CFT Computations

Enter the Geometry

Geometric Computations

(日)

Discussion o

D-Brane Charges in Wess-Zumino-Witten Models

David Ridout

hep-th/0210302with P Bouwknegt and P Dawsonhep-th/0312259with P Bouwknegthep-th/0602057with P Bouwknegt

October 18, 2010

CFT Computations

Enter the Geometry

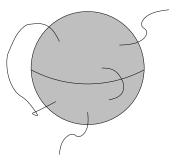
Geometric Computations

(日)

Discussion o

Strings and Branes

Wess-Zumino-Witten models describe open and closed strings propagating on group manifolds. Dirichlet or D-branes encode the boundary conditions imposed at the ends of open strings, and correspond classically to subspaces.



In M-theory, branes are supposed to be dynamical objects.

CFT Computations

Enter the Geometry

Geometric Computations

(日)

Discussion o

Brane Charges

Polchinski used T-duality to argue that D-branes should carry RR-charge in type II string theory on flat space:

 $Q = \int_{brane} e^{F}$.

Here, F is a certain closed 2-form on the brane.

CFT Computations

Enter the Geometry

Geometric Computations

Discussion o

Brane Charges

Polchinski used T-duality to argue that D-branes should carry RR-charge in type II string theory on flat space:

$$\mathsf{Q} = \int_{\mathsf{brane}} e^{\mathsf{F}}.$$

Here, F is a certain closed 2-form on the brane.

The extension to curved spaces is due to Minasian and Moore:

$$Q = \int_{\text{brane}} e^{F - \frac{1}{2}c_1(N(\text{brane}))} \frac{\widehat{A}(T(\text{brane}))}{i^* \sqrt{\widehat{A}(T(\text{space}))}}$$

- T and N are the tangent and normal bundles,
- c_1 and \widehat{A} are the first Chern class and A-roof genus,
- *i* is the inclusion of the brane into the space.

CFT Computations

Enter the Geometry

Geometric Computations

(日)

Discussion o

Charge Groups

Physicists are used to charges which are classified by (real deRham) cohomology groups, *eg.* electric charge. However, Kontsevich and Segal pointed out that the brane charge formula suggests that a K-group is relevant here.

Which K-group?

CFT Computations

Enter the Geometry

Geometric Computations

Discussion o

Charge Groups

Physicists are used to charges which are classified by (real deRham) cohomology groups, *eg.* electric charge. However, Kontsevich and Segal pointed out that the brane charge formula suggests that a K-group is relevant here.

Which K-group?

When there is an NS B-field, Witten proposed that the K-theory should be twisted. When the field strength H = dB is torsion, he described such a twisted K-theory.

WZW models have non-torsion H. In this case, the appropriate twisted K-theory was proposed by Bouwknegt and Mathai to be an algebraic K-theory constructed by Rosenberg. It reduces to Witten's when H is torsion.

CFT Computations

Enter the Geometry

Geometric Computations

Discussion o

The Plan

- How can we compute the D-brane charge and the charge group?
- Fredenhagen and Schomerus proposed a CFT computation based on the identification of a condensation process for D-branes. They carried out this computation for WZW models on SU(n).
- We extended this to other groups, obtaining predictions for the torsion order of the corresponding twisted K-theories.
- But this is a computation in algebra! This must be reconciled with the geometry that gave rise to the prediction that brane charges were classified by twisted K-theory.

CFT Computations

Enter the Geometry

Geometric Computations

Discussion o

WZW Models as CFTs

Let G be a compact, connected, simply-connected, simple Lie group, *ie*. G = SU(*n*), Sp(2*n*), Spin(*n*), G₂, F₄, E₆, E₇, E₈. The WZW model on G then defines a family of CFTs, parametrised by the level *k*, whose symmetry algebra is the corresponding untwisted affine Kac-Moody algebra \hat{g}_k .

