# Spherical T-duality

Peter Bouwknegt

Mathematical Sciences Institute Australian National University

Australia-Japan Geometry, Analysis and their Applications IGA, University of Adelaide, 19-23 Oct 2015

### References

P. Bouwknegt, J. Evslin and V. Mathai, *Spherical T-duality*, [arXiv:1405.5844 [hep-th]].

P. Bouwknegt, J. Evslin and V. Mathai, Spherical T-duality II: An infinity of spherical T-duals for non-principal SU(2)-bundles, [arXiv:1409.1296 [hep-th]].

P. Bouwknegt, J. Evslin and V. Mathai, Spherical T-Duality and the spherical Fourier-Mukai transform, [arXiv:1502.04444 [hep-th]].

## Introduction

|                                                                            | String Theory                     |  |
|----------------------------------------------------------------------------|-----------------------------------|--|
|                                                                            | $M_4 \times Y_6$                  |  |
|                                                                            | Complex manifold                  |  |
| $\mathcal{N}=1$                                                            | Kähler                            |  |
| $egin{array}{c} \mathcal{N}=1 \ \mathcal{N}=2 \ \mathcal{N}=3 \end{array}$ | Calabi-Yau                        |  |
| $\mathcal{N}=3$                                                            | Hyper-Kähler                      |  |
|                                                                            | S <sup>1</sup>                    |  |
|                                                                            | Strings                           |  |
|                                                                            | $H\in \mathrm{H}^3(Y,\mathbb{Z})$ |  |
|                                                                            | Mirror Symmetry / T-duality       |  |
|                                                                            | $S^1 \longrightarrow S^3$         |  |
|                                                                            |                                   |  |
|                                                                            | S <sup>2</sup>                    |  |

## Introduction

|                 | String Theory                     | M-Theory / 11D SUGR               |
|-----------------|-----------------------------------|-----------------------------------|
|                 | $M_4 	imes Y_6$                   | $M_4 \times Y_7$                  |
|                 | Complex manifold                  | Contact manifold                  |
| $\mathcal{N}=1$ | Kähler                            | Sasakian                          |
| $\mathcal{N}=2$ | Calabi-Yau                        | Sasaki-Einstein                   |
| $\mathcal{N}=3$ | Hyper-Kähler                      | 3-Sasakian                        |
|                 | S <sup>1</sup>                    | $S^3$                             |
|                 | Strings                           | 2- and 5-branes                   |
|                 | $H\in \mathrm{H}^3(Y,\mathbb{Z})$ | $H\in \mathrm{H}^7(Y,\mathbb{Z})$ |
|                 | Mirror Symmetry / T-duality       | Spherical T-duality?              |
|                 | $S^1 \longrightarrow S^3$         | $S^3 \longrightarrow S^7$         |
|                 | <b>V</b>                          | $\downarrow$                      |
|                 | S <sup>2</sup>                    | S <sup>4</sup>                    |

# Example – Aloff-Wallach spaces

Denote 
$$W_{k,l}=\mathrm{SU}(3)/\mathrm{U}(1)_{k,l},\,\mathrm{U}(1)_{k,l}=\mathrm{diag}(z^k,z^l,z^{-(k+l)})$$
 
$$S^3/\mathbb{Z}_{|k+l|}\longrightarrow W_{k,l}$$
 
$$\downarrow$$
 
$$\mathbb{CP}^2$$

This is a (non-principal)  $S^3$ -bundle iff |k+I|=1. We have  $H^7(W_{k,I},\mathbb{Z})\cong\mathbb{Z}$ .

