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Overview
Motivating Idea: Metrics can be studied using “K -theoretic
invariants” coming from associated geometric operators.

(X , h) a manifold with complete Riemannian metric h → Dirac
operator Dh → K -homology class [Dh] ∈ K∗(X )
Primary invariants (metric independent):

I Index of D in Z (X closed)

I Higher index of D in K∗(C ∗r Γ) (M closed, X = M̃,
Γ = π1(M))

Secondary invariants (metric dependent):

I η-invariant (APS) ρ-invariant (Higson-Roe)

I higher η-invariant (Lott), higher ρ-invariant in

K∗(D∗(X )Γ), K∗(C ∗L,0(X )Γ)

(M closed, X = M̃, Γ = π1(M); Piazza-Schick, Xie-Yu)

(Higher) APS index of Dh on manifold with boundary is a bridge
between primary and secondary invariants.
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Motivation and Questions
I X : complete Riemannian manifold;

I D: Dirac type operator D =

[
0 D−

D+ 0

]
, (D+)∗ = D−;

I D is invertible outside a compact set M ⊂ X .

Observation:
D+ is Fredholm

Question:
indD = dim ker D+ − dim ker D− =?

Example

I (Gromov-Lawson) X spin having uniform positive scalar
curvature outside a compact set M;

I (Atiyah-Patodi-Singer index) M is a compact manifold with
boundary N where M has product metric near N and N has a
psc metric. X\M = N × [0,∞).
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Recall: Manifold with Boundary

Let M be a compact Riemannian manifold with boundary N,
having product structure near N

and

DM =

[
0 D−M

D+
M 0

]
is a Dirac type operator on a Z/2-graded vector bundle E where

D+
M : L2(M,E +)→ L2(M,E−) (D+

M)∗ = D−M .

Near N, DM = σ(DN − ∂
∂u ) where

D∗N = DN : L2(N,E +)→ L2(N,E +)

and
σ : E +|N → E−|N

is a bundle isomorphism.
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Recall: Atiyah-Patodi-Singer index theorem

Denote by
P≥0 = χ[0,∞)(DN).

APS boundary condition: .

H1(M,E +,P) := {ψ ∈ H1(M,E +) : P≥0(ψ|N) = 0}.

Theorem (Atiyah-Patodi-Singer)

D+
M : H1(M,E +,P)→ L2(M,E−) is a Fredholm operator with

index

indAPS DM =

∫
M

Â(M)ch(E/S)− η(DN) + dim ker DN

2

where

η(DN) =
2√
π

∫ ∞
0

Tr(DNe−t
2D2

N )dt

is the eta invariant measuring the spectral asymmetry of DN .
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Boundary Condition
Let X be the manifold with boundary attaching a cylinder

X := M t∂M=N N × [0,∞).

I DM with APS boundary condition is equivalent to considering
DX with extended L2-condition.

I In particular if ker DN = {0}, then APS condition is equivalent
to imposing L2-conditions for DX .

I Over the cylinder C = X\M, D2
C = − ∂2

∂u2 + D2
N ≥ c > 0

implies DX is invertible outside M:

D+
X : H1(X ,E +)→ L2(X ,E−)

is a Fredholm operator and

ind DX = indAPS DM .
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Equivariant set up

I G : a locally compact group acting on a complete Riemannian
manifold X properly, isometrically;

I M ⊂ X : G -invariant subset, so that M/G is compact;

I DX : Dirac type operator on X commutes with G -action, odd,
essentially selfadjoint;

I Assume that DX is invertible outside M.

DX is a generalized Fredholm operator with a K -theoretic index

indG DX ∈ K0(C ∗r (G )).

Outline of the talk:

I A strategy of computing ind DX (G trivial);

I Lift the strategy to obtain an equivariant APS index formula;

I Mapping surgery to analysis

Reference:

I P. Hochs, B-L Wang, Wang: arXiv 2019.
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Part 1

Set up:

I X : complete Riemannian manifold;

I D: Dirac type operator D =

[
0 D−

D+ 0

]
, (D+)∗ = D−;

I D is invertible outside a compact set M ⊂ X .