The consistent D-branes are quantised in bijection with the integrable highest weight modules of \hat{g}_k . These branes are conjugacy classes in the group passing through the maximal torus at

$$\exp\left(2\pi \mathrm{i}rac{\lambda+
ho}{k+\mathsf{h}^{ee}}
ight),$$

where λ is the corresponding dominant integral weight, ρ is the Weyl vector and h^{\vee} is the dual Coxeter number of g.

CFT Computations

Enter the Geometry

Geometric Computations

(日)

Discussion o

Brane Condensation

A low-energy effective field theory for branes has classical fields *A* taking values in \mathfrak{g} . If we have *m* coincident branes, a stack, then the components A^a with respect to a basis t_a of \mathfrak{g} are not just real functions, but $m \times m$ matrix-valued functions.

Alekseev, Recknagel and Schomerus wrote down such a field theory action and found its classical equations of motion:

$$\left[A^{a},\left[A^{a},A^{b}\right]-f_{abc}A^{c}\right]=0.$$

Two obvious solutions:

- $[A^a, A^b] = 0$ (translation),
- $A^a = \pi(t_a)$ (condensation).

Condensation requires $m = \dim \pi$.

CFT Computations

Enter the Geometry

Geometric Computations

(日)

Discussion o

Brane Condensation (cont.)

To interpret, let π_{λ} be the g-irrep with highest weight λ and $m = \dim \pi_{\lambda}$. Then, a stack of *m* branes labelled by μ can "condense" into the superposition:

$$\dim \pi_{\lambda} \operatorname{brane}_{\mu} \longrightarrow \bigoplus_{\nu} N_{\lambda \mu}^{\nu} \operatorname{brane}_{\nu}.$$

Here, $\pi_{\lambda} \otimes \pi_{\mu} = \bigoplus_{\nu} N_{\lambda \mu}^{\nu} \pi_{\nu}$.

CFT Computations

Enter the Geometry

Geometric Computations

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Discussion o

Brane Condensation (cont.)

To interpret, let π_{λ} be the g-irrep with highest weight λ and $m = \dim \pi_{\lambda}$. Then, a stack of *m* branes labelled by μ can "condense" into the superposition:

$$\dim \pi_{\lambda} \operatorname{brane}_{\mu} \longrightarrow \bigoplus_{\nu} N_{\lambda \mu}^{\nu} \operatorname{brane}_{\nu}.$$

Here, $\pi_{\lambda} \otimes \pi_{\mu} = \bigoplus_{\nu} N_{\lambda \mu}^{\nu} \pi_{\nu}$.

But this is a classical computation, valid for $k \to \infty$. To quantise, replace $N_{\lambda\mu}^{\nu}$ by the (level *k*) fusion coefficients $\mathcal{N}_{\lambda\mu}^{\nu}$. Evidence that this proposal is correct comes from the Kondo model, *à la* Affleck and Ludwig.

CFT Computations

Enter the Geometry

Geometric Computations

Discussion o

Brane Charges

Fredenhagen and Schomerus analysed charges Q_{λ} conserved under condensation:

$$\dim \pi_{\lambda} \ \mathsf{Q}_{\mu} = \sum_{\nu} \mathscr{N}_{\lambda \mu}^{\nu} \ \mathsf{Q}_{\nu}.$$

Taking
$$\mu=$$
 0 gives $\mathscr{N}_{\lambda\mu}{}^{
u}=\delta^{
u}_{\lambda}$, hence

 $Q_{\lambda} = \dim \pi_{\lambda}.$

But now we have to satisfy

$$\dim \pi_{\lambda} \dim \pi_{\mu} = \sum_{\nu} \mathscr{N}_{\lambda \mu}^{\nu} \dim \pi_{\nu},$$

which is not true in general. F&S proposed that this holds *modulo* some integer x giving the torsion order of the twisted K-group.

CFT Computations

Enter the Geometry

Geometric Computations

(日)

Discussion o

Example: SU(2)

Fusion defines a commutative associative operation on the integrable highest weight modules of $\hat{\mathfrak{g}}_k$. The fusion ring may then be described as a quotient of the representation ring of \mathfrak{g} .

