## Higgs bundles and fundamental group schemes

### Ugo Bruzzo

Scuola Internazionale Superiore di Studi Avanzati (Trieste) Istituto Nazionale di Fisica Nucleare

Topological Matter, Strings, K-theory and related areas Adelaide, September 30, 2016

joint work with I. Biswas and S. Gurjar (arXiv:1607.07207 [math.AG]) (but also D. Hernández Ruipérez, B. Graña Otero, V. Lanza, A. Lo Giudice, ...

### X a smooth projective variety

A Higgs bundle  $\mathfrak{E}$  is a pair  $(E, \phi)$ , where E is a vector bundle, and

$$\phi \colon E \to E \otimes \Omega^1_X$$

(the Higgs field) is a morphism such that  $\phi \wedge \phi = 0$ , where

$$\phi \land \phi \colon E \to E \otimes \Omega^2_X$$

The existence of properly semistable Higgs bundles on a variety (or Higgs bundles satisfying some other specific property) is a geometric feature of the variety

(cf. the derived category of coherent sheaves on X)

X a smooth projective variety over a field  $\Bbbk$  of characteristic zero,  $H = c_1(\mathfrak{O}_X(1))$ 

A line bundle *L* on *X* is numerically effective (nef) if for every morphism  $f: C \rightarrow X$ , where *C* is a smooth projective irreducible curve, one has

$$\deg f^*L = \int_C f^*c_1(L) \geq 0.$$

If *E* is a vector bundle on *X*, the projectivization  $\mathbb{P}E$  carries a "relative hyperplane bundle"  $\mathcal{O}_{\mathbb{P}E}(1)$ . The vector bundle *E* is said to be nef if  $\mathcal{O}_{\mathbb{P}E}(1)$  is.

Definition of  $\mathbb{P}E$ :

$$E \rightsquigarrow \operatorname{GL}(E) \rightsquigarrow \operatorname{PGL}(E) \rightsquigarrow \mathbb{P}E$$

*E* is said to be numerically flat (nflat) if both *E* and  $E^*$  are nef.

Theorem (Demailly-Peternell-Schneider 1994)

A vector bundle E is nflat if and only if it admits a filtration

 $0 = E_0 \subset E_1 \subset \cdots \subset E_n = E$ 

whose quotients  $E_k/E_{k-1}$  are Hermitian flat vector bundles (i.e., they are given by representations  $\pi_1(X) \rightarrow U(r_k)$ ).

Consequence: all Chern classes of an nflat bundle vanish (as *E* and  $\bigoplus_k E_k/E_{k-1}$  have the same Chern classes)

Slope of a coherent sheaf  $\mathcal F$  of positive rank:

$$\mu(\mathcal{F}) = \frac{c_1(\mathcal{F}) \cdot H^{n-1}}{\operatorname{rk} \mathcal{F}} \quad \left( = \frac{1}{\operatorname{rk} \mathcal{F}} \int_X c_1(\det \mathcal{F}) \wedge \omega^{n-1} \right)$$

A torsion-free coherent sheaf  $\mathcal{F}$  (e.g., a bundle) is (semi)stable if

 $\mu(\mathcal{E}) \ (\leq) < \mu(\mathcal{F})$ 

for all proper subsheaves  $\mathcal{E}$  of  $\mathcal{F}$ .

### Definition

A vector bundle E on X is curve semistable if for all morphisms  $f: C \to X$  (where C is a smooth irreducible projective curve)<sup>a</sup> the pullback bundle  $f^*E$  is semistable.

<sup>a</sup>over  $\mathbb C$  a.k.a. a Riemann surface

Theorem (B - Hernández Ruipérez; Nakayama)

Let *E* be a vector bundle on *X*. The following conditions are equivalent:

- E is curve semistable;
- E is semistable and  $\Delta(E) = 0$ .

$$\Delta(E) = c_2(E) - \tfrac{r-1}{2r}c_1(E)^2 \in H^4(X,\mathbb{Q})$$

Simple fact: A bundle *E* with vanishing first Chern class is curve semistable if and only if it is nflat.