We find a duality

$$(W_{p,1-p},h=-(\widehat{p}^2-\widehat{p}+1))\quad\longleftrightarrow\quad (W_{\widehat{p},1-\widehat{p}},\widehat{h}=-(p^2-p+1))$$

### **Fourier Transform**

Fourier series for  $f: S^1 \to \mathbb{R}$ 

$$\widehat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx$$

$$f(x) = \sum_{n \in \mathbb{Z}} \widehat{f}(n) e^{inx}$$

Fourier transform for  $f: \mathbb{R} \to \mathbb{R}$ 

$$\widehat{f}(p) = rac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{-ipx} dx$$
 $f(x) = \int_{-\infty}^{\infty} \widehat{f}(p) e^{ipx} dp$ 

#### Fourier Transform - cont'd

More generally, for G a locally compact, abelian group, we have a Fourier transform  $\mathcal{F}: Fun(G) \to Fun(\widehat{G})$ 

$$\widehat{f}(p) = \int_{G} f(x) e^{-ipx} dx = \mathcal{F}(f)(p)$$

$$f(x) = \int_{\widehat{G}} \widehat{f}(p) e^{ipx} dp$$

where

$$\widehat{\mathsf{G}} = \mathsf{Hom}(\mathsf{G},\mathsf{U}(1)) = \mathsf{char}(\mathsf{G})$$

is the Pontryagin dual of G. I.e. a character is a U(1) valued function on G, satisfying  $\chi(x+y)=\chi(x)\chi(y)$ .

The characters form a locally compact, abelian group  $\widehat{\mathbf{G}}$  under pointwise multiplication.

### Fourier Transform - cont'd

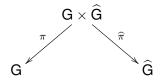
$$\begin{split} G &= \textit{S}^1 \,, \qquad \widehat{G} &= \mathbb{Z} \,, \qquad \textit{e}^{\textit{inx}} \\ G &= \mathbb{R} \,, \qquad \widehat{G} &= \mathbb{R} \,, \qquad \textit{e}^{\textit{ipx}} \end{split}$$

We can think of  $\chi(x,p) = e^{ipx} \in \operatorname{Fun}(G \times \widehat{G})$  as the universal character.

Fourier transform expresses the fact that the characters of G span Fun(G).

### Fourier Transform - cont'd

I.e. we have the following "correspondence"



$$\mathcal{F}f = \widehat{\pi}_*(\pi^*(f) \times \chi(x, p))$$

# Fourier Transform - Geometric generalisations

T-duality is a geometric version of harmonic analysis, i.e. by replacing functions by geometric objects (such as bundles, sheaves, D-modules, ...) or, as an intermediate step, by topological characteristics associated to these objects (cohomology, K-theory, derived categories, ...).

#### Fourier-Mukai transform

Consider a manifold  $P = M \times S^1$ . By the Künneth theorem we have

$$H^{\bullet}(P) \cong H^{\bullet}(M) \otimes H^{\bullet}(S^{1})$$

I.e.

$$H^n(P) \cong H^n(M) \oplus H^{n-1}(M)$$

We have a similar decomposition at the level of forms

$$\Omega^n(P)^{\mathsf{inv}} \cong \Omega^n(M) \oplus \Omega^{n-1}(M)$$
.

I.e. invariant degree n forms on P are of the form  $\omega$  or  $\omega \wedge d\theta$ , where  $\omega$  is an n, respectively n-1, form on M.

Consider  $\widehat{P} = M \times \widehat{S}^1$ . We have an isomorphism

$$\mathcal{F}: H^{\overline{i}}(P) \xrightarrow{\cong} H^{\overline{i+1}}(\widehat{P})$$

### Fourier-Mukai transform - cont'd

where

$$H^{\overline{0}}(P) = \bigoplus_{i \geq 0} H^{2i}(P) \,, \quad H^{\overline{1}}(P) = \bigoplus_{i \geq 0} H^{2i+1}(P) \,,$$

Explicitly

$$\omega \mapsto d\widehat{\theta} \wedge \omega, \qquad d\theta \wedge \omega \mapsto \omega$$