For $\widehat{\mathfrak{sl}}(2)_k$, the fusion ring is the quotient by the ideal generated by $\pi_{(k+1)\Lambda}$ (Λ is the fundamental weight). Thus,

 $x = \dim \pi_{(k+1)\Lambda} = k+2.$

CFT Computations

Enter the Geometry

Geometric Computations

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Discussion o

Example: SU(2)

Fusion defines a commutative associative operation on the integrable highest weight modules of $\hat{\mathfrak{g}}_k$. The fusion ring may then be described as a quotient of the representation ring of \mathfrak{g} .

For $\widehat{\mathfrak{sl}}(2)_k$, the fusion ring is the quotient by the ideal generated by $\pi_{(k+1)\Lambda}$ (Λ is the fundamental weight). Thus,

 $x = \dim \pi_{(k+1)\Lambda} = k+2.$

This correctly gives the torsion order of the twisted K-theory

$$^{H}\mathsf{K}^{*}(\mathsf{SU}(2))\cong\mathbb{Z}_{k+2},$$

when *H* is a closed 3-form represented in $H^3(SU(2);\mathbb{Z}) \cong \mathbb{Z}$ by k+2.

CFT Computations

Enter the Geometry

Geometric Computations

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Discussion o

Example: SU(3)

For $\widehat{\mathfrak{sl}}(3)_k$, the fusion ring is the quotient by the ideal generated by $\pi_{(k+1)\Lambda_1}$ and $\pi_{(k+2)\Lambda_1}$, hence

$$x = \gcd\left\{\dim \pi_{(k+1)\Lambda_1}, \dim \pi_{(k+2)\Lambda_1}\right\}$$
$$= \gcd\left\{\binom{k+3}{2}, \binom{k+4}{2}\right\} = \frac{k+3}{\gcd\{k+3,2\}}.$$

CFT Computations

Enter the Geometry

Geometric Computations

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Discussion o

Example: SU(3)

For $\widehat{\mathfrak{sl}}(3)_k$, the fusion ring is the quotient by the ideal generated by $\pi_{(k+1)\Lambda_1}$ and $\pi_{(k+2)\Lambda_1}$, hence

$$x = \gcd\left\{\dim \pi_{(k+1)\Lambda_1}, \dim \pi_{(k+2)\Lambda_1}\right\}$$
$$= \gcd\left\{\binom{k+3}{2}, \binom{k+4}{2}\right\} = \frac{k+3}{\gcd\{k+3,2\}}.$$

The twisted K-theory was not known at the time, only that its torsion order divided k+3. Maldacena, Moore and Seiberg subsequently gave a physical computation, obtaining

 $^{H}\mathsf{K}^{*}(\mathsf{SU}(3))\cong\mathbb{Z}_{x}\oplus\mathbb{Z}_{x},$

when *H* is represented in $H^3(SU(3); \mathbb{Z}) \cong \mathbb{Z}$ by k+3.

CFT Computations

Enter the Geometry

Geometric Computations

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Discussion o

Example: SU(n)

Using induction and a modified Littlewood-Richardson rule for fusion products, Fredenhagen and Schomerus proved:

Theorem (Fredenhagen–Schomerus) For $\widehat{\mathfrak{sl}}(n)_k$, the maximal possible torsion order for the D-brane charge group is

 $x = \frac{k+n}{\gcd\{k+n, \operatorname{lcm}\{1, 2, \dots, n-1\}\}}.$

CFT Computations

Enter the Geometry

Geometric Computations

Discussion o

Example: SU(n)

Using induction and a modified Littlewood-Richardson rule for fusion products, Fredenhagen and Schomerus proved:

Theorem (Fredenhagen–Schomerus) For $\widehat{\mathfrak{sl}}(n)_k$, the maximal possible torsion order for the D-brane charge group is

$$x = \frac{k+n}{\gcd\{k+n, \operatorname{lcm}\{1, 2, \dots, n-1\}\}}.$$

Maldacena, Moore and Seiberg reproduced this result by imposing invariance under affine outer automorphisms and announced that Hopkins had shown that

$${}^{H}\mathsf{K}^{*}(\mathsf{SU}(n)) \cong \mathbb{Z}_{x} \otimes \bigwedge^{*} [w_{5}, w_{7}, \dots, w_{2n-1}] \sim \mathbb{Z}_{x}^{\oplus 2^{n-2}},$$

when *H* is represented in $H^3(SU(n); \mathbb{Z}) \cong \mathbb{Z}$ by k + n.

