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How do you see a topological phase of matter??

Lattice Hilbert space <+ some copies of £2(Z) inside L2(R9).
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Topological quantum chemistry: a topological insulator has
spectral subspaces which are “bad” copies of ﬁreg(Zd).

Maths: non-free Hilbert C*(Z9)-modules [Ludewig+T, 1904.13051].

These abstract characteristics are mostly invisible! So what exactly
do physicists see?
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“Topological physics” on the edge

In the last five years, physicists have successfully realised Chern
topological insulators in photonics, acoustics, cold atoms,
metamaterials, Floquet systems, exiton-polaritons. ..

A Chern insulator is a 2D material, described in the idealised
boundaryless-limit by a Z?-invariant Hamiltonian operator H = H*
on /2 _(7Z?) ® C? having a remarkable kind of spectral gap.
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When the (material) boundary is
introduced, the spectral gap of H is
completely filled up with
edge-following topological states!




Experiments?: edge-following states
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Nash et al, PNAS (2015)
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Experiments®: edge-following states
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Some history

Quantum Hall effect (1980) comoled Chern insulator Hamiltonians

on lattice Hilbert space Efeg(Zz) ® C2:
m+U+U  —iU-U,

HChernexample = < —iU.+ U —m—-U. — U*
X y X y

> + adjoint.

Here Uy, U, are unit translations in x and y directions. For
0 < m < 2, this has a spectral gap and realises a “Chern insulator”.

I will prove directly that any Chern insulator must acquire crazy
edge-following states which fill up spectral gap.

Hope: motivate mathematical investigation* into general
bulk-edge correspondences, especially coarse index perspective.

4
Prior work is geometrically limited to very special straight edges.
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Abstract Chern insulator
Regular representation: Z2 3 v = U, € B(£Z,4(Z?)).
These operators generate the reduced group C*-algebra C'(Z?).
Generic translation invariant Hamiltonian:
2 d.o.f. / site

—_——
H=H"=)Y" U, &W, e B({,(7*) o),
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with each W, = WZX_ a 2 X 2 hopping matrix.

Locality: Sufficiently fast decay of v — W, =

Fourier

He My(CHZ?) = C(T% My(C)).

After Fourier transform, H becomes a continuous family {H}xcr2
of 2 x 2 Hermitian matrices, acting on two copies of L2(T?).
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Abstract Chern insulator

Iga p in U( Hinsulator)

Each Hy, k € T?, has two eigenvalues, and o(H) = Uycre o(Hg).
Defn: H = Hiygulator Spectrum comprises two separated bands.

Eigenspaces for lower energy band form a line bundle Loy, — T2,
classified by first Chern class in H?(T?,Z) = Z. For
Hchern example, get the generating class!
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Abstract Chern insulator

Ino gap in U(I:IChem)

Definition: A Chern insulator Hopern 1S @ Hinsulator Such that
c1(Liow) is the generator [b] of H?(T?) = Z = K°(T?).

It

Bott
Physics observation: Let S be lattice points lying on one side of

a partition (i.e. in the material sample). Truncated I-AIChern acting
on /2(S) ® C? acquires spectra filling up the gap of Hcpern!
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Abstract Chern insulator

Unlike idealised H, the true truncated Hamiltonians A do not
enjoy Z? symmetry, and Fourier transform fails.

Nevertheless, with C*-algebras, can relate the spectra of H and H!

E
d Recall that H = H* € My(C}(Z?)). For Hiysulator, Spectral
I" gap gives room for the lower band spectral projection to be
c given by continuous functional calculus:
b 1, A € [a, b]

1 Hinsulator Mo (CF Z2 > A) =
J| A <m0 {07 .

In K-theory: [¢(Hchern)] = [b] € Ko(C/(Z2)) = K°(T?).
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Preliminaries: Toeplitz algebra

Instead of U, truncated Hamiltonians A live in ToepI|tZ|f|ed
version of C7(Z?) generated from truncated translations U

1D Example: If Z is visualised on a line, what happens to U,
upon truncation to the right half-line: ¢2(Z) — (?(N)?

Generating translation U = U; becomes the unilateral shift 0,
which is a non-unitary isometry with index —1.
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Preliminaries: Toeplitz algebra

Define C*(N) to be the C*-subalgebra of B(¢2(N)) generated by U.

