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Overview

Motivating Idea: Metrics can be studied using “K-theoretic
invariants” coming from associated geometric operators.

(X, h) a manifold with complete Riemannian metric h — Dirac
operator D, — K-homology class [Dy] € K.(X)

Primary invariants (metric independent):

» Index of D in Z (X closed)

» Higher index of D in K.(C*T) (M closed, X = M,
M= m(M))

Secondary invariants (metric dependent):
» n-invariant (APS) p-invariant (Higson-Roe)
» higher n-invariant (Lott), higher p-invariant in

Ko(D*(X)"),  Ku(CLo(X))

(M closed, X = M, T = m1(M); Piazza-Schick, Xie-Yu)

(Higher) APS index of Dy on manifold with boundary is a bridge
between primary and secondary invariants.

5750



Motivation and Questions

» X: complete Riemannian manifold,;
: 0 D~ . _
» D: Dirac type operator D = {DJF 0 ] (D) =D—;
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Motivation and Questions

» X: complete Riemannian manifold,;
0 D . _
Dt 0 ] (D7) =D

» D is invertible outside a compact set M C X.

» D: Dirac type operator D = {

Observation:
D% is Fredholm

Question:
indD = dimker D™ — dimker D™ =?

Example

» (Gromov-Lawson) X spin having uniform positive scalar
curvature outside a compact set M,

» (Atiyah-Patodi-Singer index) M is a compact manifold with
boundary N where M has product metric near N and N has a
psc metric. X\M = N x [0, c0).
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Recall: Manifold with Boundary

Let M be a compact Riemannian manifold with boundary N,
having product structure near N
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having product structure near N and

0 D,
Du = {Da o“”}

is a Dirac type operator on a Z/2-graded vector bundle E where
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Recall: Manifold with Boundary

Let M be a compact Riemannian manifold with boundary N,
having product structure near N and

0 Dy,
o= o5, ¥
Dy, 0
is a Dirac type operator on a Z/2-graded vector bundle E where
Dy L2(MEY) — L2(M,E™)  (D},)* = Dy,
Near N, Dy = o(Dy — 2) where
Dy = Dy : L*(N,ET) — L*(N,ET)

and
(o E+‘N — E_‘N

is a bundle isomorphism.
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Denote by
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APS boundary condition: .
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Recall: Atiyah-Patodi-Singer index theorem
Denote by
P>o = X[o,oo)(DN)-
APS boundary condition: .

HI(M’ E+>P) ={y € Hl(Mv E+) : PZO(¢|N) = 0}.

Theorem (Atiyah-Patodi-Singer)
D)y : H{(M,ET,P) — L?(M,E™) is a Fredholm operator with
index

n(Dn) + dim ker Dy
2

indaps Dy :/ A(M)ch(E/S) —
M
where
2 o0 _t2D2
77(DN) = ﬁ 0 TI'(DNe N)dt

is the eta invariant measuring the spectral asymmetry of Dy.
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Boundary Condition
Let X be the manifold with boundary attaching a cylinder

X = MUypy=n N x [0,00)
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Boundary Condition
Let X be the manifold with boundary attaching a cylinder

X :=MUypm=n N x [0,00)

» Dy, with APS boundary condition is equivalent to considering
Dx with extended L2-condition.

» In particular if ker Dy = {0}, then APS condition is equivalent
to imposing L2?-conditions for Dx.

> Over the cylinder C = X\M, D2 = — 25 + D3 > ¢ > 0
implies Dy is invertible outside M:

Dy HY(X,ET) — L[*(X,E™)
is a Fredholm operator and

ind DX = indAps DM.

A /90



Equivariant set up

» G: a locally compact group acting on a complete Riemannian
manifold X properly, isometrically;
» M C X: G-invariant subset, so that M/G is compact;
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Equivariant set up

» G: a locally compact group acting on a complete Riemannian
manifold X properly, isometrically;

» M C X: G-invariant subset, so that M/G is compact;

» Dx: Dirac type operator on X commutes with G-action, odd,
essentially selfadjoint;

» Assume that Dy is invertible outside M.

Dy is a generalized Fredholm operator with a K-theoretic index

indg Dx € Ko(Cr*(G)).