CFT Computations

Enter the Geometry

Geometric Computations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Discussion o

General Charge Groups

We simplified the proof of this theorem using better generators for the fusion ideal and generalised it to Sp(2n):

Theorem

For $\hat{\mathfrak{sp}}(2n)_k$, the maximal possible torsion order for the D-brane charge group is

 $x = \frac{k+n+1}{\gcd\{k+n+1, \operatorname{lcm}\{1, 2, \dots, n, 1, 3, \dots, 2n-1\}\}}.$

CFT Computations

Enter the Geometry

Geometric Computations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Discussion o

General Charge Groups

We simplified the proof of this theorem using better generators for the fusion ideal and generalised it to Sp(2n):

Theorem

For $\hat{\mathfrak{sp}}(2n)_k$, the maximal possible torsion order for the D-brane charge group is

$$x = \frac{k+n+1}{\gcd\{k+n+1, \operatorname{lcm}\{1, 2, \dots, n, 1, 3, \dots, 2n-1\}\}}$$

Moreover, we conjectured (based on numerics) that in all other cases,

$$x = \frac{k + h^{\vee}}{\gcd\{k + h^{\vee}, \operatorname{lcm}\{1, 2, \dots, h - 1\}\}}$$

CFT Computations

Enter the Geometry

Geometric Computations

Discussion o

Twisted K-Theory Computations

Shortly thereafter, Braun showed that when the fusion ideal for $\hat{\mathfrak{g}}_k$ is generated by $r = \operatorname{rank} \mathfrak{g}$ elements, then

$${}^{H}\mathsf{K}^{*}(\mathsf{G})\cong\mathbb{Z}_{x}^{\oplus2^{r-1}},$$

and the determination of x proceeds \dot{a} la Fredenhagen and Schomerus.

Douglas then showed directly (following Hopkins) that

$${}^{H}\mathsf{K}^{*}(\mathsf{G})\cong\mathbb{Z}_{x}\otimes\bigwedge^{*}[w_{1},w_{2},\ldots,w_{r-1}],$$

and he computed x in all cases except $G = F_4, E_6, E_7, E_8$. He then went on to compute generators for the fusion ideal, using Freed-Hopkins-Teleman, in every case!

CFT Computations

Enter the Geometry

Geometric Computations

Discussion o

Where do we stand?

We have a physical computation of brane charges and the torsion orders of their charge groups. We also have the twisted K-theories. Agreement has been reached!

But, the physics has largely ignored the geometric nature of the problem. Instead, the computations rest upon a conjectured quantisation of a classical low-energy effective field theory.

We have seen that physicists had earlier predicted a geometric form for the brane charge. For (the nicest) branes on our Lie groups, we should therefore have

$$\int_{C_{\lambda}} e^{F_{\lambda}} \mathrm{Td}\left(T(C_{\lambda})\right) \stackrel{?}{=} \dim \pi_{\lambda},$$

where C_{λ} is the conjugacy class (brane) through $\exp(2\pi i (\lambda + \rho)/(k + h^{\vee}))$, F_{λ} is a certain closed 2-form on the brane, and π_{λ} is the irrep with highest weight λ .

CFT Computations

Enter the Geometry

Geometric Computations

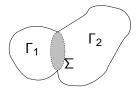
Discussion

WZW Models — Closed Strings

The closed string WZW action consists of a standard kinetic term and a Wess-Zumino term:

$$S_{WZ} = 2\pi i \int_{\tilde{g}(\Gamma)} H, \qquad H = \frac{k}{24\pi^2} \kappa(\theta \wedge d\theta).$$

 $\tilde{g}: \Gamma \to G$ extends the string map $g: \Sigma \to G$ in the sense that $\partial \Gamma = \Sigma$ (note $H_2(G; \mathbb{Z}) = 0$). As *H* is cohomologically non-trivial, [H] = k in $H^3(G; \mathbb{Z})$, the action depends upon the choice of Γ .



