Bardeen-Cooper-Schrieffer Theory of Superconductors on Hyperbolic Surfaces

Ahnaf Tajwar Tahabub

Supervisors: Elder Professor and Australian Laureate Fellow Mathai Varghese
DECRA Fellow David Baraglia
University Adelaide, Australia

October 1, 2019

Intuition Behind BCS Theory

Modelling Physical Systems

Most natural (due to Jonathan J Gleason) definition of a physical system is

Definition

A physical system is a collection of observables $O(\mathcal{A})$ (self-adjoint elements) in a separable unital complex F^{*}-algebra \mathcal{A}.
A state is a positive normalised restricted linear functional $\omega: \mathcal{A} \rightarrow \mathbb{C}$ which assigns expectation values to observables

- Physical systems are thus treated using probabilities/statistics
- Values of observables are measured by machines which have restrictions \rightsquigarrow reduces to C^{*} algebra
- A quantum physical system \rightsquigarrow non-commutative \mathcal{A}
- A classical Physical system \rightsquigarrow commutative \mathcal{A}

Hilbert-Space Representation

- For a complex Hilbert Space $L(H)$ denotes the set of closed densely defined linear operators.

Theorem

(Gelfand-Naimak for F^{*}-algebras) For every separable unital F^{*} algebra \mathcal{A} there is a separable Hilbert Space H and isomorphism π from \mathcal{A} to a separable unital F^{*}-subalgebra of $L(H)$.

For each ω state in \mathcal{A} there is a unique positive unit trace operator $\rho: H \rightarrow H$ with $\omega(a)=\operatorname{Tr}(\rho \pi(a))=:\langle\pi(a)\rangle_{\rho}$

- Choosing a Hilbert Space is like choosing a frame to describe the system with observables inside $L(H)$ and states as unit trace positive operators ρ.

Pure and Mixed States

- A state $\rho: H \rightarrow H$ is like a probability measure
- Can compute Von Neumann Entropy (uncertainty prior to measurement) of state

$$
S(\rho)=\operatorname{Tr}(\rho \ln \rho)
$$

- Fact: $S(\rho)=0 \Longleftrightarrow \rho^{2}=\rho \Longleftrightarrow \rho=|\phi\rangle\langle\phi|$ for a normalised ϕ \rightsquigarrow called pure states (usual QM)
- By spectral theorem, we can write $\rho=\sum_{n \in \mathbb{N}} c_{n}\left|\phi_{n}\right\rangle\left\langle\phi_{n}\right|$ where ϕ_{n} is an orthonormal basis and c_{n} are convex coefficients.
- So high entropy when states are more mixed i.e. c_{n} are uniformly distributed

Manifolds and Coordinates

- We each view the universe using a collection varying 3 real numbers for space and one for time, $\left(x_{1}, x_{2}, x_{3}, t\right) \rightsquigarrow$ coordinates
- Only things we agree (smoothly) on are considered to be real ...
- Smooth manifolds are precisely spaces which admit smoothly transitioning local coordinates and forms the global object that describes the universe as a collective of all perspectives.
- Assuming non-relativistic conditions we separate space and time to get space-time manifold $M \times \mathbb{R}$

Classification of Spaceforms

- Suppose the space manifold M is connected and carries a complete Riemannian metric with constant curvature \rightsquigarrow spaceform

Theorem

(Killing-Hopf) Each spaceform M is isometric to a quotient of R^{n} (flat), a sphere (positive curvature) or hyperbolic space (negative curvature) by a discrete subgroup of isometries acting freely.

- We will focus on $n=2$ and the negative curvature case i.e. $M=H^{2} / G$ where $G \leq I$ so $\left(H^{2}\right)$ discrete and acting freely \rightsquigarrow Hyperbolic surface

Hyperbolic Space and Surfaces

- Hyperbolic space can be represented as upper half plane $H P=\{x+i y \in \mathbb{C}: y>0\}$ with metric $g=\left(d x^{2}+d y^{2}\right) / y^{2}$
\rightsquigarrow Geodesics are semi-circles perpendicular to $y=0$ and vertical lines $\rightsquigarrow \mathrm{Iso}^{+}(H P) \cong P S L(2, \mathbb{R})$, acting by Mobius transforms with $z \mapsto-\bar{z}$ (refection) to get orientation reversing ones
$\rightsquigarrow P S L(2, \mathbb{R})$ generated by $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ (rotation), $\left(\begin{array}{cc}\lambda & 0 \\ 0 & 1 / \lambda\end{array}\right)$
(dilation) and $\left(\begin{array}{ll}1 & s \\ 0 & 1\end{array}\right)$ (translation)
- Discrete free subgroups consisting of dilations and translations give hyperbolic surfaces

Isometries of Hyperbolic Space

Figure 3. An elliptic transformation rotates hyperbolic circles around a fixed center.