Outline of the talk:
» A strategy of computing ind Dx (G trivial);
» Lift the strategy to obtain an equivariant APS index formula;
» Mapping surgery to analysis
Reference:
» P. Hochs, B-L Wang, Wang: arXiv 2019.
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Part 1

Set up:

» X: complete Riemannian manifold;
0 D~
DT 0
» D is invertible outside a compact set M C X.

» D: Dirac type operator D = { ] (D) =D—;

We introduce a strategy to compute indD.
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Part 1

Set up:

» X: complete Riemannian manifold;
0 D~
DT 0
» D is invertible outside a compact set M C X.

» D: Dirac type operator D = { ] (D) =D—;

We introduce a strategy to compute indD.
Notation:

» Dy, Dc: restriction to M, C := X\ M respectively.
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Fredholm index as K-theoretic boundary map

Fact: If R is a parametrix for DT, i.e.,
1— RD" =55,1 — DTR = S; are compact, then

ind DT = Tr(Sg) — Tr(S1).
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Fredholm index as K-theoretic boundary map
Fact: If R is a parametrix for DT, i.e.,
1— RD" =55,1 — DTR = S; are compact, then

ind DT = Tr(Sg) — Tr(S1).

In fact, the invertible element L)O+ ﬂ in B/K can be lifted to

So —(So+1)R
D+ S, €B.
Fredholm index is given by the boundary map

Ki(B/K) = Ko(K) = Z

[DO+ g] — Lt B 8] L— [8 ﬂ
_ [Ss[; 50(15(1221)}1 B B (1)]
— Trl(sg) — Tr(5?) 1: Tr(So) — Tr(S1).

an invertible element L =

LYol



A parametrix
1_etD™ DT

Choose Q = WDJF such that

§0 =1- QD" = e tD7 D7 31 =1-D"Q = e tD"D™
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A parametrix

1_etD™ DT

Choose Q = WDJF such that

50 3:1—QD+=eftD_D+ 31 ::1—D+Q:e7tD+D_.

Choose Qc = (D DE)™1D to be the parametrix for D/ . Let

R = ¢1QvY1 + ¢2Qco.
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Fredholm index via the parametrix

Then

So:==1—RD" = ¢1 501 + $1QY] + 2 Qcth
S;:=1-D"R = ¢15191 — ¢, Q1 + phQco.
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Fredholm index via the parametrix
Then

So:==1—RD" = ¢1 501 + $1QY] + 2 Qcth
S;:=1-D"R = ¢15191 — ¢, Q1 + phQco.

Observation:

So, S1 are trace class operators with smooth kernels. R is a
parametrix for DT.

Therefore,

indD =dimker D™ — dimker D™
=Tr(So) — Tr(51)
=[Tr(Sp) — Tr(S1)] + [Tr(So) — Tr(Sp)]

where S} := 11 So¢1 + 101 Q) + 12 Qe .
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Evaluation of Fredholm index

Proposition (Hochs-Wang-W)
Ast — 0T,

Tr(S}) = Tr(S1) — /M A(X) A ch(E/S)

Tr(So) — Tr(Sy) — — lim Tr (/ e—sDcDéDgwgds> :
t

t—0t
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Evaluation of Fredholm index

Proposition (Hochs-Wang-W)
Ast — 0T,

Tr(S}) = Tr(S1) — /M A(X) A ch(E/S)

Tr(So) — Tr(Sy) — — lim Tr (/ e—sDcDéDgwgds> :
t

t—0t

Corollary (Hochs-Wang-W)

If M is a compact manifold with boundary N and C = N x [0, c0)
is the cylindrical end, then

ind D = /Mz\(/v/) Ach(E/S) — %n(DN).
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Remark

Benefit of this approach of obtaining APS index formula:
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Remark

Benefit of this approach of obtaining APS index formula:
The particular parametrix R allows

> to construct a geometric representative for the K-theoretic
index

S8 So(l+So)R

ndP=lgpr 1o

}— [8 (1’] € Ko(K) = Z

» whose trace can be evaluated immediately using heat kernel
analysis.

» This strategy can be lifted to construct higher APS index and
evaluation the equivariant APS-index.

