Lattices in complete Kac-Moody groups

Inna (Korchagina) Capdeboscq and Anne Thomas

University of Warwick and University of Sydney

IGA/AMSI Workshop on Dirac Operators in Geometry, Topology, Representation Theory, and Physics 19 October 2010

 $\begin{array}{c} \mbox{Introduction and question} \\ \mbox{Lattices in $SL(2, K)$} \\ \mbox{Tree lattices} \\ \mbox{Lattices in complete Kac-Moody groups} \end{array}$

Locally compact groups Lattices Question

・ロン ・回と ・ヨン・

æ

Locally compact groups

${\it G}$ locally compact topological group

Examples

1.
$$G = (\mathbb{R}^n, +)$$

2. $G = SL(2, \mathbb{R}) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \middle| a, b, c, d \in \mathbb{R}, ad - bc = 1 \right\}$

Locally compact groups Lattices Question

Haar measure

G locally compact has left-invariant Haar measure μ μ is unique up to scalar multiplication

Examples

- 1. Lebesgue measure on $G = (\mathbb{R}^n, +)$
- 2. $G = SL(2, \mathbb{R})$ acts on upper half-plane

$$\mathcal{U} = \{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0\}$$

イロト イポト イヨト イヨト

by Möbius transformations $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$ Stabiliser of *i* is maximal compact $K = SO(2, \mathbb{R})$ Normalise μ to be compatible with this action

Locally compact groups Lattices Question

イロン イヨン イヨン イヨン

Lattices

- G locally compact, Haar measure μ
- A subgroup $\Gamma < G$ is a lattice if
 - Γ is discrete
 - $\mu(\Gamma \setminus G) < \infty$.
- A lattice $\Gamma < G$ is
 - uniform (or cocompact) if $\Gamma \setminus G$ is compact
 - otherwise, nonuniform (or noncocompact).

Locally compact groups Lattices Question

イロン イヨン イヨン イヨン

æ

Uniform example

Example \mathbb{Z}^n is a uniform lattice in \mathbb{R}^n

$$\mu(\mathbb{Z}^n \setminus \mathbb{R}^n) = \mu(n ext{-torus}) = 1$$

Locally compact groups Lattices Question

・ロン ・回と ・ヨン ・ヨン

æ

Nonuniform example

Example

 $\Gamma = SL(2,\mathbb{Z})$ is a nonuniform lattice in $G = SL(2,\mathbb{R})$

 $\mu(\Gamma \setminus G)$ = area of shaded hyperbolic triangle = $\frac{\pi}{3}$

Inna (Korchagina) Capdeboscq and Anne Thomas Lattices in complete Kac–Moody groups

Locally compact groups Lattices Question

イロト イポト イヨト イヨト

Question

What is the set of covolumes of lattices in G? That is, find

$$\{\mu(\Gamma ackslash G): \Gamma \text{ a lattice in } G\} \subseteq (0,\infty)$$

Uniform/nonuniform covolumes? Lower bound?

1.
$$G = SL(2, K)$$
, K a local field

- 2. G the automorphism group of a locally finite tree
- 3. G a rank 2 complete Kac-Moody group over a finite field

Lattices in $SL(2, \mathbb{R})$ Volumes of hyperbolic 3-manifolds, 3-orbifolds Nonarchimedean cases Symmetric spaces and buildings

・ロト ・回ト ・ヨト ・ヨト

Lattices in $SL(2,\mathbb{R})$

Starting point for study of covolumes:

Theorem (Siegel, 1945)

Let $G = SL(2, \mathbb{R})$. For all lattices Γ in G, $\mu(\Gamma \setminus G) \ge \frac{\pi}{21}$. This minimum is realised by a unique lattice (up to conjugacy in G), the (2,3,7)-triangle group, which is uniform.