We introduce a strategy to compute indD.

Notation:

I DM , DC : restriction to M, C := X\M respectively.
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Fredholm index as K-theoretic boundary map
Fact: If R is a parametrix for D+, i.e.,
1− RD+ = S0, 1− D+R = S1 are compact, then

ind D+ = Tr(S0)− Tr(S1).

In fact, the invertible element

[
0 R

D+ 0

]
in B/K can be lifted to

an invertible element L =

[
S0 −(S0 + 1)R
D+ S1

]
∈ B.

Fredholm index is given by the boundary map

K1(B/K)→ K0(K) ∼= Z[
0 R

D+ 0

]
7→ L−1

[
1 0
0 0

]
L−

[
0 0
0 1

]
=

[
S2

0 S0(S0 + 1)R
S1D+ 1− S2

1

]
−
[

0 0
0 1

]
7→ Tr(S2

0 )− Tr(S2
1 ) = Tr(S0)− Tr(S1).
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A parametrix

Choose Q = 1−etD−D+

D−D+ D+ such that

S̃0 := 1− QD+ = e−tD
−D+

S̃1 := 1− D+Q = e−tD
+D−

.

Choose QC = (D−C D+
C )−1D−C to be the parametrix for D+

C . Let

R = φ1Qψ1 + φ2QCψ2.
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Fredholm index via the parametrix

Then

S0 := 1− RD+ = φ1S̃0ψ1 + φ1Qψ′1 + φ2QCψ
′
2

S1 := 1− D+R = φ1S̃1ψ1 − φ′1Qψ1 + φ′2QCψ2.

Observation:
S0, S1 are trace class operators with smooth kernels. R is a
parametrix for D+.
Therefore,

indD = dim ker D+ − dim ker D−

=Tr(S0)− Tr(S1)

=[Tr(S ′0)− Tr(S1)] + [Tr(S0)− Tr(S ′0)]

where S ′0 := ψ1S̃0φ1 + ψ1Qφ′1 + ψ2QCφ
′
2.
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Evaluation of Fredholm index

Proposition (Hochs-Wang-W)

As t → 0+,

Tr(S ′0)− Tr(S1)→
∫
M

Â(X ) ∧ ch(E/S)

Tr(S0)− Tr(S ′0)→ − lim
t→0+

Tr

(∫ ∞
t

e−sD
−
C D+

C D−C ψ
′
2ds

)
.

Corollary (Hochs-Wang-W)

If M is a compact manifold with boundary N and C = N × [0,∞)
is the cylindrical end, then

ind D =

∫
M

Â(M) ∧ ch(E/S)− 1

2
η(DN).
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Â(X ) ∧ ch(E/S)

Tr(S0)− Tr(S ′0)→ − lim
t→0+

Tr

(∫ ∞
t

e−sD
−
C D+

C D−C ψ
′
2ds

)
.

Corollary (Hochs-Wang-W)

If M is a compact manifold with boundary N and C = N × [0,∞)
is the cylindrical end, then

ind D =

∫
M
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Remark

Benefit of this approach of obtaining APS index formula:

The particular parametrix R allows

I to construct a geometric representative for the K -theoretic
index

ind D =

[
S2

0 S0(1 + S0)R
S1D+ 1− S2

1

]
−
[

0 0
0 1

]
∈ K0(K) = Z

I whose trace can be evaluated immediately using heat kernel
analysis.

I This strategy can be lifted to construct higher APS index and
evaluation the equivariant APS-index.

I This method can be related to Melrose’s b-calculus approach
to APS index, which is lifted to define a geometric
representative in the higher APS index for Galois covering
(Leichtnam-Piazza).

13 / 29



Remark

Benefit of this approach of obtaining APS index formula:
The particular parametrix R allows

I to construct a geometric representative for the K -theoretic
index

ind D =

[
S2

0 S0(1 + S0)R
S1D+ 1− S2

1

]
−
[

0 0
0 1

]
∈ K0(K) = Z

I whose trace can be evaluated immediately using heat kernel
analysis.