Think of C*(N) as a “quantisation” of C?(Z) taking U to U.
Symbol homomorphism 7 : C}(Z) — C}(N) takes U back to U.

Observation: The boundary projection p,—o =1 — 00* is killed
by 7, and generates the compact operator ideal IC(¢2(N)).

Short exact sequence |0 — K — C*(N) 5 C*(Z) — 0

The invertible operator U € C}(Z) lifts incurably to a
non-invertible U in C(N): there is a topological obstruction!
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Preliminaries: Toeplitz algebra

More precisely, any invertible function f € C(T) = C}(Z) lifts to a
Toeplitz operator T € C}(N) which is Fredholm.
Any other lift Tr-+compact has the same Fredholm index.

Toeplitz index theorem [F. Noether '21]

Non-invertibility of T¢, as measured by analytic Fredholm index,
actually equals the topological winding number index of f.

Homological algebra: lifting obstructions in SES can be detected
by connecting maps, but these are hard to compute.

K-theory is powered by Bott periodicity: LES ~~ cyclic 6-term
exact sequences = much better chance of being computable!
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K-theory for operator algebras
For A a unital C*-algebra, Ky(A) is Grothendieck group of
isomorphism classes of projections in My (A) = limy_00 Mn(A).

K1(A) is homotopy classes of unitaries in Us(A)*.

Morita

Example: Ko(K) 2 Ko(C) 2 KO(pt) = Z, and Ki(K) = 0.

Example: Ko(C;(Z)) = K,(T) = Z generated by identity
projection /trivial line bundle.

Example: Ki(C;(Z)) = Ki(C(T)) = Z generated by U, or the
basic Laurent polynomial z — z with winding number 1.

Example: Ko(C(Z?)) =
and Bott line bundles.

top(']I‘2) Z & Z generated by trivial
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K-theoretic Toeplitz index

K-theory turns [0 — K — C*(N) = C(Z) = C(T) — 0] into

Ko(K) ——= Ko(C (N)) ——= Ko(C(T)

Ind Exp

Ki(C(T)) =—— Ki(C;(N)) =<—>— Ki(K)

— —_——
Z 0 0

U € C*(N) has index —1. So Ind is an isomorphism, and the
middle two groups are solved.

Exp is a suspended/ “higher” index composed with Bott

isomorphism K, = Kp; measures obstruction to lifting projections.
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2D version: Half-plane Toeplitz algebra

} 0 Original C/(Z?) was generated by

} yLX commuting unitaries Uy and U, .

%W Toeplitzification means truncating
2(Z?) — 3(N x Z);

} Get isometries UX, Uy generating the

} semigroup algebra C/(N x Z).

SES 07— C'(Nx2Z)5 ¢ (z?) — o]

Kernel Z is generated by edge-projection Py—g =1 — U, 0)"(‘

Observation: the edge-travelling operator w = U;szo el
We will see that w is the smoking gun of edge-following states!
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LES for half-plane algebra (Kiinneth)

z Z[1] Z[1]oZ(b]
0 * Tk * (r72
Ko(Z) Ko(C7 (N x Z)) — Ko(C7(Z7))

Ind Exp

Ki(CH(Z?)) =" Ki(C} (N x Z)) =——— Ki(Z)

72 Z Zw]

The LES yields | [w] = Exp[b] = Exp[¢(Hchern)] |

Slogan: When performing half-space truncation, obstruction to
maintaining spectral gap of a Chern insulator is the edge-travelling
operator!
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Gap-filling phenomenon [T, 1908.05995]

Just as p(Hener) € Ma(C*(Z2)), also o(Hener) € Ma(CH(N x 7).
While the former is a projection,

Theorem

©(Hcher) € Ma(CH(N x Z)) is no longer a projection.

Proof.
Otherwise, p(Fcnem) gives a class in Ko(C*(N x Z)), and

0 exgct EXp(ﬂ'* [(,O(I:IChern)]) - Exp[go(’iT(I:IChern))]
= Exp[e(Hchern )]
= Exp[b] = [w] # 0 € Ki(Z).
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Gap-filling phenomenon [T, 1908.05995]

Corollary

Achern has spectrum filling the entire gap (b, ¢) in o(Hchern)-

Proof.