However, the Feynman amplitudes e^{-S} are well-defined.

CFT Computations

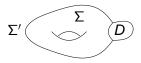
Enter the Geometry

Geometric Computations

Discussion

WZW Models — Open Strings

For open strings, the worldsheet Σ has non-trivial boundary, $\partial \Sigma = S^1$. There are no Γ with $\partial \Gamma = \Sigma$, so extend Σ to $\Sigma' = \Sigma + D$ and $g: \Sigma \to G$ to $g': \Sigma' \to G$ (note $H_2(G; \mathbb{Z}) = 0$).



We can now define the WZ term by extending g' to $\tilde{g}' : \Gamma' \to G$, where $\partial \Gamma' = \Sigma'$. This is then modified as follows:

$$S_{WZ} = 2\pi i \left[\int_{\tilde{g}'(\Gamma)} H - \int_{g'(D)} \omega \right].$$

Here, ω is a 2-form on (a tubular neighbourhood of) g'(D) where $d\omega = H$. It "cancels" the effect of patching Σ with D.

CFT Computations

Enter the Geometry

Geometric Computations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Discussion

Boundary Conditions

The precise form of ω depends upon the boundary conditions chosen for the open string endpoints. We take

$$\partial g = -\operatorname{Ad}(g)\overline{\partial}g,$$

which implies that the D-branes are conjugacy classes *C* and that ω is the 2-form on *C* given by

$$g^*\omega = rac{-k}{16\pi^2}\kappa\left(g^{-1}\mathrm{d}g \wedge rac{\mathrm{id}+\mathrm{Ad}(g)}{\mathrm{id}-\mathrm{Ad}(g)}g^{-1}\mathrm{d}g
ight).$$

CFT Computations

Enter the Geometry

Geometric Computations

Discussion o

Boundary Conditions

The precise form of ω depends upon the boundary conditions chosen for the open string endpoints. We take

$$\partial g = -\operatorname{Ad}(g)\overline{\partial}g,$$

which implies that the D-branes are conjugacy classes *C* and that ω is the 2-form on *C* given by

$$g^*\omega = rac{-k}{16\pi^2}\kappa\left(g^{-1}\mathrm{d}g\wedgerac{\mathrm{id}+\mathrm{Ad}(g)}{\mathrm{id}-\mathrm{Ad}(g)}g^{-1}\mathrm{d}g
ight).$$

Now, *g* extends to *g*' since $H_1(C; \mathbb{Z}) = 0$ and *g*' extends to \tilde{g}' since $H_2(G; \mathbb{Z}) = 0$. Equivalently, Σ needs to be a boundary *modulo C*, which follows from $H_2(G, C; \mathbb{Z}) = 0$.

The amplitudes are well-defined if $(H, \omega) \in H^3(G, C; \mathbb{Z})$. This quantises the D-branes: $C \to C_{\lambda}$, $\omega \to \omega_{\lambda}$.

CFT Computations Enter th

Enter the Geometry

Geometric Computations

Discussion o

The U(1)-flux F_{λ}

The quantised branes are the conjugacy classes C_{λ} passing through exp $(2\pi i (\lambda + \rho) / (k + h^{\vee}))$, hence each is homeomorphic to G/T. *H* is exact on each brane, so physicists write H = dB and "define" a closed 2-form by

$$F_{\lambda} = B - \omega_{\lambda}$$

What they mean is take the closed 2-form whose periods are

$$\int_{S} F_{\lambda} = \int_{S} (B - \omega_{\lambda}) = \int_{Z} H - \int_{S} \omega_{\lambda} \qquad (\partial Z = S),$$

from which we get $F_{\lambda} \in H^2(C_{\lambda}; \mathbb{Z})$. Note that this is still ambiguous up to the periods of *H*.