I This strategy can be lifted to construct higher APS index and
evaluation the equivariant APS-index.

I This method can be related to Melrose’s b-calculus approach
to APS index, which is lifted to define a geometric
representative in the higher APS index for Galois covering
(Leichtnam-Piazza).

13 / 29



Remark

Benefit of this approach of obtaining APS index formula:
The particular parametrix R allows

I to construct a geometric representative for the K -theoretic
index

ind D =

[
S2

0 S0(1 + S0)R
S1D+ 1− S2

1

]
−
[

0 0
0 1

]
∈ K0(K) = Z

I whose trace can be evaluated immediately using heat kernel
analysis.

I This strategy can be lifted to construct higher APS index and
evaluation the equivariant APS-index.

I This method can be related to Melrose’s b-calculus approach
to APS index, which is lifted to define a geometric
representative in the higher APS index for Galois covering
(Leichtnam-Piazza).

13 / 29



Remark

Benefit of this approach of obtaining APS index formula:
The particular parametrix R allows

I to construct a geometric representative for the K -theoretic
index

ind D =

[
S2

0 S0(1 + S0)R
S1D+ 1− S2

1

]
−
[

0 0
0 1

]
∈ K0(K) = Z

I whose trace can be evaluated immediately using heat kernel
analysis.

I This strategy can be lifted to construct higher APS index and
evaluation the equivariant APS-index.

I This method can be related to Melrose’s b-calculus approach
to APS index, which is lifted to define a geometric
representative in the higher APS index for Galois covering
(Leichtnam-Piazza).

13 / 29



Remark

Benefit of this approach of obtaining APS index formula:
The particular parametrix R allows

I to construct a geometric representative for the K -theoretic
index

ind D =

[
S2

0 S0(1 + S0)R
S1D+ 1− S2

1

]
−
[

0 0
0 1

]
∈ K0(K) = Z

I whose trace can be evaluated immediately using heat kernel
analysis.

I This strategy can be lifted to construct higher APS index and
evaluation the equivariant APS-index.

I This method can be related to Melrose’s b-calculus approach
to APS index, which is lifted to define a geometric
representative in the higher APS index for Galois covering
(Leichtnam-Piazza).

13 / 29



Part 2 Higher APS index

I Let M be a manifold with boundary N and
X = M ∪N N × [0,∞);

I Let G be a locally compact group acting on M properly,
isometrically, so that M/G is compact;

I Let D be a Dirac type operator on X commutes with
G -action;

I Assume the boundary operator DN to have isolated spectrum
at 0.

Remark
The APS boundary condition is replaced by the notion of spectral
sections for the case of family (Melrose-Piazza) and Galois covers
(Leichtnam-Piazza). For X , it is equivalent to a perturbation of
DN so it is invertible.
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Part 2 Higher APS index

Example

M is the Γ-cover of a compact spin manifold M̄ with boundary
N/Γ, a closed spin manifold carrying psc metric.

Aim:

1. Define higher index IndGD ∈ K0(C ∗r (G ));

2. Obtain an equivariant APS index formula for D.

Idea:

From Fredholm operator to general Fredholm operator:

I For compact Z , in L(L2(Z )), the ideal K(L2(Z )) is small;

I For noncompact X , “in D∗(X ), the ideal C ∗(X ) is small”.
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Recall: Roe algebra

Let X be a manifold and H a Hilbert space with nondegenerate
representation of C0(X ).

I T ∈ B(H) is locally compact if TχK , χKT ∈ K(H) for any
compact K ⊂ X ;

I T has finite propagation if ∃r > 0 such that for Y ,Z ⊂ X we
have χY TχZ = 0 whenever d(Y ,Z ) > r .

Definition

I Roe algebra C ∗(X ) is the norm closure of locally compact
operators with finite propagation;

I D∗(X ) is the multiplier algebra of C ∗(X );

I For closed Y ⊂ X , the relative Roe algebra
C ∗(X ,Y ) ⊂ C ∗(X ) is the ideal generated by C ∗(Y ).
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Recall: Roe’s localised coarse index
Let Z ⊂ X be a closed subset and D a Dirac type operator on
E → X (Z2-graded). Suppose that there is a c > 0 such that for
all s ∈ C∞c (X ,E ) supported outside Z , ‖Ds‖L2 ≥ c‖s‖L2 .