Figure 4. A parabolic transformation fixes a point on $\partial \mathbb{H}$.

Figure 5. A hyperbolic transformation translates between two fixed points on $\partial \mathbb{H}$. The axis (unique fixed geodesic) is shown in gray.

Types of Particles: Electrons

- Elementary free particles are precisely the irreducible unitary representations of the Poincare Group on a Hilbert Space \rightsquigarrow they are classified by their mass $m \geq 0$ and spin (or helicity) $s=0,1 / 2,1,3 / 2, \ldots$
- Integer spin \rightsquigarrow Bosons Half-Integer spin \rightsquigarrow Fermions
- Experimentally all spin $1 / 2$ particles are massive and an example is the electron
- Electron couples with electromagnetic field (also weak and gravity) so they have electrical charge q.
- Technically 'electrons' don't exist on hyperbolic surfaces ...

First Quantisation of Electron

- Fix a complex hermitian line bundle $L \rightarrow M$ to incorporate coupling to $U(1)$ for electromagnetic field.

Definition

The Hilbert space \mathcal{H} for a single electron's state on M are the square-integrable sections $L^{2}(M, L) \otimes \mathbb{C}^{2}$ where \mathbb{C}^{2} is for spin $1 / 2$.

- If the line bundle is trivial, no vorticies and global coupling to external field then we get $\mathcal{H} \cong L^{2}(M) \otimes \mathbb{C}^{2}$
- Since $M=H P / G$, elements of \mathcal{H} are precisely $\phi \in L^{2}(H P, L) \otimes \mathbb{C}^{2}$ with $\psi(g x)=\psi(x)$ for all $g \in G$ (invariant under G).

Second Quantisation Multi-Particle Systems

All particles are indistinguishable in quantum theory and so quantum states must retain probability upon exchange

Theorem

(Spin-Statistics) Fermions are anti-symmetric under exchange of particle exchange while Bosons are symmetric.

Definition

If the Hilbert space \mathcal{H} represents a single particle then
$1 n$ Fermion system has $\mathcal{H}_{f}^{n}=\wedge^{n} \mathcal{H}$ as Hilbert Space
$2 n$ Boson system has $\mathcal{H}_{b}^{n}=S^{n} \mathcal{H}$ as Hilbert Space

Fock Space

If we allow particle numbers to change then we use the Full Fock Space

Definition

For an indefinite number of fermions we have Fermioninc Fock space $\mathcal{F}_{\mathcal{H}}=\bigoplus_{n=0}^{\infty} \mathcal{H}_{f}^{n}$ while Bosonic Fock Space is $\mathcal{B}_{\mathcal{H}}=\bigoplus_{n=0}^{\infty} \mathcal{H}_{b}^{n}$ where $\mathcal{H}_{f}^{0}=\mathcal{H}_{b}^{0}=\mathbb{C} \Omega$ where $\Omega \in \mathcal{H}$ is a normalised vacuum state (could be different for each).

Definition

For $\phi \in \mathcal{H}$, we can define creation operator $a(\phi)^{\dagger}: \mathcal{F}_{\mathcal{H}} \rightarrow \mathcal{F}_{\mathcal{H}}$ which works by wedging and annihilation operator $a(\phi): \mathcal{F}_{\mathcal{H}} \rightarrow \mathcal{F}_{\mathcal{H}}$ which works by contraction (these are adjoints)

Potential Describing Lattice V

- Treat the cation lattice as a potential (First quantisation)
- Lattice determined by Fuchsian group G since $M=H P / G$
- Suppose $M=H P / G$ is geometrically finite (\Longleftrightarrow finitely generated) so that it admits a finite side geodesic polygonal fundamental domain.
- So define $V \in L^{1}\left(M^{2}\right)$ invariant under geodesic flow between points.
- Understanding electron in fundamental domain, we can extend to whole system by group G
- Same as considering system on torus (periodic boundary conditions on square lattice).