Lattices in $SL(2, \mathbb{R})$ Volumes of hyperbolic 3-manifolds, 3-orbifolds Nonarchimedean cases Symmetric spaces and buildings

Volumes of hyperbolic 3-manifolds, 3-orbifolds

{covolumes of torsion-free lattices in $PSL(2, \mathbb{C})$ }

= {volumes of orientable hyperbolic 3-manifolds}

{covolumes of lattices in $PSL(2, \mathbb{C})$ }

= {volumes of orientable hyperbolic 3-orbifolds}

Much studied e.g. recent work by Gabai–Meyerhoff–Milley, building on results by many others.

Lattices in $SL(2, \mathbb{R})$ Volumes of hyperbolic 3–manifolds, 3–orbifolds Nonarchimedean cases Symmetric spaces and buildings

イロト イポト イヨト イヨト

Nonarchimedean cases

Theorem (Lubotzky 1990, Lubotzky–Weigel 1999)

Found uniform and nonuniform lattices of minimal covolume in G = SL(2, K), where K a nonarchimedean local field e.g. $K = \mathbb{Q}_p$, $K = \mathbb{F}_q((t^{-1}))$. Lattice of minimal covolume in $G = SL(2, \mathbb{F}_q((t^{-1})))$ is the Nagao lattice $SL(2, \mathbb{F}_q[t])$, nonuniform.

Lattices in $SL(2, \mathbb{R})$ Volumes of hyperbolic 3-manifolds, 3-orbifolds Nonarchimedean cases Symmetric spaces and buildings

Symmetric spaces and buildings

- Study real Lie groups and their lattices via action on associated symmetric space
 e.g. upper half-plane is symmetric space for SL(2, R)
- For nonarchimedean cases, use Bruhat−Tits building e.g. the (q + 1)−regular tree T_{q+1} is the building for SL(2, F_q((t)))

 $\operatorname{Aut}(T)$ Lattices in $\operatorname{Aut}(T)$ Covolumes of tree lattices Faithful amalgams and Goldschmidt's Theorem

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

Tree lattices

Aut(T) Lattices in Aut(T) Covolumes of tree lattices Faithful amalgams and Goldschmidt's Theorem

イロト イポト イヨト イヨト

Automorphism groups of trees

T locally finite tree e.g. T_3 the 3-regular tree

 $G = \operatorname{Aut}(T)$, with compact-open topology, is locally compact gp. G nondiscrete $\iff \exists \{g_n\} \subset G$ s.t. g_n fixes $\operatorname{Ball}(T, n), g_n \neq 1$.

Example

$$G = Aut(T_3)$$
 nondiscrete.

 $\operatorname{Aut}(\mathcal{T})$ Lattices in $\operatorname{Aut}(\mathcal{T})$ Covolumes of tree lattices Faithful amalgams and Goldschmidt's Theorem

・ロン ・回と ・ヨン ・ヨン

Lattices in Aut(T)

T locally finite tree, G = Aut(T) compact-open topology

 $\Gamma < G$ is discrete \iff Γ acts with finite stabilisers.

Theorem (Serre)

Can normalise Haar measure μ on G so that \forall discrete $\Gamma < G$

$$\mu(\Gamma \backslash G) = \sum_{v \in Vert(\Gamma \backslash T)} \frac{1}{|Stab_{\Gamma}(\tilde{v})|} \leq \infty$$

and Γ uniform $\iff \Gamma \setminus T$ compact.