» This method can be related to Melrose's b-calculus approach
to APS index, which is lifted to define a geometric
representative in the higher APS index for Galois covering
(Leichtnam-Piazza).
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Part 2 Higher APS index

» Let M be a manifold with boundary N and
X =MUpn N x [0,00);

» Let G be a locally compact group acting on M properly,
isometrically, so that M/G is compact;
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Part 2 Higher APS index

» Let M be a manifold with boundary N and
X =MUpn N x [0,00);

» Let G be a locally compact group acting on M properly,
isometrically, so that M/G is compact;

> Let D be a Dirac type operator on X commutes with
G-action;

» Assume the boundary operator Dy to have isolated spectrum
at 0.

Remark

The APS boundary condition is replaced by the notion of spectral
sections for the case of family (Melrose-Piazza) and Galois covers
(Leichtnam-Piazza). For X, it is equivalent to a perturbation of
Dy so it is invertible.
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Part 2 Higher APS index

Example
M is the T-cover of a compact spin manifold M with boundary

N/T, a closed spin manifold carrying psc metric.
Aim:

1. Define higher index IndgD € Ko(C;(G));

2. Obtain an equivariant APS index formula for D.

Idea:

From Fredholm operator to general Fredholm operator:
» For compact Z, in £(L?(Z)), the ideal K(L?(Z)) is small;
» For noncompact X, “in D*(X), the ideal C*(X) is small”.
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Recall: Roe algebra

Let X be a manifold and H a Hilbert space with nondegenerate
representation of Cp(X).
» T € B(H) is locally compact if Txk,xxk T € K(H) for any
compact K C X;
» T has finite propagation if dr > 0 such that for Y, Z C X we
have xy Txz = 0 whenever d(Y,Z) > r.

Definition
» Roe algebra C*(X) is the norm closure of locally compact
operators with finite propagation;
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Recall: Roe algebra

Let X be a manifold and H a Hilbert space with nondegenerate
representation of Cp(X).

» T € B(H) is locally compact if Txk,xxk T € K(H) for any
compact K C X;

» T has finite propagation if dr > 0 such that for Y, Z C X we
have xy Txz = 0 whenever d(Y,Z) > r.
Definition
» Roe algebra C*(X) is the norm closure of locally compact
operators with finite propagation;
» D*(X) is the multiplier algebra of C*(X);

» For closed Y C X, the relative Roe algebra
C*(X,Y) C C*(X) is the ideal generated by C*(Y).
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Recall: Roe's localised coarse index

Let Z C X be a closed subset and D a Dirac type operator on
E — X (Zy-graded). Suppose that there is a ¢ > 0 such that for
all s € C°(X, E) supported outside Z, ||Ds|[;2 > c||s||,2.
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|x| > c.
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Recall: Roe's localised coarse index

Let Z C X be a closed subset and D a Dirac type operator on
E — X (Zy-graded). Suppose that there is a ¢ > 0 such that for
all s € C°(X, E) supported outside Z, ||Ds|[;2 > c||s||,2.

Let b € C*°(R) be odd and increasing, such that b(x) = £1 if

|x| > c.
1/
| |

_c\ IC X

b(x)

Using functional calculus, form b(D) € B(L?(E)).
Theorem (Roe)

1. b(D) € D*(X; Z);
2. §:=b(D)2—1€e C*(X; 2).

17 /90



Coarse index
The idempotent
(SJF)2 ST(1+ST)b(D)~

S=b(D)* 1—(57)? e (x;2)"

e =

can be used to construct a coarse index

ind D € Ko(C*(X, Z)).
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Coarse index
The idempotent
(SJF)2 ST(1+ST)b(D)~

S=b(D)* 1—(57)? e (x;2)"

e =

can be used to construct a coarse index

ind D € Ko(C*(X, Z)).

