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Strings and Branes

Wess-Zumino-Witten models describe open and closed strings
propagating on group manifolds. Dirichlet or D-branes encode
the boundary conditions imposed at the ends of open strings,
and correspond classically to subspaces.

In M-theory, branes are supposed to be dynamical objects.



Background CFT Computations Enter the Geometry Geometric Computations Discussion

Brane Charges
Polchinski used T-duality to argue that D-branes should carry
RR-charge in type II string theory on flat space:

Q =
∫

brane
eF .

Here, F is a certain closed 2-form on the brane.
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Brane Charges
Polchinski used T-duality to argue that D-branes should carry
RR-charge in type II string theory on flat space:

Q =
∫

brane
eF .

Here, F is a certain closed 2-form on the brane.
The extension to curved spaces is due to Minasian and Moore:

Q =
∫

brane
eF−

1
2 c1(N(brane)) Â(T (brane))

i∗
√

Â(T (space))
.

• T and N are the tangent and normal bundles,

• c1 and Â are the first Chern class and A-roof genus,

• i is the inclusion of the brane into the space.
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Charge Groups

Physicists are used to charges which are classified by (real
deRham) cohomology groups, eg. electric charge. However,
Kontsevich and Segal pointed out that the brane charge
formula suggests that a K-group is relevant here.

Which K-group?
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Charge Groups

Physicists are used to charges which are classified by (real
deRham) cohomology groups, eg. electric charge. However,
Kontsevich and Segal pointed out that the brane charge
formula suggests that a K-group is relevant here.

Which K-group?

When there is an NS B-field, Witten proposed that the K-theory
should be twisted. When the field strength H = dB is torsion, he
described such a twisted K-theory.
WZW models have non-torsion H. In this case, the appropriate
twisted K-theory was proposed by Bouwknegt and Mathai to be
an algebraic K-theory constructed by Rosenberg. It reduces to
Witten’s when H is torsion.
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The Plan

• How can we compute the D-brane charge and the charge
group?

• Fredenhagen and Schomerus proposed a CFT
computation based on the identification of a condensation
process for D-branes. They carried out this computation for
WZW models on SU(n).

• We extended this to other groups, obtaining predictions for
the torsion order of the corresponding twisted K-theories.

• But this is a computation in algebra! This must be
reconciled with the geometry that gave rise to the
prediction that brane charges were classified by twisted
K-theory.
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WZW Models as CFTs

Let G be a compact, connected, simply-connected, simple Lie
group, ie. G = SU(n) ,Sp(2n) ,Spin(n) ,G2,F4,E6,E7,E8. The
WZW model on G then defines a family of CFTs, parametrised
by the level k , whose symmetry algebra is the corresponding
untwisted affine Kac-Moody algebra ĝk .

The consistent D-branes are quantised in bijection with the
integrable highest weight modules of ĝk . These branes are
conjugacy classes in the group passing through the maximal
torus at

exp
(

2πi
λ +ρ
k +h∨

)
,

where λ is the corresponding dominant integral weight, ρ is the
Weyl vector and h∨ is the dual Coxeter number of g.
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Brane Condensation

A low-energy effective field theory for branes has classical
fields A taking values in g. If we have m coincident branes, a
stack, then the components Aa with respect to a basis ta of g

are not just real functions, but m×m matrix-valued functions.

Alekseev, Recknagel and Schomerus wrote down such a field
theory action and found its classical equations of motion:

[
Aa,
[
Aa,Ab]− fabcAc]= 0.

Two obvious solutions:

•
[
Aa,Ab

]
= 0 (translation),

• Aa = π (ta) (condensation).

Condensation requires m = dimπ.
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Brane Condensation (cont.)

To interpret, let πλ be the g-irrep with highest weight λ and
m = dimπλ . Then, a stack of m branes labelled by µ can
“condense” into the superposition:

dimπλ braneµ −→
⊕

ν
N ν

λ µ braneν .

Here, πλ ⊗πµ =
⊕

ν N ν
λ µ πν .
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Brane Condensation (cont.)

To interpret, let πλ be the g-irrep with highest weight λ and
m = dimπλ . Then, a stack of m branes labelled by µ can
“condense” into the superposition:

dimπλ braneµ −→
⊕

ν
N ν

λ µ braneν .

Here, πλ ⊗πµ =
⊕

ν N ν
λ µ πν .

But this is a classical computation, valid for k → ∞. To quantise,
replace N ν

λ µ by the (level k) fusion coefficients N
ν

λ µ .
Evidence that this proposal is correct comes from the Kondo
model, à la Affleck and Ludwig.
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Brane Charges
Fredenhagen and Schomerus analysed charges Qλ conserved
under condensation:

dimπλ Qµ = ∑
ν

N
ν

λ µ Qν .