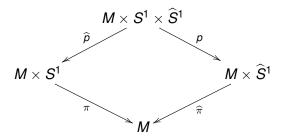
or

$$\mathcal{F}\Omega = \int_{\mathcal{S}^1} (1 + d\theta \wedge d\widehat{\theta}) \, \Omega = \int_{\mathcal{S}^1} e^{d\theta \wedge d\widehat{\theta}} \, \Omega = \int_{\mathcal{S}^1} e^{F} \, \Omega$$

### Fourier-Mukai transform - cont'd

I.e.  $\mathcal{F}$  is given by a correspondence

$$\mathcal{F}\Omega = p_* (\widehat{p}^* \Omega \wedge e^F)$$



### Fourier-Mukai transform - cont'd

Once we recognize that  $F=d\theta\wedge d\widehat{\theta}$  is the curvature of a canonical linebundle  $\mathcal{P}$  (the Poincaré linebundle) over  $\mathcal{S}^1\times\widehat{\mathcal{S}}^1$ , in fact  $e^F=\operatorname{ch}(\mathcal{P})$ , this immediately suggests a 'geometrization' in terms of vector bundles over P and  $\widehat{P}$ 

$$\mathcal{F} E = p_* \left( \widehat{p}^* E \otimes \mathcal{P} \right)$$

This gives rise to the so-called Fourier-Mukai transform

$$\mathcal{F}: K^{i}(P) \xrightarrow{\cong} K^{i+1}(\widehat{P})$$

which has many of the properties of the Fourier transform discussed earlier.

The discussion can be generalized to complexes of vector bundles (complexes of sheaves) and thus gives rise to a Fourier-Mukai correspondence between derived categories D(P) and  $D(\widehat{P})$ .

# T-duality - Closed string on $M \times S^1$

Closed strings on  $M \times S^1$  are described by

$$X : \Sigma \rightarrow M \times S^1$$

where  $\Sigma = \{(\sigma, \tau)\}$  is the closed string worldsheet. Upon quantization, we find

- Momentum modes:  $p = \frac{n}{R}$
- Winding modes:  $X(0,\tau) \sim X(1,\tau) + mR$

$$E = \left(\frac{n}{R}\right)^2 + (mR)^2 + \text{osc. modes}$$

We have a duality  $R\to 1/R$ , such that ST on  $M\times S^1$  is equivalent to ST on  $M\times \widehat{S}^1$  (or a duality between IIA and IIB ST, for susy ST)

Suppose we have a pair (P, H), consisting of a principal circle bundle

$$S^1 \longrightarrow P$$

$$\downarrow^{\pi}$$
 $M$ 

and a so-called H-flux H on P, a Čech 3-cocycle.

Topologically, P is classified by an element in  $F \in H^2(M, \mathbb{Z})$  while H gives a class in  $H^3(P, \mathbb{Z})$ 

The (topological) T-dual of (P, H) is given by the pair  $(\widehat{P}, \widehat{H})$ , where the principal  $S^1$ -bundle



and the dual H-flux  $\widehat{H} \in H^3(\widehat{P}, \mathbb{Z})$ , satisfy

$$\widehat{F} = \pi_* H$$
,  $F = \widehat{\pi}_* \widehat{H}$ 

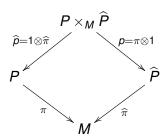
where  $\pi_*: H^3(P,\mathbb{Z}) \to H^2(M,\mathbb{Z})$ , is the pushforward map ('integration over the  $S^1$ -fibre').

The ambiguity in the choice of  $\widehat{H}$  is (almost) removed by requiring that

$$\widehat{p}^*H - p^*\widehat{H} \equiv 0 \quad \in H^3(P \times_M \widehat{P}, \mathbb{Z})$$

where  $P \times_M \widehat{P}$  is the correspondence space

$$P \times_M \widehat{P} = \{(x, \widehat{x}) \in P \times \widehat{P} \mid \pi(x) = \widehat{\pi}(\widehat{x})\}$$