In our context:
Work in the context of relative Roe algebras,
» C*(X, M)C: equivariant Roe algebra localized near M.
» K.(C*(X,M)®) = K,(C’G) because M is cocompact
(Guo-Hochs-Mathai).
and use the geometric representative of the parametrix

R = ¢1 Q91 + ¢2Qc» so that
So=1—RD",S;=1—-D"R e C*(X,M)®

and calculate using the heat kernel method.
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Higher index

Theorem (Hochs-Wang-W)

Let G acts on a manifold M properly, compactly and isometrically,
preserving its boundary N. Let D be a G-invariant Dirac type
operator on M Uy N x [0,00). Assume the boundary operator Dy
has isolated spectrum at 0. Then

Sz So(l+So)R

B oo ) c
ndeD=| P 7y TS } {0 1]6K0(C (X, M)©).
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Equivariant n-invariants
The spectral gap at 0 condition for Dy is used to ensure
» Boundary conditions for the index problem
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Equivariant n-invariants
The spectral gap at 0 condition for Dy is used to ensure
» Boundary conditions for the index problem
» Equivariant 7 invariant is well defined
For g € G, the equivariant-n invariant is defined as

2 o0
ng(Dn) = \/Tr/o Trg(Dye ™ *"Ph)dt
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Equivariant n-invariants
The spectral gap at 0 condition for Dy is used to ensure
» Boundary conditions for the index problem
» Equivariant 7 invariant is well defined
For g € G, the equivariant-n invariant is defined as

2 o0
ng(Dn) = \/Tr/o Trg(Dye ™ *"Ph)dt

where c is a nonnegative function on N satisfying
Jc clegx)dg =1,Vx € N and

Trg(S) = /G/Z ( )Tr(hgh_lcS)d(hZ).
G

When g # e, 15 is known as Lott's delocalized n-invariant.
Theorem (Hochs-Wang-W)

For proper actions, 1g(Dy) is well-defined for G discrete with the
conjugacy class (g) having polynomial growth, and for G, g
semisimple.
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Orbital Integrals

Let f € C.(G) and g € G. The orbital integral is defined as

7. C(G) > C  frs o7 )f(hghfl)d(hZ).
G\&
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Orbital Integrals

Let f € C.(G) and g € G. The orbital integral is defined as

7. C(G) > C  frs o7 )f(hghfl)d(hZ).
G\&

Theorem (Hochs-Wang-W)
When G is either
» (Samurkas) discrete with g having polynomial growth, or
» (Harish-Chandra) semisimple with g semisimple,
the orbital integral extends to a continuous trace 7, : A(G) — C

where C.(G) C A(G) C C}G is closed under holomorphic
functional calculus and defines a morphism:

e Ko(CPG) = Ko(A(G)) — C.
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Main Result

» Let G be a locally compact group acting on a manifold M
(OM = N) properly, compactly and isometrically, preserving
N.

» Let D be a Dirac type operator on the manifold attaching a
cylinder.

» Assume Dy has isolated spectrum at O.

27 /90



Main Result

» Let G be a locally compact group acting on a manifold M
(OM = N) properly, compactly and isometrically, preserving
N.

» Let D be a Dirac type operator on the manifold attaching a
cylinder.

» Assume Dy has isolated spectrum at O.

Theorem (Hochs-Wang-W)
When G is either

» discrete with conjugacy class of g having polynomial growth,
or

» semisimple with g semisimple
then one has the equivariant APS index formula

A

IndgD) =
7e(IndeD) /Mgc det(1 — geRlne) 2

gA(Mg)Chg(E/S) _ ng(Dn) + Trg(PkerDN).
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Corollary

» When g = e, for every unimodular group G,

[2-ind D = / cA(M)ch(E/S) — n2(Dw) + Tr(CPkerDN).
M

2
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Corollary

» When g = e, for every unimodular group G,

_ n2(Dn) + Tr(cPuer by)

% ind D :/ cA(M)ch(E/S) 5
M

» When the action is free and ker Dy = {0} and g # e,

D
7¢(IndgD) = —”g(2 v,
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Part 3 Mapping Surgery to Analysis

» [ discrete group free action on M, manifold with boundary N
» M := M/l is a compact manifold with boundary N := N/I
» Assume that N admits a positive scalar curvature metric h.
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Part 3 Mapping Surgery to Analysis

» [ discrete group free action on M, manifold with boundary N
» M := M/l is a compact manifold with boundary N := N/I
» Assume that N admits a positive scalar curvature metric h.

