic Fock Space is By = @~ H} where
HY = HO = CQ where Q € H is a normalised vacuum state (could be
different for each).

| A

Definition
For ¢ € H, we can define creation operator a(¢)' : F3; — F3 which works

by wedging and annihilation operator a(¢) : Fy; — Fx which works by
contraction (these are adjoints)

\
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Potential Describing Lattice V

@ Treat the cation lattice as a potential (First quantisation)
o Lattice determined by Fuchsian group G since M = HP/G

@ Suppose M = HP/G is geometrically finite ( <= finitely generated)
so that it admits a finite side geodesic polygonal fundamental domain.

e So define V € LY(M?) invariant under geodesic flow between points.

@ Understanding electron in fundamental domain, we can extend to
whole system by group G

@ Same as considering system on torus (periodic boundary conditions
on square lattice).
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Experimental Hyperbolic Lattice

@ The paper 'Hyperbolic lattices in circuit quantum electrodynamics’ by
Alicia J. Kollar, Mattias Fitzpatrick & Andrew A. Houck shows that
we have constructed Hyperbolic Lattices in the real world.

@ Using the disc model (isometric to half plane model) we have
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Kinetic Energy Operator

@ Suppose there is an external global magnetic field potential real
one-form A and electric potential W : M — R

@ This defines a connection VA = i d + A on trivial line bundle with
Laplacian Ax

Definition

A single particle kinetic energy operator is T = Aag + W where W acts by
multiplication.
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Hamiltonian and Number Operator

@ Let ¢; be an orthonormal basis for H and consider a,T = a(¢;) and

ai = a(¢i)-

Definition
The Hamiltonian on the Fermionic Fock Space is

H= Z T,Ja aj+ = Z \/,Jk/a a ajak
ijkl

where Tj; = (¢;, T¢;) and Vi = (¢i @ ¢;, V(dk @ ¢1)) (V acts by
multiplication).

Definition

| A\

The number operator is given by

N = Za:-ra,-
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Landau Grand Potential Energy

Definition

For a state p of the Fermionic Fock Space F3; we can define the Grand
Potential Energy F at a temperature T and chemical potential x to be

F(p) = (H), — TS(p) — u(N), = Tr((H — pN)p) — TS(p)

@ The grand potential depends on volume V (from inner product and
metric), temperature T and chemical potential x as natural variables.

Under constant V', T and u, the equilibrium state p is the one that
minimises F

It is the Gibbs state which does this minimisation.
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Quasi-Free or BCS States

The idea of BCS is that we want states which come in pairs of fermions
only. These lead directly to quasi-free or BCS states

Definition

A quasi-free state p is one which has non-zero n point functions only for n
even and all n-point functions are determined by 2-point functions.

(af af ..a%,) Z( 1)7 0(1) )> <f(2n—1)ajé(2n)>/’
o€S),
oy =0

Here # is nothing or and aj = a(f)# for f; € H and S;, is the subset of
Sop with 0(1) < 0(3)... < o(2n—1) and 0‘(2_/ —1)<o(2j)for1<j<n
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Generalised One-Particle Density Operator

Definition

For a quasi-free state p there is a generalised one-particle density operator
I:H&H— HSH which completely determines p given by

(61, 02), T(v1,¥2)) = ([a'(v1) + a(¥q][a(¢1) + a (62)]),

@ There are operators v, « : H — H so that we have 2 x 2 matrix

_ (7 Q
r_<o/r 1—7)

@ v is the one-particle density, « is the pairing excitation

@ Solving for p is the same as solving for (7, a).
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Assuming SU(2) invariance for Spin

@ We want to get rid of spin dependence on the functional so we
suppose that STyS =~ and STaS = a for all S € SU(2).

@ This means precisely that y =9 ® [ and a = & ® 0>
@ 7 and & are now operators on L?(M) without tensoring with C?

@ The same spin-independence is true for kernels.
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BCS Functional

Using quasi-free states which are spin independent

Definition

In terms of (7, @) with v(x,y) and a(x, y) the spin independent integral
kernals of operators, we have

Foes(v, @) = 2Try(Aa + p+ W)y — 2TS(T)

+ / o, )2V (x, ) g () e (y)
MxM

- / v (x, )P V(x, y)dg(x)dg(y)
MxM

I 2/ Y(x, x)7(y, ¥)V(x, y)dg(x)dg(y)
MxM
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Discussion of BCS Functional

« is a measure of the pairing while v looks at individual particles

@ It can be shown that the BCS functional always attains a minimum
under mild assumptions.

@ When « # 0 we have a superconducting state while if & = 0 then we
have a normal state

@ The temperature at which a the minimiser changes from normal to
superconducting is called the critical temperature T..

@ An expression for this can be establised spectrum of a certain Hessian
matrix.
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Ginzburg-Landau Functional

@ Phenomenological theory of superconductivity near critical
temperature using a first quantised section ¢ of L?(M, L) or in our
simpler case, L2(M).

@ Here ¢ represents the wave function for the Bosonic Cooper pairs
with the modulus |¢(x)|? the density of pairs

e Expanding potential upto second order in density (fourth order in |¢]),
in presence of external electric and magnetic potentials W and A give

Definition
The Ginzurg-Landau Functional for ¢ € L2(M) is

Fou(d) = /M V262 + M W[ — AaD|6f + Aslo[*de

where \; depend on microscopic parameters while D depends on the
temperature i.e. T = T.(1 — Dh?) with h small.
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Reduction of BCS into Ginzburg-Landau

o After assuming a certain kind of translation invariance we have the
main theorem

Theorem

Let M be a compact hyperbolic surface and H = L*(M) ® C? and fix
external fields A and W. For T = T.(1 — Dh?) there is a \g and
A1, A2, Az (in GL functional) giving

irllf]'—B(_‘s(r) = ]:(ro) + Aoh ir;)f ~7'—GL(¢) i O(h)

where [¢ is a normal state with o = 0.

@ One can think of GL as the first derivative (linear approximation) of
BCS at the critical temperature T,

26 /27



Non-conventional and High Temperature Superconductors

@ Superconductors with T, higher than 30K cannot be explained using
BCS theory

@ Need a microscopic theory for these even in flat space

@ Can be used for better Maglev trains and efficient nuclear fusion!

e Can use methods of string theory i.e. AdS/CFT to do this ...
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