Choose supp(¢’) = [b, ¢'] with b < b’ < ¢’ < ¢ arbitrarily.
Since @(Hchern) is not a projection,

@ 7é {)‘ € U(FIChern) : QO(A) ?é 0, 1} C [bl, CI].

Remark: Same argument for Achern + (pert. in ).
Remark: Exp was first exploited by Kellendonk—Richter—
Schulz-Baldes to understand quantised edge conductance in QHE.
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Gap-filling states = quantised boundary currents

Connes’' cyclic cohomology gives a NC version of de Rham currents.

Example: U € C/(Z) Fourier transforms to Laurent z : e? s e/

(Wind, [z]) = 2i / 7'z eZccC
T

T
pairs a cyclic 1-cocycle integrally with [z] € K1 (C*(T)).

Sketch for [w] = Exp[o(Hcher)]:
Let X be position-along-boundary-operator:

1= 7 ,(W_l[Xa w]) = 7(¢'(Hchern) X ) = edge current

trace ’ .
length gap’s de.nsn;y
matrix

velocity
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Propagating around corners

A

// Corner of a material ~ convex cone =
subsemigroup S C Z? preserves

S May | | truncation.

/]
z /NZ\ ] 07— CHS) D CH7?) — 0.
F‘ Uai Compute whether Exp[b] # 0 € K1(Z).

§ "\ A Yar
— If so, conclude that Hcpern acquires
\ gap-filling spectra.

~

e

Observation: ker(m) = 7 is generated by face projections Pr,, PF,.
Observation: Edge-travelling operator wa = U}, Pr, + Ua Pr, € 7.
Observation: There exists an index 1 Fredholm operator in C}(S).
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Propagating around corners

Theorem (T, 1908.05995; cf. Cuntz '17)

72 coker M@BZ[1] Z[1)©Z[b]
—— r—'*— Tk Aoy
ko(T) Ko(C(9)) Ko(C(Z?))

(det M) diag(1l,det M)
(5])x " .
72 Z[1]®Z[b]
’ 0 * 2 ws * 2
Ko(Z') —— Ko(C) (V) ——> Ko(C/ (2%))
Z[1]
Ind=M Ind=1 Exp Exp
0
0 0
Ki(C (2%) = Ku(CF (W) =——— Ki(T')
N e’ e
72 Z[w]
R " (=)
ML * det M
K (C](2%) 0 Ki(C7(S)) Ki(T)
N e’ N~
72 0 Z[w]
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Bumpy corners

Harder analysis, but slogan still true: [op.,. | = [b] =¥ [w].
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Conclusion: Any physical realisation of abstract Chern insulator
will have gap-filling and edge-following states that produce
quantised boundary currents.
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Partitioned manifold “coarse” index

This K-theory machine works much more generally: continuum
version is in progress, with M. Ludewig. Lattice computation is
“embedded”, as in quantum chemistry.

Remark: In '88, J. Roe discovered a Partitioned manifold index
theorem: Dirac operator on noncompact manifold X has a “coarse
index” in Ki( C*(X) ), defined via an Exp map.

~——

Roe algebra

Compact partitioning hypersurface Y defines a cyclic 1-cocycle
which eats this Ki-index to give a number equal to the index of
associated Dirac on Y. “Bulk index localises to boundary!

Example: Ki(C*(line)) = Z, generated by the coarse index of i%.
Alternatively, the edge-travelling operator is a generator!
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Edge-following topological states: general phenomenon

M-invariant (magnetic) Hamiltonians H on L?(X) give spectral
projections (H) defining Ko(C;(I")) classes (see [T-+L 1904.13051])

One expects [¢(Hiop)] to be detected by truncating to L2(U C X)
and looking for gap-filling states appearing at OU.

In analogous K-theory machine, C*(9U) ~ Z, and indeed
Exp : Ko(CH(T)) 22 Ki(C*(AU)) in examples.

In dim(X) = 2, typically QU ~coarse line, then

Then K1(C*(0U)) = Z, with generator an “edge-travelling
operator” w hopping along a discretisation of OU, contributing one
unit of “edge current”. Thus Exp[¢(Hiopological)] counts how

A

many units of w the edge states of Hi,pological are equivalent to.
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