CFT Computations

Enter the Geometry

Geometric Computations

Discussion o

Example: SU(2)

We need to evaluate the following integral:

$$\mathsf{Q}_{\lambda} = \int_{C_{\lambda}} \mathsf{e}^{F_{\lambda}} \mathrm{Td}\left(\mathcal{T}(C_{\lambda})\right) = \int_{S^{2}} \left(F_{\lambda} + \frac{1}{2} c_{1}\left(\mathcal{T}(S^{2})\right)\right).$$

Parametrising SU(2) explicitly to get *H* and ω_{λ} , we find that $\int F_{\lambda} = (\lambda, \alpha)$. Thus,

$$\mathsf{Q}_{\lambda} = (\lambda, \alpha) + \mathsf{1} = \frac{(\lambda + \rho, \alpha)}{(\rho, \alpha)} = \dim \pi_{\lambda}.$$

This computation is due to Bachas–Douglas–Schweigert; Stanciu; Alekseev–Schomerus; ...

Moreover, if *H* is represented by k + 2 in cohomology, the period of F_{λ} is ambiguous up to factors of k + 2, hence the charge is only well-defined *modulo* k + 2.

(日)

CFT Computations

Enter the Geometry

Geometric Computations

Discussion o

Required Knowledge

Our branes are homeomorphic to G/T, so we'll need to know about the cohomology rings of this space.

Fact (Bott)

The (co)homology ring of G/T is torsion-free and concentrated in even degree. It has a natural basis in bijection with the Weyl group W of G such that the degree of each basis element is twice the length of the corresponding Weyl transformation.

Now, we have a natural sequence of isomorphisms:

 $\mathsf{H}_2(\mathsf{G}/\mathsf{T};\mathbb{Z})\cong \pi_2(\mathsf{G}/\mathsf{T})\cong \pi_1(\mathsf{T})\cong \ker(\exp\colon \mathfrak{t}\to\mathsf{T})=\mathsf{Q}^\vee.$

The second integral homology of our branes may be identified with the coroot lattice of G.

CFT Computations

Enter the Geometry

Geometric Computations

Discussion o

Required Knowledge (cont.)

Likewise, the second integral cohomology of our branes may be identified with the weight lattice of G:

 $H^{2}(G/T;\mathbb{Z})\cong Hom(Q^{\vee},\mathbb{Z})=P.$

With this formalism, one can sharpen Bott's result to give the ring structure, at least over the rationals.

Fact (Borel)

The rational cohomology ring of G/T has the form

$$H^*(G/T;\mathbb{Q}) \cong \frac{\mathbb{Q}[\Lambda_1,\Lambda_2,\ldots,\Lambda_r]}{I_+},$$

where r is the rank of G, Λ_i denotes the fundamental weights, and I_+ is the ideal of W-invariant polynomials of positive degree.

CFT Computations

Enter the Geometry

Geometric Computations

Discussion

Required Knowledge (cont.)

The splitting principle states that as far as characteristic classes are concerned, any vector bundle may be replaced by an appropriate sum of line bundles. If *E* splits as $\bigoplus_{i=1}^{n} L_i$, then the Todd class of *E* is

$$\operatorname{Td}(E) = \prod_{i=1}^{n} \frac{c_1(L_i)}{1 - e^{-c_1(L_i)}}.$$

The tangent bundle of G/T is a complex vector bundle whose rank is the number $|\Delta_+|$ of positive roots of G. This suggests:

Fact (Borel–Hirzebruch)

The first Chern classes of the line bundles associated with T(G/T) under the splitting principle are, in Borel's formalism, precisely the positive roots of G.

