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Intuition Behind BCS Theory

2 / 27



Modelling Physical Systems

Most natural (due to Jonathan J Gleason) definition of a physical system is

Definition

A physical system is a collection of observables O(A) (self-adjoint
elements) in a separable unital complex F ∗-algebra A.

A state is a positive normalised restricted linear functional ω : A → C
which assigns expectation values to observables

Physical systems are thus treated using probabilities/statistics

Values of observables are measured by machines which have
restrictions  reduces to C ∗ algebra

A quantum physical system  non-commutative A
A classical Physical system  commutative A
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Hilbert-Space Representation

For a complex Hilbert Space L(H) denotes the set of closed densely
defined linear operators.

Theorem

(Gelfand-Naimak for F ∗-algebras) For every separable unital F ∗ algebra A
there is a separable Hilbert Space H and isomorphism π from A to a
separable unital F ∗-subalgebra of L(H).

For each ω state in A there is a unique positive unit trace operator
ρ : H → H with ω(a) = Tr(ρπ(a)) =: 〈π(a)〉ρ

Choosing a Hilbert Space is like choosing a frame to describe the
system with observables inside L(H) and states as unit trace positive
operators ρ.
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Pure and Mixed States

A state ρ : H → H is like a probability measure

Can compute Von Neumann Entropy (uncertainty prior to
measurement) of state

S(ρ) = Tr(ρ ln ρ)

Fact: S(ρ) = 0 ⇐⇒ ρ2 = ρ ⇐⇒ ρ = |φ〉〈φ| for a normalised φ
 called pure states (usual QM)

By spectral theorem, we can write ρ =
∑

n∈N cn|φn〉〈φn| where φn is
an orthonormal basis and cn are convex coefficients.

So high entropy when states are more mixed i.e. cn are uniformly
distributed
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Manifolds and Coordinates

We each view the universe using a collection varying 3 real numbers
for space and one for time, (x1, x2, x3, t) coordinates

Only things we agree (smoothly) on are considered to be real ...

Smooth manifolds are precisely spaces which admit smoothly
transitioning local coordinates and forms the global object that
describes the universe as a collective of all perspectives.

Assuming non-relativistic conditions we separate space and time to
get space-time manifold M × R
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Classification of Spaceforms

Suppose the space manifold M is connected and carries a complete
Riemannian metric with constant curvature  spaceform

Theorem

(Killing-Hopf) Each spaceform M is isometric to a quotient of Rn (flat), a
sphere (positive curvature) or hyperbolic space (negative curvature) by a
discrete subgroup of isometries acting freely.

We will focus on n = 2 and the negative curvature case i.e.
M = H2/G where G ≤ Iso(H2) discrete and acting freely  
Hyperbolic surface
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Hyperbolic Space and Surfaces

Hyperbolic space can be represented as upper half plane
HP = {x + iy ∈ C : y > 0} with metric g = (dx2 + dy2)/y2

 Geodesics are semi-circles perpendicular to y = 0 and vertical lines

 Iso+(HP) ∼= PSL(2,R), acting by Mobius transforms with z 7→ −z
(refection) to get orientation reversing ones

 PSL(2,R) generated by

(
0 1
−1 0

)
(rotation),

(
λ 0
0 1/λ

)
(dilation) and

(
1 s
0 1

)
(translation)

Discrete free subgroups consisting of dilations and translations give
hyperbolic surfaces
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Isometries of Hyperbolic Space
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Types of Particles: Electrons

Elementary free particles are precisely the irreducible unitary
representations of the Poincare Group on a Hilbert Space
 they are classified by their mass m ≥ 0 and spin (or helicity)
s = 0, 1/2, 1, 3/2, ...

Integer spin  Bosons Half-Integer spin  Fermions

Experimentally all spin 1/2 particles are massive and an example is
the electron

Electron couples with electromagnetic field (also weak and gravity) so
they have electrical charge q.

Technically ’electrons’ don’t exist on hyperbolic surfaces ...
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First Quantisation of Electron

Fix a complex hermitian line bundle L→ M to incorporate coupling
to U(1) for electromagnetic field.