 $\operatorname{Aut}(\mathcal{T})$ Lattices in $\operatorname{Aut}(\mathcal{T})$ Covolumes of tree lattices Faithful amalgams and Goldschmidt's Theorem

イロト イヨト イヨト イヨト

Examples of tree lattices

Example Uniform lattice in $G = \operatorname{Aut}(T_3)$ $\Gamma = \pi_1(\operatorname{graph} \operatorname{of} \operatorname{groups}) \cong C_3 * C_3$ $\mu(\Gamma \setminus G) = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$

 C_3

 $\operatorname{Aut}(\mathcal{T})$ Lattices in $\operatorname{Aut}(\mathcal{T})$ Covolumes of tree lattices Faithful amalgams and Goldschmidt's Theorem

・ロト ・日本 ・モート ・モート

Examples of tree lattices

Example Nonuniform lattice in $G = \operatorname{Aut}(T_3)$ $\Gamma = \pi_1(\operatorname{graph} of \operatorname{groups}) \cong C_3 * (\cdots)$ $\mu(\Gamma \setminus G) = \frac{1}{3} + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots = \frac{4}{3}$

 $\operatorname{Aut}(T)$ Lattices in $\operatorname{Aut}(T)$ **Covolumes of tree lattices** Faithful amalgams and Goldschmidt's Theorem

イロト イポト イヨト イヨト

Covolumes of tree lattices

Well-understood: see Bass-Lubotzky "Tree Lattices" (2001)

Theorem (Bass–Kulkarni, 1990) $G = \operatorname{Aut}(T_m), m \ge 3, admits \text{ towers of uniform lattices}$ $\Gamma_0 \le \Gamma_1 \le \Gamma_2 \le \cdots \le \Gamma_i \le \cdots \le G$

Corollary

No positive lower bound on covolumes of (uniform) lattices in G.

 $\operatorname{Aut}(T)$ Lattices in $\operatorname{Aut}(T)$ Covolumes of tree lattices Faithful amalgams and Goldschmidt's Theorem

イロト イポト イヨト イヨト

Faithful amalgams

Theorem (Bass–Kulkarni, 1990) $G = Aut(T_m), m \ge 3$, admits towers of uniform lattices

$$\Gamma_0 < \Gamma_1 < \Gamma_2 < \cdots < \Gamma_i < \cdots < G$$

When *m* composite, Γ_i are faithful (m, m)-amalgams i.e.

- $\Gamma_i = A_i *_{C_i} B_i$ with A_i , B_i , C_i finite
- $[A_i : C_i] = [B_i : C_i] = m$

no common normal subgroup

 $\operatorname{Aut}(\mathcal{T})$ Lattices in $\operatorname{Aut}(\mathcal{T})$ Covolumes of tree lattices Faithful amalgams and Goldschmidt's Theorem

・ロン ・回と ・ヨン ・ヨン

Connection to Goldschmidt's Theorem

Theorem (Bass–Kulkarni, 1990) $G = Aut(T_m), m \ge 3$, admits towers of uniform lattices $\Gamma_0 < \Gamma_1 < \Gamma_2 < \cdots < \Gamma_i < \cdots < G$

When *m* composite, Γ_i are faithful (m, m)-amalgams.

Goldschmidt's Theorem (1980) Exactly 15 faithful (3,3)-amalgams: $C_3 * C_3$, $C_6 * C_2 S_3$, $S_3 * C_2 S_3$, ...

Conjecture (Goldschmidt–Sims): When p prime, only finitely many faithful (p, p)–amalgams.

Kac-Moody groups Incomplete Kac-Moody groups Complete Kac-Moody groups and their lattices Results in rank 2

・ロン ・回 と ・ ヨ と ・ ヨ と

Kac–Moody groups

In 1980s, Tits constructed functor

{Kac-Moody Lie algebras over k} \rightarrow {Kac-Moody groups over k}

Two flavours of Kac–Moody groups over $k = \mathbb{F}_q$ a finite field

- incomplete/minimal: the result of the functor e.g. ∧ = SL(n, 𝔽_q[t, t⁻¹])
- ► complete/topological: completion of A in some topology e.g. G = SL(n, F_q((t⁻¹)))

In general, linear representations are either not known, or do not exist (Caprace–Rémy 2009).