#### Gysin sequences

$$\cdots \longrightarrow H^3(M) \xrightarrow{\pi^*} H^3(P) \xrightarrow{\pi_*} H^2(M) \xrightarrow{\cup F} H^4(M) \longrightarrow \cdots$$

$$\cdots \longrightarrow H^3(M) \xrightarrow{\widehat{\pi}^*} H^3(\widehat{P}) \xrightarrow{\widehat{\pi}_*} H^2(M) \xrightarrow{\cup \widehat{F}} H^4(M) \longrightarrow \cdots$$

$$0 \xrightarrow{\bigcup \widehat{F}} H^{1}(M) \xrightarrow{\widehat{\pi}^{*}} H^{1}(\widehat{P}) \xrightarrow{\widehat{\pi}_{*}} H^{0}(M) \xrightarrow{\bigcup \widehat{F}} H^{2}(M) \longrightarrow \cdots$$

$$\downarrow \cup F \qquad \qquad \downarrow \cup F \qquad \downarrow$$

# T-duality - Examples

Consider principal  $S^1$ -bundles P over  $M = S^2$ , then

$$H^2(M,\mathbb{Z})\cong\mathbb{Z}\,,\qquad H^3(P,\mathbb{Z})\cong\mathbb{Z}$$

and we have, for example,

$$(S^2 \times S^1, 0) \longrightarrow (S^2 \times S^1, 0)$$

$$(\textbf{S}^2 \times \textbf{S}^1, 1) \longrightarrow (\textbf{S}^3, 0)$$

or more generally

$$(L_p,k)\longrightarrow (L_k,p)$$

where  $L_p = S^3/\mathbb{Z}_p$  is the lens space.

# T-duality - Twisted cohomology

Using 
$$\Omega^k(P)^{\text{inv}} \cong \Omega^k(M) \oplus \Omega^{k-1}(M)$$

$$F = dA$$
,  $H = H_{(3)} + A \wedge H_{(2)}$ 

we find

$$\widehat{F} = H_{(2)} = d\widehat{A}, \qquad \widehat{H} = H_{(3)} + \widehat{A} \wedge F$$

such that

$$\widehat{H} - H = \widehat{A} \wedge F - A \wedge \widehat{F} = d(A \wedge \widehat{A}).$$

#### Theorem

We have an isomorphism of ( $\mathbb{Z}_2$ -graded) differential complexes

$$T_*: (\Omega(P)^{inv}, d_H) \longrightarrow (\Omega(\widehat{P})^{inv}, d_{\widehat{H}})$$

where  $d_H = d + H \wedge$ .

# T-duality - Twisted cohomology

#### Proof.

Define

$$T_*\omega = \int_{S^1} e^{A \wedge \widehat{A}} \omega$$

then

$$d_H T_* = T_* d_{\widehat{H}}$$
.

and consequently, we have isomorphisms

$$T_*: H^{\overline{i}}(P,H) \stackrel{\cong}{\longrightarrow} H^{\overline{i+1}}(\widehat{P},\widehat{H})$$

# T-duality - Twisted cohomology

as well as

$$T_* : K^i(P, H) \xrightarrow{\cong} K^{i+1}(\widehat{P}, \widehat{H})$$

For example,

$$K^{i}(L_{p},k)\cong egin{cases} \mathbb{Z}_{k} & i=0 \ \mathbb{Z}_{p} & i=1 \end{cases}$$

# Spherical T-duality - Principal SU(2)-bundles

Much of the above can be generalized to principal SU(2)-bundles:

Gysin sequence for principal SU(2)-bundles  $\pi: P \to M$ 

$$\cdots \longrightarrow H^7(M) \xrightarrow{\pi^*} H^7(P) \xrightarrow{\pi_*} H^4(M) \xrightarrow{\cup c_2(P)} H^8(M) \longrightarrow \cdots$$

where

$$c_2(P) = \frac{1}{8\pi^2} \operatorname{Tr}(F \wedge F) \in H^4(M)$$

is (a de Rham representative of) the 2nd Chern class of *P*. However, in this case,

$$[M,BSU(2)]\longrightarrow H^4(M,\mathbb{Z})$$

is, in general, neither surjective nor injective.