Taking µ = 0 gives N
ν

λ µ = δ ν
λ , hence

Qλ = dimπλ .

But now we have to satisfy

dimπλ dimπµ = ∑
ν

N
ν

λ µ dimπν ,

which is not true in general. F&S proposed that this holds
modulo some integer x giving the torsion order of the twisted
K-group.
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Example: SU(2)

Fusion defines a commutative associative operation on the
integrable highest weight modules of ĝk . The fusion ring may
then be described as a quotient of the representation ring of g.

For ŝl(2)k , the fusion ring is the quotient by the ideal generated
by π(k+1)Λ (Λ is the fundamental weight). Thus,

x = dimπ(k+1)Λ = k +2.



Background CFT Computations Enter the Geometry Geometric Computations Discussion

Example: SU(2)

Fusion defines a commutative associative operation on the
integrable highest weight modules of ĝk . The fusion ring may
then be described as a quotient of the representation ring of g.

For ŝl(2)k , the fusion ring is the quotient by the ideal generated
by π(k+1)Λ (Λ is the fundamental weight). Thus,

x = dimπ(k+1)Λ = k +2.

This correctly gives the torsion order of the twisted K-theory

HK∗ (SU(2)) ∼= Zk+2,

when H is a closed 3-form represented in H3 (SU(2) ;Z) ∼= Z by
k +2.
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Example: SU(3)

For ŝl(3)k , the fusion ring is the quotient by the ideal generated
by π(k+1)Λ1

and π(k+2)Λ1
, hence

x = gcd
{

dimπ(k+1)Λ1
,dimπ(k+2)Λ1

}

= gcd
{(

k +3
2

)
,

(
k +4

2

)}
=

k +3
gcd{k +3,2}

.
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Example: SU(3)

For ŝl(3)k , the fusion ring is the quotient by the ideal generated
by π(k+1)Λ1

and π(k+2)Λ1
, hence

x = gcd
{

dimπ(k+1)Λ1
,dimπ(k+2)Λ1

}

= gcd
{(

k +3
2

)
,

(
k +4

2

)}
=

k +3
gcd{k +3,2}

.

The twisted K-theory was not known at the time, only that its
torsion order divided k +3. Maldacena, Moore and Seiberg
subsequently gave a physical computation, obtaining

HK∗ (SU(3)) ∼= Zx ⊕Zx ,

when H is represented in H3 (SU(3) ;Z) ∼= Z by k +3.
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Example: SU(n)
Using induction and a modified Littlewood-Richardson rule for
fusion products, Fredenhagen and Schomerus proved:

Theorem (Fredenhagen–Schomerus)
For ŝl(n)k , the maximal possible torsion order for the D-brane
charge group is

x =
k +n

gcd{k +n, lcm{1,2, . . . ,n−1}}
.
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Example: SU(n)
Using induction and a modified Littlewood-Richardson rule for
fusion products, Fredenhagen and Schomerus proved:

Theorem (Fredenhagen–Schomerus)
For ŝl(n)k , the maximal possible torsion order for the D-brane
charge group is

x =
k +n

gcd{k +n, lcm{1,2, . . . ,n−1}}
.

Maldacena, Moore and Seiberg reproduced this result by
imposing invariance under affine outer automorphisms and
announced that Hopkins had shown that

HK∗ (SU(n)) ∼= Zx ⊗
∧∗

[w5,w7, . . . ,w2n−1] ∼ Z⊕2n−2

x ,

when H is represented in H3 (SU(n) ;Z) ∼= Z by k +n.
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General Charge Groups

We simplified the proof of this theorem using better generators
for the fusion ideal and generalised it to Sp(2n):

Theorem
For ŝp(2n)k , the maximal possible torsion order for the D-brane
charge group is

x =
k +n +1

gcd{k +n +1, lcm{1,2, . . . ,n,1,3, . . . ,2n−1}}
.
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General Charge Groups

We simplified the proof of this theorem using better generators
for the fusion ideal and generalised it to Sp(2n):

Theorem
For ŝp(2n)k , the maximal possible torsion order for the D-brane
charge group is

x =
k +n +1

gcd{k +n +1, lcm{1,2, . . . ,n,1,3, . . . ,2n−1}}
.

Moreover, we conjectured (based on numerics) that in all other
cases,

x =
k +h∨

gcd{k +h∨, lcm{1,2, . . . ,h−1}}
.
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Twisted K-Theory Computations

Shortly thereafter, Braun showed that when the fusion ideal for
ĝk is generated by r = rankg elements, then

HK∗ (G) ∼= Z⊕2r−1

x ,

and the determination of x proceeds à la Fredenhagen and
Schomerus.