Kac–Moody groups Incomplete Kac–Moody groups Complete Kac–Moody groups and their lattices Results in rank 2

소리가 소문가 소문가 소문가

Incomplete Kac–Moody groups

A an incomplete Kac–Moody group over \mathbb{F}_q e.g. $SL(n, \mathbb{F}_q[t, t^{-1}])$

- Λ is infinite but has structure similar to finite groups of Lie type
 - generated by root subgroups $U_{lpha} \cong (\mathbb{F}_q, +)$
 - commutator relations
- A has twin Bruhat−Tits buildings X₊ ≅ X_− from twin BN−pairs (B_±, N).
- ▶ Parabolic subgroups P_± in Λ generalise SL(n, 𝔽_q[t^{±1}]) in SL(n, 𝔽_q[t, t⁻¹]).

Kac–Moody groups Incomplete Kac–Moody groups Complete Kac–Moody groups and their lattices Results in rank 2

Complete Kac–Moody groups

An incomplete Kac–Moody group Λ over \mathbb{F}_q has two completions:

 G_+ and G_- , with $G_+ \cong G_-$

e.g. $\Lambda = SL(n, \mathbb{F}_q[t, t^{-1}])$ is completed to $G_{\pm} = SL(n, \mathbb{F}_q((t^{\pm 1})))$

The complete group $G_+ \cong G_-$ is locally compact, totally disconnected.

Work of Carbone-Garland, Caprace-Rémy, Rémy, Rémy-Ronan:

 G₊ has BN-pair (B̂₊, N) where B̂₊ is completion of B₊ < Λ, and Bruhat−Tits building X̂₊ ≅ X₊, same building as for Λ.

• Kernel of G_+ action on X_+ is $Z(G_+) = Z(\Lambda)$, finite group. and similarly for G_- .

Kac-Moody groups Incomplete Kac-Moody groups Complete Kac-Moody groups and their lattices Results in rank 2

イロト イポト イヨト イヨト

Lattices in complete Kac-Moody groups

Let $G = G_+$ be a complete Kac–Moody group over \mathbb{F}_q , with building X.

Lattices in G characterised same way as lattices in Aut(T) i.e. subgroups $\Gamma < G$ acting on X with finite stabilisers so that

$$\mu(\Gamma \backslash G) = \sum_{v \in \mathsf{Vert}(\Gamma \backslash X)} \frac{1}{|\mathsf{Stab}_{\Gamma}(\widetilde{v})|} < \infty$$

and Γ uniform iff Γ acts cocompactly on X.

Kac–Moody groups Incomplete Kac–Moody groups Complete Kac–Moody groups and their lattices Results in rank 2

소리가 소문가 소문가 소문가

Lattices in complete Kac-Moody groups

Let $G = G_+$ be a complete Kac–Moody group over \mathbb{F}_q , with building X.

Lattices in G characterised same way as lattices in Aut(T) i.e. subgroups $\Gamma < G$ acting on X with finite stabilisers so that

$$\mu(\Gamma \backslash G) = \sum_{\nu \in \mathsf{Vert}(\Gamma \backslash X)} \frac{1}{|\mathsf{Stab}_{\Gamma}(\tilde{\nu})|} < \infty$$

Very few lattices in G known.

e.g. generalising the Nagao lattice $SL(n, \mathbb{F}_q[t^{\pm}1])$ in $SL(n, \mathbb{F}_q((t^{\pm}1)))$:

Theorem (Rémy-Ronan, 2007)

 $P_{\pm} < \Lambda$ is nonuniform lattice in G_{\mp} .