Finite Lattice

$\begin{array}{cccc} 0 & 0 & 0 & 0 \\ \% & 0 & 0 \\ 0 & 0 & 0 \\ 1 \end{array}$			
$\begin{gathered} \|1 a\| \nmid\|0\| 0, \theta \pm 00^{\circ} \\ m \end{gathered}$		$\begin{gathered} \|a\|=\|b\|, \theta=120^{\circ} \\ h \end{gathered}$	$\begin{gathered} \|10\|=\|b\|, \theta=90^{\circ} \\ t \end{gathered}$

Experimental Hyperbolic Lattice

- The paper 'Hyperbolic lattices in circuit quantum electrodynamics' by Alicia J. Kollar, Mattias Fitzpatrick \& Andrew A. Houck shows that we have constructed Hyperbolic Lattices in the real world.
- Using the disc model (isometric to half plane model) we have

Kinetic Energy Operator

- Suppose there is an external global magnetic field potential real one-form A and electric potential $W: M \rightarrow \mathbb{R}$
- This defines a connection $\nabla^{A}=i d+A$ on trivial line bundle with Laplacian Δ_{A}

Definition

A single particle kinetic energy operator is $T=\Delta_{A}+W$ where W acts by multiplication.

Hamiltonian and Number Operator

- Let ϕ_{i} be an orthonormal basis for \mathcal{H} and consider $a_{i}^{\dagger}=a\left(\phi_{i}\right)^{\dagger}$ and $a_{i}=a\left(\phi_{i}\right)$.

Definition

The Hamiltonian on the Fermionic Fock Space is

$$
\mathbb{H}=\sum_{i, j} T_{i j} a_{i}^{\dagger} a_{j}+\frac{1}{2} \sum_{i j k l} V_{i j k l} a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}
$$

where $T_{i j}=\left\langle\phi_{i}, T \phi_{j}\right\rangle$ and $V_{i j k l}=\left\langle\phi_{i} \otimes \phi_{j}, V\left(\phi_{k} \otimes \phi_{l}\right)\right\rangle(V$ acts by multiplication).

Definition

The number operator is given by

$$
N=\sum_{i} a_{i}^{\dagger} a_{i}
$$

Landau Grand Potential Energy

Definition

For a state ρ of the Fermionic Fock Space $\mathcal{F}_{\mathcal{H}}$ we can define the Grand Potential Energy \mathcal{F} at a temperature T and chemical potential μ to be

$$
\mathcal{F}(\rho)=\langle\mathbb{H}\rangle_{\rho}-T S(\rho)-\mu\langle N\rangle_{\rho}=\operatorname{Tr}((\mathbb{H}-\mu N) \rho)-T S(\rho)
$$

- The grand potential depends on volume V (from inner product and metric), temperature T and chemical potential μ as natural variables.

Theorem

Under constant V, T and μ, the equilibrium state ρ is the one that minimises \mathcal{F}

It is the Gibbs state which does this minimisation.

Quasi-Free or BCS States

The idea of BCS is that we want states which come in pairs of fermions only. These lead directly to quasi-free or BCS states

Definition

A quasi-free state ρ is one which has non-zero n point functions only for n even and all n-point functions are determined by 2-point functions.

$$
\begin{aligned}
& \left\langle a_{1}^{\#} a_{2}^{\#} \ldots a_{2 n}^{\#}\right\rangle^{\#}=\sum_{\sigma \in S_{2 n}^{\prime}}(-1)^{\sigma}\left\langle a_{\sigma(1)}^{\#} a_{\sigma(2)}^{\#}\right\rangle_{\rho} \ldots\left\langle a_{\sigma(2 n-1)}^{\#} a_{\sigma(2 n)}^{\#}\right\rangle_{\rho} \\
& \left\langle a_{1}^{\#} \ldots a_{2 n+1}^{\#}\right\rangle_{\rho}=0
\end{aligned}
$$

Here \# is nothing or and $a_{j}^{\#}=a\left(f_{j}\right) \#$ for $f_{j} \in \mathcal{H}$ and $S_{2 n}^{\prime}$ is the subset of $S_{2 n}$ with $\sigma(1)<\sigma(3) \ldots<\sigma(2 n-1)$ and $\sigma(2 j-1)<\sigma(2 j)$ for $1 \leq j \leq n$

Generalised One-Particle Density Operator

Definition

For a quasi-free state ρ there is a generalised one-particle density operator $\Gamma: \mathcal{H} \oplus \mathcal{H} \rightarrow \mathcal{H} \oplus \mathcal{H}$ which completely determines ρ given by

$$
\left\langle\left(\phi_{1}, \phi_{2}\right), \Gamma\left(\psi_{1}, \psi_{2}\right)\right\rangle=\left\langle\left[a^{\dagger}\left(\psi_{1}\right)+a\left(\bar{\psi}_{1}\right]\left[a\left(\phi_{1}\right)+a^{\dagger}\left(\overline{\phi_{2}}\right)\right]\right\rangle_{\rho}\right.
$$

- There are operators $\gamma, \alpha: \mathcal{H} \rightarrow \mathcal{H}$ so that we have 2×2 matrix

$$
\Gamma=\left(\begin{array}{cc}
\gamma & \alpha \\
\alpha^{\dagger} & 1-\bar{\gamma}
\end{array}\right)
$$

- γ is the one-particle density, α is the pairing excitation
- Solving for ρ is the same as solving for (γ, α).