Douglas then showed directly (following Hopkins) that

HK∗ (G) ∼= Zx ⊗
∧∗

[w1,w2, . . . ,wr−1] ,

and he computed x in all cases except G = F4,E6,E7,E8.
He then went on to compute generators for the fusion ideal,
using Freed-Hopkins-Teleman, in every case!
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Where do we stand?
We have a physical computation of brane charges and the
torsion orders of their charge groups. We also have the twisted
K-theories. Agreement has been reached!

But, the physics has largely ignored the geometric nature of the
problem. Instead, the computations rest upon a conjectured
quantisation of a classical low-energy effective field theory.

We have seen that physicists had earlier predicted a geometric
form for the brane charge. For (the nicest) branes on our Lie
groups, we should therefore have

∫

Cλ

eFλ Td (T (Cλ ))
?
= dimπλ ,

where Cλ is the conjugacy class (brane) through
exp(2πi(λ +ρ)/(k +h∨)), Fλ is a certain closed 2-form on the
brane, and πλ is the irrep with highest weight λ .
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WZW Models — Closed Strings

The closed string WZW action consists of a standard kinetic
term and a Wess-Zumino term:

SWZ = 2πi

∫

g̃(Γ)
H, H =

k
24π2 κ (θ ∧, dθ) .

g̃ : Γ → G extends the string map g : Σ → G in the sense that
∂Γ = Σ (note H2 (G;Z) = 0). As H is cohomologically non-trivial,
[H] = k in H3 (G;Z), the action depends upon the choice of Γ.

Σ
Γ1

Γ2

However, the Feynman amplitudes e−S are well-defined.
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WZW Models — Open Strings

For open strings, the worldsheet Σ has non-trivial boundary,
∂Σ = S1. There are no Γ with ∂Γ = Σ, so extend Σ to
Σ′ = Σ+D and g : Σ → G to g′ : Σ′ → G (note H2 (G;Z) = 0).

Σ
Σ′ D

We can now define the WZ term by extending g′ to g̃′ : Γ′ → G,
where ∂Γ′ = Σ′. This is then modified as follows:

SWZ = 2πi

[∫

g̃′(Γ)
H −

∫

g′(D)
ω
]
.

Here, ω is a 2-form on (a tubular neighbourhood of) g′ (D)
where dω = H. It “cancels” the effect of patching Σ with D.
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Boundary Conditions

The precise form of ω depends upon the boundary conditions
chosen for the open string endpoints. We take

∂g = −Ad(g) ∂̄g,

which implies that the D-branes are conjugacy classes C and
that ω is the 2-form on C given by

g∗ω =
−k

16π2 κ
(

g−1dg∧,
id+Ad(g)

id−Ad(g)
g−1dg

)
.
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Boundary Conditions

The precise form of ω depends upon the boundary conditions
chosen for the open string endpoints. We take

∂g = −Ad(g) ∂̄g,

which implies that the D-branes are conjugacy classes C and
that ω is the 2-form on C given by

g∗ω =
−k

16π2 κ
(

g−1dg∧,
id+Ad(g)

id−Ad(g)
g−1dg

)
.

Now, g extends to g′ since H1 (C;Z) = 0 and g′ extends to g̃′

since H2 (G;Z) = 0. Equivalently, Σ needs to be a boundary
modulo C, which follows from H2 (G,C;Z) = 0.

The amplitudes are well-defined if (H,ω) ∈ H3 (G,C;Z). This
quantises the D-branes: C → Cλ , ω → ωλ .
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The U(1)-flux Fλ

The quantised branes are the conjugacy classes Cλ passing
through exp(2πi(λ +ρ)/(k +h∨)), hence each is
homeomorphic to G/T. H is exact on each brane, so physicists
write H = dB and “define” a closed 2-form by

Fλ = B−ωλ .

What they mean is take the closed 2-form whose periods are
∫

S
Fλ =

∫

S
(B−ωλ ) =

∫

Z
H −

∫

S
ωλ (∂Z = S),

from which we get Fλ ∈ H2 (Cλ ;Z). Note that this is still
ambiguous up to the periods of H.
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Example: SU(2)

We need to evaluate the following integral:

Qλ =
∫

Cλ

eFλ Td (T (Cλ )) =
∫

S2

(
Fλ +

1
2

c1

(
T
(
S2)

))
.

Parametrising SU(2) explicitly to get H and ωλ , we find that∫
Fλ = (λ ,α). Thus,

Qλ = (λ ,α)+1 =
(λ +ρ,α)

(ρ,α)
= dimπλ .