Kac–Moody groups Incomplete Kac–Moody groups Complete Kac–Moody groups and their lattices Results in rank 2

Lattices in complete Kac-Moody groups of rank 2

Theorem (Capdeboscq-T, 2010) Let $G = G_+$ be a complete Kac-Moody group over \mathbb{F}_q with symmetric generalised Cartan matrix $\begin{pmatrix} 2 & -m \\ -m & 2 \end{pmatrix}$, $m \ge 2$. Let T < G be a fixed maximal split torus. Then

$$\min\{\mu(\Gamma \setminus G) : \Gamma \text{ a lattice in } G\} = \frac{2}{(q+1)(q-1)|T|}$$

and this min. is realised by the nonunif. lattice P_{-} . Moreover for $q \ge 514$,

$$\min\{\mu(\Gamma \setminus G) : \Gamma \text{ a uniform lattice in } G\} = \frac{2}{(q+1)|Z(G)|\delta}$$

with $\delta \in \{1, 2, 4\}$, and we find the unif. lattice realising this min. Inna (Korchagina) Capdebosed and Anne Thomas Lattices in complete Kac-Moody groups

Kac-Moody groups Incomplete Kac-Moody groups Complete Kac-Moody groups and their lattices Results in rank 2

소리가 소문가 소문가 소문가

Edge-transitive lattices

G has building X the (q + 1)-regular tree.

What we did first was:

Theorem (Capdeboscq-T, 2009)

Classification of the uniform lattices in G which act transitively on the edges of X.

e.g. when q = 2, the only edge-transitive uniform lattice is $C_3 * C_3$.

We then showed that uniform lattices of minimal covolume are edge-transitive (most of the time), then considered nonuniform lattices.

Kac-Moody groups Incomplete Kac-Moody groups Complete Kac-Moody groups and their lattices Results in rank 2

イロト イポト イヨト イヨト

Criterion for uniform lattices

How to recognise uniform lattices?

Theorem (The Godement Criterion)

Let G be a real semisimple Lie group. Then a lattice Γ in G is nonuniform if and only if Γ contains nontrivial unipotent elements.

This is proved using

Fact

For any locally compact group G, any uniform lattice Γ in G and any $\gamma \in \Gamma$, the set

$$\gamma^{\mathsf{G}} := \{ \mathsf{g} \gamma \mathsf{g}^{-1} \mid \mathsf{g} \in \mathsf{G} \}$$

is closed.

Kac–Moody groups Incomplete Kac–Moody groups Complete Kac–Moody groups and their lattices Results in rank 2

Godement Criterion in affine case

In the "affine case" $G = SL(2, \mathbb{F}_q((t^{-1})))$ considered by Lubotzky and Lubotzky–Weigel,

 ${nontrivial unipotents} = {p-elements}$

where $q = p^a$, p prime.

Suppose lattice $\Gamma < G = SL(2, \mathbb{F}_q((t^{-1})))$ contains *p*-element *u*.

Then not hard to find $g \in G$ so that $g^n u g^{-n}
ightarrow 1_G$

e.g.
$$u = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
, $g = \begin{pmatrix} t^{-1} & 0 \\ 0 & t \end{pmatrix}$, $g^n u g^{-n} = \begin{pmatrix} 1 & t^{-2n} \\ 0 & 1 \end{pmatrix}$

Hence u^G not closed, so Γ nonuniform.

Conversely, if Γ nonuniform, Γ has finite subgroups of unbounded order, hence contains a *p*-element.

Kac–Moody groups Incomplete Kac–Moody groups Complete Kac–Moody groups and their lattices Results in rank 2

- 4 回 2 - 4 □ 2 - 4 □

Godement Criterion for rank 2 Kac–Moody groups

Theorem (Capdeboscq-T, 2009)

Let G be a complete rank 2 Kac–Moody group over \mathbb{F}_q , $q = p^a$ prime, with symmetric generalised Cartan matrix. Then a lattice Γ in G is nonuniform if and only if Γ contains p–elements.

By careful analysis of action of root groups on the tree X, we show that:

- a p-element in G fixes an end of the tree X.
- ► the pointwise stabiliser in *G* of an apartment of *X* is torsion-free.

Using structure of end stabilisers in G, it follows that for each p-element $u \in G$, there is a $g \in G$ such that $g^n u g^{-n} \to 1_G$. Hence a lattice containing p-elements is nonuniform.