Definition

The Hilbert space H for a single electron’s state on M are the
square-integrable sections L2(M, L)⊗ C2 where C2 is for spin 1/2.

If the line bundle is trivial, no vorticies and global coupling to external
field then we get H ∼= L2(M)⊗ C2

Since M = HP/G , elements of H are precisely φ ∈ L2(HP, L)⊗ C2

with ψ(gx) = ψ(x) for all g ∈ G (invariant under G ).
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Second Quantisation Multi-Particle Systems

All particles are indistinguishable in quantum theory and so quantum
states must retain probability upon exchange

Theorem

(Spin-Statistics) Fermions are anti-symmetric under exchange of particle
exchange while Bosons are symmetric.

Definition

If the Hilbert space H represents a single particle then

1 n Fermion system has Hn
f = ∧nH as Hilbert Space

2 n Boson system has Hn
b = SnH as Hilbert Space
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Fock Space

If we allow particle numbers to change then we use the Full Fock Space

Definition

For an indefinite number of fermions we have Fermioninc Fock space
FH =

⊕∞
n=0Hn

f while Bosonic Fock Space is BH =
⊕∞

n=0Hn
b where

H0
f = H0

b = CΩ where Ω ∈ H is a normalised vacuum state (could be
different for each).

Definition

For φ ∈ H, we can define creation operator a(φ)† : FH → FH which works
by wedging and annihilation operator a(φ) : FH → FH which works by
contraction (these are adjoints)
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Potential Describing Lattice V

Treat the cation lattice as a potential (First quantisation)

Lattice determined by Fuchsian group G since M = HP/G

Suppose M = HP/G is geometrically finite (⇐⇒ finitely generated)
so that it admits a finite side geodesic polygonal fundamental domain.

So define V ∈ L1(M2) invariant under geodesic flow between points.

Understanding electron in fundamental domain, we can extend to
whole system by group G

Same as considering system on torus (periodic boundary conditions
on square lattice).
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Finite Lattice
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Experimental Hyperbolic Lattice

The paper ’Hyperbolic lattices in circuit quantum electrodynamics’ by
Alicia J. Kollar, Mattias Fitzpatrick & Andrew A. Houck shows that
we have constructed Hyperbolic Lattices in the real world.

Using the disc model (isometric to half plane model) we have
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Kinetic Energy Operator

Suppose there is an external global magnetic field potential real
one-form A and electric potential W : M → R
This defines a connection ∇A = i d + A on trivial line bundle with
Laplacian ∆A

Definition

A single particle kinetic energy operator is T = ∆A + W where W acts by
multiplication.
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Hamiltonian and Number Operator

Let φi be an orthonormal basis for H and consider a†i = a(φi )
† and

ai = a(φi ).

Definition

The Hamiltonian on the Fermionic Fock Space is

H =
∑
i ,j

Tija
†
i aj +

1

2

∑
ijkl

Vijkla
†
i a
†
j alak

where Tij = 〈φi ,Tφj〉 and Vijkl = 〈φi ⊗ φj ,V (φk ⊗ φl)〉 (V acts by
multiplication).

Definition

The number operator is given by

N =
∑
i

a†i ai
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Landau Grand Potential Energy

Definition

For a state ρ of the Fermionic Fock Space FH we can define the Grand
Potential Energy F at a temperature T and chemical potential µ to be

F(ρ) = 〈H〉ρ − TS(ρ)− µ〈N〉ρ = Tr((H− µN)ρ)− TS(ρ)

The grand potential depends on volume V (from inner product and
metric), temperature T and chemical potential µ as natural variables.

Theorem

Under constant V ,T and µ, the equilibrium state ρ is the one that
minimises F

It is the Gibbs state which does this minimisation.
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Quasi-Free or BCS States

The idea of BCS is that we want states which come in pairs of fermions
only. These lead directly to quasi-free or BCS states

Definition

A quasi-free state ρ is one which has non-zero n point functions only for n
even and all n-point functions are determined by 2-point functions.