CFT Computations

Enter the Geometry

Geometric Computations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Discussion o

Computing the Charge

Note first that in Borel's formalism, $F_{\lambda} \in H^2(G/T; \mathbb{Z})$ is represented by $\lambda \in P$. We therefore compute

$$Q_{\lambda} = \int_{G/T} e^{F_{\lambda}} Td(T(G/T)) = \int_{G/T} e^{\lambda} \prod_{\alpha \in \Delta_{+}} \frac{\alpha}{1 - e^{-\alpha}}$$
$$= \int_{G/T} \frac{e^{\lambda}}{\prod_{\alpha \in \Delta_{+}} (1 - e^{-\alpha})} \prod_{\alpha \in \Delta_{+}} \alpha.$$
(1)

Now, the product of the roots is a volume form:

$$\int_{G/T} \prod_{\alpha \in \Delta_{+}} \alpha = \int_{G/T} c_{|\Delta_{+}|} \left(\mathcal{T}(G/T) \right) = \chi(G/T) = |W|.$$
 (2)

We therefore need to extract the degree zero terms in the rest of the integrand of (1).

CFT Computations

Enter the Geometry

Geometric Computations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Discussion o

Computing the Charge (cont.)

This is hard! The factor

$$rac{{ extbf{e}}^{\lambda}}{\prod_{lpha\in\Delta_{+}}\left(1-{ extbf{e}}^{-lpha}
ight)}$$

has an order $|\Delta_+|$ pole at the origin. We recognise it as the character of the (infinite-dimensional!) Verma module of highest weight λ .

To obtain a better character, note that the volume form is anti-invariant under W:

$$w\left(\prod_{lpha\in\Delta_+}lpha
ight)=(-1)^{\ell(w)}\prod_{lpha\in\Delta_+}lpha=\det w\ \prod_{lpha\in\Delta_+}lpha.$$

It follows that antisymmetrising (1) will not change the value of the integral.

CFT Computations

Enter the Geometry

Geometric Computations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Discussion

Computing the Charge (cont.)

But, antisymmetrisation gives the Weyl character formula for the irreducible module of highest weight λ :

$$\begin{split} \mathsf{Q}_{\lambda} &= \frac{1}{|\mathsf{W}|} \sum_{w \in \mathsf{W}} \det w \int_{\mathsf{G}/\mathsf{T}} w \left(e^{\lambda} \prod_{\alpha \in \Delta_{+}} \frac{\alpha}{1 - e^{-\alpha}} \right) \\ &= \frac{1}{|\mathsf{W}|} \int_{\mathsf{G}/\mathsf{T}} \sum_{w \in \mathsf{W}} \det w \; w \left(\frac{e^{\lambda + \rho}}{\prod_{\alpha \in \Delta_{+}} \left(e^{\alpha/2} - e^{-\alpha/2} \right)} \prod_{\alpha \in \Delta_{+}} \alpha \right) \\ &= \frac{1}{|\mathsf{W}|} \int_{\mathsf{G}/\mathsf{T}} \frac{\sum_{w \in \mathsf{W}} \det w \; e^{w(\lambda + \rho)}}{\prod_{\alpha \in \Delta_{+}} \left(e^{\alpha/2} - e^{-\alpha/2} \right)} \prod_{\alpha \in \Delta_{+}} \alpha. \end{split}$$

Extracting the degree zero term and using (2) then gives

$$\mathsf{Q}_{\lambda} = \frac{\dim \pi_{\lambda}}{|\mathsf{W}|} \int_{\mathsf{G}/\mathsf{T}} \prod_{\alpha \in \Delta_+} \alpha = \dim \pi_{\lambda}.$$

CFT Computations

Enter the Geometry

Geometric Computations

Discussion

Discussion

Borel's characterisation of the cohomology ring gives

$$\mathsf{Q}_{\lambda} = \int_{\mathsf{G}/\mathsf{T}} \mathsf{e}^{\lambda+
ho}$$

- The conjugacy class C_λ only determines λ up to the shifted action of the affine Weyl group. The charge must therefore be invariant under this action. When G ≠ Sp(2n), this is equivalent the dimension constraints of Fredenhagen and Schomerus!
- The periods of the 2-form F_{λ} are only determined up to periods of the 3-form H, hence the charge group must be invariant under this ambiguity. This only affects the charge group torsion when G = Sp(2n). Curiously, certain symplectic groups now have torsion order half that of the K-theory!?!