Let b ∈ C∞(R) be odd and increasing, such that b(x) = ±1 if
|x | ≥ c .

Using functional calculus, form b(D) ∈ B(L2(E )).

Theorem (Roe)

1. b(D) ∈ D∗(X ; Z );

2. S := b(D)2 − 1 ∈ C ∗(X ; Z ).
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Coarse index
The idempotent

e :=

[
(S+)2 S+(1 + S+)b(D)−

S−b(D)+ 1− (S−)2

]
∈ C ∗(X ; Z )+

can be used to construct a coarse index

ind D ∈ K0(C ∗(X ,Z )).

In our context:
Work in the context of relative Roe algebras,

I C ∗(X ,M)G : equivariant Roe algebra localized near M.
I K∗(C ∗(X ,M)G ) ∼= K∗(C ∗r G ) because M is cocompact

(Guo-Hochs-Mathai).

and use the geometric representative of the parametrix
R = φ1Qψ1 + φ2QCψ2 so that

S0 = 1− RD+, S1 = 1− D+R ∈ C ∗(X ,M)G

and calculate using the heat kernel method.
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Higher index

Theorem (Hochs-Wang-W)

Let G acts on a manifold M properly, compactly and isometrically,
preserving its boundary N. Let D be a G -invariant Dirac type
operator on M ∪N N × [0,∞). Assume the boundary operator DN

has isolated spectrum at 0. Then

IndGD =

[
S2

0 S0(1 + S0)R
S1D+ 1− S2

1

]
−
[

0 0
0 1

]
∈ K0(C ∗(X ,M)G ).
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Equivariant η-invariants
The spectral gap at 0 condition for DN is used to ensure

I Boundary conditions for the index problem

I Equivariant η invariant is well defined

For g ∈ G , the equivariant-η invariant is defined as

ηg (DN) :=
2√
π

∫ ∞
0

Trg (DNe−t
2D2

N )dt

where c is a nonnegative function on N satisfying∫
G c(gx)dg = 1,∀x ∈ N and

Trg (S) =

∫
G/ZG (g)

Tr(hgh−1cS)d(hZ ).

When g 6= e, ηg is known as Lott’s delocalized η-invariant.

Theorem (Hochs-Wang-W)

For proper actions, ηg (DN) is well-defined for G discrete with the
conjugacy class (g) having polynomial growth, and for G , g
semisimple.
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Orbital Integrals

Let f ∈ Cc(G ) and g ∈ G . The orbital integral is defined as

τg : Cc(G )→ C f 7→
∫
G/ZG (g)

f (hgh−1)d(hZ ).

Theorem (Hochs-Wang-W)

When G is either

I (Samurkas) discrete with g having polynomial growth, or

I (Harish-Chandra) semisimple with g semisimple,

the orbital integral extends to a continuous trace τg : A(G )→ C
where Cc(G ) ⊂ A(G ) ⊂ C ∗r G is closed under holomorphic
functional calculus and defines a morphism:

τg : K0(C ∗r G ) ∼= K0(A(G ))→ C.
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Main Result
I Let G be a locally compact group acting on a manifold M

(∂M = N) properly, compactly and isometrically, preserving
N.

I Let D be a Dirac type operator on the manifold attaching a
cylinder.

I Assume DN has isolated spectrum at 0.

Theorem (Hochs-Wang-W)

When G is either

I discrete with conjugacy class of g having polynomial growth,
or

I semisimple with g semisimple

then one has the equivariant APS index formula

τg (IndGD) =

∫
Mg

cg Â(Mg )chg (E/S)

det(1− geR|Ng )
− ηg (DN) + Trg (Pker DN

)

2
.
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Corollary

I When g = e, for every unimodular group G ,

L2- ind D =

∫
M

cÂ(M)ch(E/S)− ηL2(DN) + Tr(cPker DN
)

2
.