# SU(2) and quaternions

Recall that

$$\mathsf{SU}(2) = \left\{ U(a,b) = \left( \begin{array}{cc} a & -\bar{b} \\ b & \bar{a} \end{array} \right) : \ a,b \in \mathbb{C}, |a|^2 + |b|^2 = 1 \right\}$$

can be identified with the unit sphere  $\textit{S}(\mathbb{H}) = \textit{Sp}(1) = \textit{S}^3$  in the quaternions

$$\mathbb{H} = \{\alpha + \beta \mathbf{i} + \gamma \mathbf{j} + \delta \mathbf{k} : \mathbf{i}\mathbf{j} = \mathbf{k} = -\mathbf{j}\mathbf{i}, \, \mathbf{cyclic}\}$$

The isomorphism is given explicitly as

$$SU(2) \ni U(a,b) \mapsto a + jb \in Sp(1) = S^3$$

The relationship of principal SU(2)-bundles to quaternionic line bundles is analogous to the relationship of principal U(1)-bundles to complex line bundles.

# Principal SU(2)-bundles and quaternionic line bundles

Recall that a **quaternionic line bundle** over a manifold M is a complex rank 2 vector bundle  $V \to M$  together with a reduction of structure group to  $\mathbb{H} \setminus \{0\}$ . Note that the unit sphere bundle  $S(V) \to M$  is an  $S^3$ -bundle together with the inherited group structure, i.e. a principal SU(2)-bundle.

Conversely, given a principal SU(2)-bundle  $P \rightarrow M$ , then the associated vector bundle

$$V = P \times_{\mathsf{SU}(2)} \mathbb{H} \to M$$

is a quaternionic line bundle.

## Principal SU(2)-bundles on $S^4$

Principal SU(2)-bundles on  $S^4$  are described by smooth maps  $g: SU(2) \to SU(2)$ . Let g(z) = z,  $z \in SU(2)$ , which is a degree 1 map. Then  $g(z) = z^r$ ,  $r \in \mathbb{Z}$  is a degree r map. Let  $P(r) \to S^4$  be the corresponding principal SU(2)-bundle on  $S^4$ . Then  $c_2(P(r)) = r \in \mathbb{Z} \cong H^4(S^4, \mathbb{Z})$ .

The principal SU(2)-bundle  $S^7 = P(1) \rightarrow S^4$  is known as the **Hopf bundle**.

## Principal SU(2)-bundles on $M^4$

Let M be a compact, connected, oriented 4-dimensional manifold. Then one can show fairly easily that isomorphism classes of principal SU(2)-bundles P on M is canonically identified with homotopy classes  $[M, S^4] \cong H^4(M; \mathbb{Z})$  given by  $c_2(P)$ .

More precisely, given a degree 1 map  $h: M \to S^4$ , then  $h^*(P(r)) \to M$  is a principal SU(2)-bundle on M with  $c_2(h^*(P(r))) = r \in \mathbb{Z} \cong H^4(M,\mathbb{Z})$ .

# Spherical T-duality

Recall the Gysin sequence for principal SU(2)-bundles  $\pi: P \to M$ 

$$\cdots \longrightarrow H^7(M) \xrightarrow{\pi^*} H^7(P) \xrightarrow{\pi_*} H^4(M) \xrightarrow{\cup c_2(P)} H^8(M) \longrightarrow \cdots$$

We consider pairs of the form (P, H) consisting of a principal SU(2)-bundle  $P \to M$  and a 7-cocycle H on P.

The Gysin sequence implies that  $\pi_*$  is a canonical isomorphism  $H^7(P,\mathbb{Z})\cong H^4(M,\mathbb{Z})\cong \mathbb{Z}$ , and intuitively spherical T-duality exchanges H with the second Chern class  $c_2$ 

# Spherical T-duality

More precisely, the **spherical T-dual** bundle  $\widehat{\pi}:\widehat{P}\to M$  is defined by  $c_2(\widehat{P})=\pi_*H$  while the dual 7-cocycle  $\widehat{H}\in H^7(\widehat{P})$  is related to  $c_2(P)$  by the isomorphism  $\widehat{\pi}_*$ , via a similar Gysin sequence for  $\widehat{P}\to M$ .