Assuming $S U(2)$ invariance for Spin

- We want to get rid of spin dependence on the functional so we suppose that $S^{\dagger} \gamma S=\gamma$ and $S^{\dagger} \alpha \bar{S}=\alpha$ for all $S \in S U(2)$.
- This means precisely that $\gamma=\tilde{\gamma} \otimes I$ and $\alpha=\tilde{\alpha} \otimes \sigma_{2}$
- $\tilde{\gamma}$ and $\tilde{\alpha}$ are now operators on $L^{2}(M)$ without tensoring with \mathbb{C}^{2}
- The same spin-independence is true for kernels.

BCS Functional

Using quasi-free states which are spin independent

Definition

In terms of (γ, α) with $\gamma(x, y)$ and $\alpha(x, y)$ the spin independent integral kernals of operators, we have

$$
\begin{aligned}
\mathcal{F}_{B C S}(\gamma, \alpha) & =2 \operatorname{Tr}_{\mathcal{H}}\left(\Delta_{A}+\mu+W\right) \gamma-2 \operatorname{TS}(\Gamma) \\
& +\int_{M \times M}|\alpha(x, y)|^{2} V(x, y) d g(x) d g(y) \\
& -\int_{M \times M}|\gamma(x, y)|^{2} V(x, y) d g(x) d g(y) \\
& +2 \int_{M \times M} \gamma(x, x) \gamma(y, y) V(x, y) d g(x) d g(y)
\end{aligned}
$$

Discussion of BCS Functional

- α is a measure of the pairing while γ looks at individual particles
- It can be shown that the BCS functional always attains a minimum under mild assumptions.
- When $\alpha \neq 0$ we have a superconducting state while if $\alpha=0$ then we have a normal state
- The temperature at which a the minimiser changes from normal to superconducting is called the critical temperature T_{c}.
- An expression for this can be establised spectrum of a certain Hessian matrix.

Ginzburg-Landau Functional

- Phenomenological theory of superconductivity near critical temperature using a first quantised section ϕ of $L^{2}(M, L)$ or in our simpler case, $L^{2}(M)$.
- Here ϕ represents the wave function for the Bosonic Cooper pairs with the modulus $|\phi(x)|^{2}$ the density of pairs
- Expanding potential upto second order in density (fourth order in $|\phi|$), in presence of external electric and magnetic potentials W and A give

Definition

The Ginzurg-Landau Functional for $\phi \in L^{2}(M)$ is

$$
\mathcal{F}_{G L}(\phi)=\int_{M}\left|\nabla^{A} \phi\right|^{2}+\lambda_{1} W|\phi|^{2}-\lambda_{2} D|\phi|^{2}+\lambda_{3}|\phi|^{4} d g
$$

where λ_{i} depend on microscopic parameters while D depends on the temperature i.e. $T=T_{c}\left(1-D h^{2}\right)$ with h small.

Reduction of BCS into Ginzburg-Landau

- After assuming a certain kind of translation invariance we have the main theorem

Theorem

Let M be a compact hyperbolic surface and $\mathcal{H}=L^{2}(M) \otimes \mathbb{C}^{2}$ and fix external fields A and W. For $T=T_{c}\left(1-D h^{2}\right)$ there is a λ_{0} and $\lambda_{1}, \lambda_{2}, \lambda_{3}$ (in GL functional) giving

$$
\inf _{\Gamma} \mathcal{F}_{B C S}(\Gamma)=\mathcal{F}\left(\Gamma_{0}\right)+\lambda_{0} h \inf _{\phi} \mathcal{F}_{G L}(\phi)+o(h)
$$

where Γ_{0} is a normal state with $\alpha=0$.

- One can think of GL as the first derivative (linear approximation) of $B C S$ at the critical temperature T_{c}

Non-conventional and High Temperature Superconductors

- Superconductors with T_{c} higher than 30 K cannot be explained using BCS theory
- Need a microscopic theory for these even in flat space
- Can be used for better Maglev trains and efficient nuclear fusion!
- Can use methods of string theory i.e. AdS/CFT to do this ...