〈a#
1 a#

2 ...a
#
2n〉=

∑
σ∈S ′

2n

(−1)σ〈a#
σ(1)a

#
σ(2)〉ρ...〈a

#
σ(2n−1)a

#
σ(2n)〉ρ

〈a#
1 ...a

#
2n+1〉ρ = 0

Here # is nothing or and a#
j = a(fj)

# for fj ∈ H and S ′2n is the subset of
S2n with σ(1) < σ(3)... < σ(2n − 1) and σ(2j − 1) < σ(2j) for 1 ≤ j ≤ n
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Generalised One-Particle Density Operator

Definition

For a quasi-free state ρ there is a generalised one-particle density operator
Γ : H⊕H → H⊕H which completely determines ρ given by

〈(φ1, φ2), Γ(ψ1, ψ2)〉 = 〈[a†(ψ1) + a(ψ1][a(φ1) + a†(φ2)]〉ρ

There are operators γ, α : H → H so that we have 2× 2 matrix

Γ =

(
γ α
α† 1− γ

)
γ is the one-particle density, α is the pairing excitation

Solving for ρ is the same as solving for (γ, α).
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Assuming SU(2) invariance for Spin

We want to get rid of spin dependence on the functional so we
suppose that S†γS = γ and S†αS = α for all S ∈ SU(2).

This means precisely that γ = γ̃ ⊗ I and α = α̃⊗ σ2

γ̃ and α̃ are now operators on L2(M) without tensoring with C2

The same spin-independence is true for kernels.
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BCS Functional

Using quasi-free states which are spin independent

Definition

In terms of (γ, α) with γ(x , y) and α(x , y) the spin independent integral
kernals of operators, we have

FBCS(γ, α) = 2TrH(∆A + µ+ W )γ − 2TS(Γ)

+

∫
M×M

|α(x , y)|2V (x , y)dg(x)dg(y)

−
∫
M×M

|γ(x , y)|2V (x , y)dg(x)dg(y)

+ 2

∫
M×M

γ(x , x)γ(y , y)V (x , y)dg(x)dg(y)
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Discussion of BCS Functional

α is a measure of the pairing while γ looks at individual particles

It can be shown that the BCS functional always attains a minimum
under mild assumptions.

When α 6= 0 we have a superconducting state while if α = 0 then we
have a normal state

The temperature at which a the minimiser changes from normal to
superconducting is called the critical temperature Tc .

An expression for this can be establised spectrum of a certain Hessian
matrix.
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Ginzburg-Landau Functional

Phenomenological theory of superconductivity near critical
temperature using a first quantised section φ of L2(M, L) or in our
simpler case, L2(M).

Here φ represents the wave function for the Bosonic Cooper pairs
with the modulus |φ(x)|2 the density of pairs

Expanding potential upto second order in density (fourth order in |φ|),
in presence of external electric and magnetic potentials W and A give

Definition

The Ginzurg-Landau Functional for φ ∈ L2(M) is

FGL(φ) =

∫
M
|∇Aφ|2 + λ1W |φ|2 − λ2D|φ|2 + λ3|φ|4dg

where λi depend on microscopic parameters while D depends on the
temperature i.e. T = Tc(1− Dh2) with h small.
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Reduction of BCS into Ginzburg-Landau

After assuming a certain kind of translation invariance we have the
main theorem

Theorem

Let M be a compact hyperbolic surface and H = L2(M)⊗ C2 and fix
external fields A and W . For T = Tc(1− Dh2) there is a λ0 and
λ1, λ2, λ3 (in GL functional) giving

inf
Γ
FBCS(Γ) = F(Γ0) + λ0h inf

φ
FGL(φ) + o(h)

where Γ0 is a normal state with α = 0.

One can think of GL as the first derivative (linear approximation) of
BCS at the critical temperature Tc
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Non-conventional and High Temperature Superconductors

Superconductors with Tc higher than 30K cannot be explained using
BCS theory
Need a microscopic theory for these even in flat space
Can be used for better Maglev trains and efficient nuclear fusion!
Can use methods of string theory i.e. AdS/CFT to do this ...
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