Theorem (Piazza-Schick, Xie-Yu)

There is a map from Stolz psc exact sequence
QPI(N) = RFI(N) — PosP™(N) — QPN(N) — RsP™(N)
to Higson-Roe's analytic exact sequence
Knt1(N) = Kns1(CT) = Kop1(D*(N)") = Ka(N) — Ki(C;T)
or, equivalently, Yu's exact sequence of localization algebras
Kni1(CINT) = K1 (CNT) — K,,(CEONF) — Ka(C/NT) = K,(C*N")

so that all diagrams commute.
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Higher p-invariant
Higher index of Dy;:

RPN = Kpp1(CiT)  [M] — IndfPS Dy
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Higher p-invariant
Higher index of Dy;:
RPN = Kpp1(CiT)  [M] — IndfPS Dy

Theorem (Piazza-Schick, Xie-Yu)
There is a higher p-invariant map

p: PosP(N) = Kny1(D*NT) = Ko (C oNT)

n

» The commutative diagram gives rise to

i, (IndfP> Dyy) = pu(h)

» The higher p-invariant py(h) is the delocalized part of
Indf"° Dyy;

» pn(h) is the obstruction class of Indr : Ki(N) — Ki(C;T).
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Delocalized p-invariant
Theorem (Xie-Yu)

For g # e, there exists a map wg : Kl(CioNr) — C so that the

image of higher p-invariant coincides with the Lott’s delocalized
n-invariant

wg(pn(h)) = ng(Dn)-
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image of higher p-invariant coincides with the Lott’s delocalized
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In view of the higher APS index theorem, this is equivalent of
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Delocalized p-invariant

Theorem (Xie-Yu)

For g # e, there exists a map wg : Kl(CZONr) — C so that the
image of higher p-invariant coincides with the Lott’s delocalized
n-invariant

wg(pn(h)) = ng(Dn)-

In view of the higher APS index theorem, this is equivalent of
saying the commutativity of the diagram (n odd)

RPN (N) —— Pos;”"(N)

| |

Ko(CrT) — Ki(Cf o(N)")

<Tg,->l <wg,->l

C — C.
Tg(Ind?PSDM) = ng(Dn) = wg(pn(h)).
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Higher delocalized p-numbers

» There is a Chern character map on Higson-Roe exact sequence

QPN (BI) —— RPN (N) —— Pos;”"(N) — QP (BT)

| | o)

Knt1(Bl) —— Kn1 (GT) — Ko Kn(BT')

(D~
ch® J{ chl chde! % J{

He(AT) H.(AT) HI (AT) —— HE(AT).

so that the diagram commutes.
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Higher delocalized p-numbers

» There is a Chern character map on Higson-Roe exact sequence

QPN (BI) —— RPN (N) —— Pos;”"(N) — QP (BT)

| | o)

Knt1(Bl) —— Kn1 (GT) — Ko Kn(BT')

(D~
ch® J{ chl chde! % J{

He(AT) H.(AT) HI (AT) —— HE(AT).

so that the diagram commutes.

» Pairing with a delocalized cyclic cocycle of CI" gives rise to
equality between higher delocalized p-numbers for N and
higher delocalized APS-index (higher delocalized n-invariants).
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Higher delocalized p-numbers

Theorem (Chen-Wang-Xie-Yu, Piazza-Schick-Zenobi)

For g # e and ¢ € HC*(CT, (g)), a delocalized cyclic cocycle, its
pairing with higher p-invariants, denoted wg(pn(h)), known as
delocalized p-numbers, are identified as higher delocalized
n-invariants

wg(pn(h)) = 16(Dn)-
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Higher delocalized p-numbers

Theorem (Chen-Wang-Xie-Yu, Piazza-Schick-Zenobi)

For g # e and ¢ € HC*(CT, (g)), a delocalized cyclic cocycle, its
pairing with higher p-invariants, denoted wg(pn(h)), known as
delocalized p-numbers, are identified as higher delocalized
n-invariants

wg(pn(h)) = 16(Dn)-

Remark

Serious analysis on groups is needed in order to have a well-defined
pairing. Refer to Chen-Wang-Xie-Yu for precise requirement and
estimation.
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Thank you!