This computation is due to Bachas–Douglas–Schweigert;
Stanciu; Alekseev–Schomerus; ...

Moreover, if H is represented by k +2 in cohomology, the
period of Fλ is ambiguous up to factors of k +2, hence the
charge is only well-defined modulo k +2.
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Required Knowledge

Our branes are homeomorphic to G/T, so we’ll need to know
about the cohomology rings of this space.

Fact (Bott)
The (co)homology ring of G/T is torsion-free and concentrated
in even degree. It has a natural basis in bijection with the Weyl
group W of G such that the degree of each basis element is
twice the length of the corresponding Weyl transformation.

Now, we have a natural sequence of isomorphisms:

H2 (G/T;Z) ∼= π2 (G/T) ∼= π1 (T) ∼= ker(exp : t → T) = Q∨.

The second integral homology of our branes may be identified
with the coroot lattice of G.
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Required Knowledge (cont.)
Likewise, the second integral cohomology of our branes may be
identified with the weight lattice of G:

H2 (G/T;Z) ∼= Hom
(
Q∨,Z

)
= P.

With this formalism, one can sharpen Bott’s result to give the
ring structure, at least over the rationals.

Fact (Borel)
The rational cohomology ring of G/T has the form

H∗ (G/T;Q) ∼=
Q [Λ1,Λ2, . . . ,Λr ]

I+
,

where r is the rank of G, Λi denotes the fundamental weights,
and I+ is the ideal of W-invariant polynomials of positive
degree.
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Required Knowledge (cont.)

The splitting principle states that as far as characteristic
classes are concerned, any vector bundle may be replaced by
an appropriate sum of line bundles. If E splits as

⊕n
i=1 Li , then

the Todd class of E is

Td (E) =
n

∏
i=1

c1 (Li)

1−e−c1(Li )
.

The tangent bundle of G/T is a complex vector bundle whose
rank is the number |∆+| of positive roots of G. This suggests:

Fact (Borel–Hirzebruch)
The first Chern classes of the line bundles associated with
T (G/T) under the splitting principle are, in Borel’s formalism,
precisely the positive roots of G.
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Computing the Charge

Note first that in Borel’s formalism, Fλ ∈ H2 (G/T;Z) is
represented by λ ∈ P. We therefore compute

Qλ =
∫

G/T
eFλ Td (T (G/T)) =

∫

G/T
eλ ∏

α∈∆+

α
1−e−α

=
∫

G/T

eλ

∏α∈∆+
(1−e−α) ∏

α∈∆+

α . (1)

Now, the product of the roots is a volume form:
∫

G/T
∏

α∈∆+

α =
∫

G/T
c|∆+| (T (G/T)) = χ (G/T) = |W| . (2)

We therefore need to extract the degree zero terms in the rest
of the integrand of (1).
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Computing the Charge (cont.)
This is hard! The factor

eλ

∏α∈∆+
(1−e−α)

has an order |∆+| pole at the origin. We recognise it as the
character of the (infinite-dimensional!) Verma module of highest
weight λ .

To obtain a better character, note that the volume form is
anti-invariant under W:

w

(

∏
α∈∆+

α

)
= (−1)ℓ(w) ∏

α∈∆+

α = detw ∏
α∈∆+

α .

It follows that antisymmetrising (1) will not change the value of
the integral.
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Computing the Charge (cont.)
But, antisymmetrisation gives the Weyl character formula for
the irreducible module of highest weight λ :

Qλ =
1
|W| ∑

w∈W

detw
∫

G/T
w

(
eλ ∏

α∈∆+

α
1−e−α

)

=
1
|W|

∫

G/T
∑

w∈W

detw w

(
eλ+ρ

∏α∈∆+

(
eα/2 −e−α/2

) ∏
α∈∆+

α

)

=
1
|W|

∫

G/T

∑w∈W detw ew(λ+ρ)

∏α∈∆+

(
eα/2 −e−α/2

) ∏
α∈∆+

α .

Extracting the degree zero term and using (2) then gives

Qλ =
dimπλ
|W|

∫

G/T
∏

α∈∆+

α = dimπλ .
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Discussion

• Borel’s characterisation of the cohomology ring gives

Qλ =
∫

G/T
eλ+ρ .

• The conjugacy class Cλ only determines λ up to the
shifted action of the affine Weyl group. The charge must
therefore be invariant under this action. When G 6= Sp(2n),
this is equivalent the dimension constraints of
Fredenhagen and Schomerus!

• The periods of the 2-form Fλ are only determined up to
periods of the 3-form H, hence the charge group must be
invariant under this ambiguity. This only affects the charge
group torsion when G = Sp(2n). Curiously, certain
symplectic groups now have torsion order half that of the
K-theory!?!
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