I When the action is free and ker DN = {0} and g 6= e,

τg (IndGD) = −ηg (DN)

2
.
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Part 3 Mapping Surgery to Analysis

I Γ discrete group free action on M̃, manifold with boundary Ñ

I M := M̃/Γ is a compact manifold with boundary N := Ñ/Γ

I Assume that N admits a positive scalar curvature metric h.

Theorem (Piazza-Schick, Xie-Yu)

There is a map from Stolz psc exact sequence

Ωspin
n+1(N)→ Rspin

n+1(N)→ Posspinn (N)→ Ωspin
n (N)→ Rspin

n (N)

to Higson-Roe’s analytic exact sequence

Kn+1(N)→ Kn+1(C ∗r Γ)→ Kn+1(D∗(Ñ)Γ)→ Kn(N)→ Kn(C ∗r Γ)

or, equivalently, Yu’s exact sequence of localization algebras

Kn+1(C ∗L ÑΓ)→ Kn+1(C ∗ÑΓ)→ Kn(C ∗L,0ÑΓ)→ Kn(C ∗L ÑΓ)→ Kn(C ∗ÑΓ)

so that all diagrams commute.
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I M := M̃/Γ is a compact manifold with boundary N := Ñ/Γ
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Higher ρ-invariant
Higher index of DM :

Rspin
n+1(N)→ Kn+1(C ∗r Γ) [M] 7→ IndAPSΓ DM

Theorem (Piazza-Schick, Xie-Yu)

There is a higher ρ-invariant map

ρ : Posspinn (N)→ Kn+1(D∗ÑΓ) ∼= Kn(C ∗L,0ÑΓ)

I The commutative diagram gives rise to

i∗(Ind
APS
Γ DM) = ρN(h)

I The higher ρ-invariant ρN(h) is the delocalized part of
IndAPSΓ DM ;

I ρN(h) is the obstruction class of IndΓ : K1(N)→ K1(C ∗r Γ).
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Delocalized ρ-invariant

Theorem (Xie-Yu)

For g 6= e, there exists a map ωg : K1(C ∗L,0ÑΓ)→ C so that the
image of higher ρ-invariant coincides with the Lott’s delocalized
η-invariant

ωg (ρN(h)) = ηg (DN).

In view of the higher APS index theorem, this is equivalent of
saying the commutativity of the diagram (n odd)

Rspin
n+1(N) //

��

Posspinn (N)

��
K0(C ∗r Γ) //

〈τg ,·〉
��

K1(C ∗L,0(Ñ)Γ)

〈ωg ,·〉
��

C =
// C.

τg (IndAPSΓ DM) = ηg (DN) = ωg (ρN(h)).
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Higher delocalized ρ-numbers

I There is a Chern character map on Higson-Roe exact sequence

Ωspin
n+1(BΓ) //

��

Rspin
n+1(N) //

��

Posspinn (N)

��

// Ωspin
n (BΓ)

��
Kn+1(BΓ) //

che

��

Kn+1(C ∗r Γ) //

ch
��

Kn+1(D∗Γ)

chdel

��

// Kn(BΓ)

��
He
· (AΓ) // H·(AΓ) // Hdel

· (AΓ) // He
· (AΓ).

so that the diagram commutes.

I Pairing with a delocalized cyclic cocycle of CΓ gives rise to
equality between higher delocalized ρ-numbers for N and
higher delocalized APS-index (higher delocalized η-invariants).
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Higher delocalized ρ-numbers

Theorem (Chen-Wang-Xie-Yu, Piazza-Schick-Zenobi)

For g 6= e and φ ∈ HC ∗(CΓ, 〈g〉), a delocalized cyclic cocycle, its
pairing with higher ρ-invariants, denoted ωφ(ρN(h)), known as
delocalized ρ-numbers, are identified as higher delocalized
η-invariants

ωφ(ρN(h)) = ηφ(DN).

Remark
Serious analysis on groups is needed in order to have a well-defined
pairing. Refer to Chen-Wang-Xie-Yu for precise requirement and
estimation.
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Thank you!
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