## Isomorphism of 7-twisted cohomology

Let M be a connected compact, oriented, 4 dimensional manifold, and consider the principal SU(2)-bundle P(r) over M with  $c_2(P(r)) = r \in \mathbb{Z} \cong H^4(M,\mathbb{Z})$ , together with the 7-cocycle H = s vol on P(r).

Since  $H \cup H = 0$  for dimension reasons, we can define integer-valued H-twisted cohomology as

$$H^{\bullet}(P(r), H; \mathbb{Z}) = H^{\bullet}((C^{\bullet}(P(r); \mathbb{Z}), \partial + H \cup)).$$

By a standard argument, since degree(H) > 1, this is isomorphic to the cohomology of the complex

$$H^{\bullet}(P(r), H; \mathbb{Z}) \equiv H^{\bullet}(H^{\bullet}(P(r); \mathbb{Z}), H \cup).$$

# Isomorphism of 7-twisted cohomology

Use the Gysin sequence to calculate the cohomology groups  $H^{even/odd}(F(p); \mathbb{Z})$ , and obtain for  $p \neq 0$ 

$$H^{j}(P(r); \mathbb{Z}) = H^{4-j}(M; \mathbb{Z}), j = 0, 1, 2, 3$$
  
 $H^{4}(P(r); \mathbb{Z}) = \mathbb{Z}_{r} \oplus H^{1}(M; \mathbb{Z})$   
 $H^{7-j}(P(r); \mathbb{Z}) = H^{4-j}(M; \mathbb{Z}), j = 0, 1, 2, 3$ 

Therefore there is an isomorphism of 7-twisted cohomology groups over the integers with a parity change,

#### Theorem

$$H^{even}(P(r), s; \mathbb{Z}) \cong H^{odd}(P(s), r; \mathbb{Z}),$$
  
 $H^{odd}(P(r), s; \mathbb{Z}) \cong H^{even}(P(s), r; \mathbb{Z}).$ 

There is a similar isomorphism of 7-twisted K-theories.

## Spherical T-duality beyond dimension 4

Beyond dimension 4 the situation becomes more complicated as not all integral 4-cocycles of M are realized as  $c_2$  of a principal SU(2)-bundle  $\pi: P \to M$  and moreover multiple bundles can have the same  $c_2(P)$ .

More precisely, principal SU(2)-bundles are classified upto isomorphism by homotopy classes of maps into the classifying space  $M \to BSU(2)$ . However, the complete homotopy type of  $S^3 = SU(2)$  is still unknown, and therefore also for BSU(2).

However Serre's theorem tells us that  $\pi_j(BSU(2)) \otimes \mathbb{Q} \cong \pi_j(K(\mathbb{Z},4)) \otimes \mathbb{Q}$ , i.e. the homotopy groups of degree higher than 4 are all torsion.

## Spherical T-duality beyond dimension 4

For example, recall that principal SU(2)-bundles over  $S^5$  are classified by  $\pi_4(SU(2)) \cong \mathbb{Z}_2$ , while  $H^4(S^5, \mathbb{Z}) = 0$ .

By a theorem of Granja, there is a natural number N(d) where  $d=\dim(M)$ , such that if  $\alpha\in N(d)\times H^4(M,\mathbb{Z})$ , then it is the 2nd Chern class of a principal SU(2)-bundle over M. Therefore a pair (P,H) is spherical T-dualizable if  $\pi_*(H)\in N(d)\times H^4(M;\mathbb{Z})$ . Then  $\pi_*(H)=c_2(\widehat{P})$  where  $\widehat{P}$  is a principal SU(2)-bundle over M. However, this does not necessarily uniquely specify  $\widehat{P}$ . But at most, there are finitely many choices.

We will simply assert that a spherical T-dual  $\widehat{\pi}:\widehat{P}\to M$  be any SU(2)-bundle with  $c_2(\widehat{P})=\pi_*H$ , with  $\widehat{H}$  defined such that  $\widehat{\pi}_*\widehat{H}=c_2(P)$  with  $\widehat{p}^*H=p^*\widehat{H}$  on the correspondence space  $P\times_M\widehat{P}$ .

# Spherical T-duality beyond dimension 4

T-duality induces an isomorphism on twisted cohomologies with real or rational coefficients.

#### Theorem

$$H^{even}(P, H; \mathbb{Q}) \cong H^{odd}(\widehat{P}, \widehat{H}; \mathbb{Q}),$$
  
 $H^{odd}(P, H; \mathbb{Q}) \cong H^{even}(\widehat{P}, \widehat{H}; \mathbb{Q}).$ 

There is a similar isomorphism of 7-twisted K-theories with parity shift, upto  $\mathbb{Z}_2$ -extensions.

# Spherical T-duality - Non-Principal SU(2)-bundles

Much of the above can be generalized to non-principal SU(2)-bundles:

#### Lemma

There is a 1–1 correspondence between (oriented) non-principal SU(2)-bundles and principal SO(4)-bundles, given by

$$E = Q \times_{SO(4)} SU(2)$$

# Spherical T-duality - Non-Principal SU(2)-bundles

Thus, non-principal SU(2)-bundles over  $S^4$  are classified by  $\pi_3(SO(4)) \cong \mathbb{Z} \oplus \mathbb{Z}$ . Explicitly, the clutching function  $\phi_{(p,q)}: S^3 \to SO(4)$  is defined by

$$\phi_{(p,q)}(u)(x) = u^p x u^q, \qquad x \in \mathbb{R}^4$$

and we have  $p_1(Q(p,q)) = 2(p-q)$ , e(Q(p,q)) = p + q.

#### Theorem

For each integer  $\hat{p}$ , there is an isomorphism of 7-twisted cohomology groups over the integers with a parity change,

$$H^{even}(E(p,q), hvol; \mathbb{Z}) \cong H^{odd}(E(\widehat{p}, h - \widehat{p}), (p+q) vol; \mathbb{Z}),$$
  
 $H^{odd}(E(p,q), hvol; \mathbb{Z}) \cong H^{even}(E(\widehat{p}, h - \widehat{p}), (p+q) vol; \mathbb{Z}).$ 

# Comments and open questions

What is the physics behind spherical T-duality?

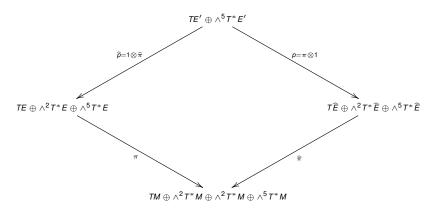
7-flux couples to 5-branes. 5-branes wrap 3-spheres to give 2-branes. M-theory is a theory of 2- and 5-branes. Is there a duality in M-theory (e.g. for the 2- and 5-brane  $\sigma$ -model) whose topological shadow is spherical T-duality?

Is there a generalised geometry counterpart of spherical T-duality?

There exists an M-geometry based on

$$\mathcal{E} = TE \oplus \wedge^2 T^*E \oplus \wedge^5 T^*E$$

# Comments and open questions, cont'd



where  $E' = E \times_{S^3} \widehat{E}$ .

# Comments and open questions, cont'd

- What are useful geometric realisations of integral 7-cocycles?
- Is there a useful geometric description of 7-twisted K-theory?
- When dimM ≥ 4, then it is known that not every spherical pair (P, H) has a spherical T-dual. Can the missing spherical T-duals be obtained some other way?
- Is there a C\*-algebra version of spherical T-duality?

### THANK YOU!!