6/20

### Definition

A neutral Tannakian category over a field  $\Bbbk$  is a rigid Abelian  $\Bbbk$ -linear tensor category  $\mathfrak{T}$  together with an exact faithful  $\Bbbk$ -linear tensor functor  $\omega \colon \mathfrak{T} \longrightarrow \mathbf{Vect}_{\Bbbk}$ , called the fiber functor.

### "Rigid" means that

- Hom and ⊗ satisfy a distributive property (over finite families);
- all objects in  $\mathfrak{T}$  are reflexive.

Archetypical Tannakian category:  $\operatorname{Rep}(G)$  for G an affine group scheme over  $\Bbbk$ 

$$\omega(\rho, V) = V$$
 if  $\rho: G \to \operatorname{Aut}(V)$ .

### Theorem (Tannaka duality)

For every neutral Tannakian category  $(\mathfrak{T}, \omega)$  there is an affine group scheme G such that  $\mathfrak{T} \simeq \operatorname{Rep}(G)$ .

Actually  $G = \operatorname{Aut}^{\otimes}(\omega)$ .

# Nori fundamental group

A vector bundle E over a scheme X is essentially finite if there exists a principal bundle  $\pi: P \to X$ , with a finite structure group, such that  $\pi^*E$  is trivial.

Essentially finite vector bundles make up a neutral Tannakian category (the fiber functor maps E to the fiber over a fixed point  $x \in X$ ). The affine group scheme representing this Tannakian category is the Nori fundamental group scheme  $\pi_1^N(X, x)$ .

### Relation with the usual fundamental group:

• If  $f: E \to F$  is a morphism of nflat bundles, ker(f) and im(f) are both nflat bundles, and rk(f) is constant

• the tensor product of nflat bundles is nflat

Let NF(X) be the category of nflat bundles on X, fix  $x \in X$  and define a functor

$$\varpi_x : \mathbf{NF}(X) \to \mathbf{Vect}, \qquad E \mapsto E_x$$

#### Theorem (Langer)

 $(NF(X), \varpi_x)$  is a neutral Tannakian category

## $\rightsquigarrow \pi_1^S(X, x)$ the S-fundamental group scheme (Langer)

伺 ト イ ヨ ト イ ヨ ト

-

Over  $\mathbb{C}$  (and modulo a technical condition)  $\pi_1^S(X, x)$  coincides with Simpson's universal complex fundamental group, which carries information on all finite-dimensional representations of the topological fundamental group

## Grasmmann bundle

*E* vector bundle on *X*,  $\operatorname{Gr}_k(E) \xrightarrow{\pi} X$  its *k*-th Grassmann bundle (bundle of *k*-planes in *E*)

$$Y \xrightarrow{f} X, \qquad f^*E \to F \to 0$$

$$F = g^* Q_k$$

$$\uparrow$$
rank k universal quotient bundle



$$0 \rightarrow S_k \rightarrow \pi^* E \rightarrow Q_k \rightarrow 0$$

If *E* is nef, all universal quotients bundles are nef (and viceversa, as  $Gr_1(E) = \mathbb{P}E$  and  $Q_1 = \mathcal{O}_{\mathbb{P}E}(1)$ )  $\longrightarrow$  use this to get a definition of "numerical effectiveness" for Higgs bundles

# Higgs Grasssmannians



(morphism of exact sequences of vector bundles on  $Gr_k(E)$ )

### Definition

The k-th Higgs Grassmannian of the Higgs bundle  $\mathfrak{E} = (E, \phi)$  is the closed subscheme

$$\mathfrak{Gr}_k(\mathfrak{E}) \subset \mathrm{Gr}_k(E)$$

where the the composition of the above blue arrows vanishes

通 と く ヨ と く ヨ と

 $\mathfrak{Gr}_k(\mathfrak{E})$  is a very nasty scheme (it can be singular, nonreduced, non-equidimensional, ...)

3 3 4

 $\mathfrak{Gr}_k(\mathfrak{E})$  is a very nasty scheme (it can be singular, nonreduced, non-equidimensional, ...) but we shall be brave and will work



and will work with it.

 $\mathfrak{Gr}_k(\mathfrak{E})$  is a very nasty scheme (it can be singular, nonreduced, non-equidimensional, ...) but we shall be brave



and will work with it.



3

### Definition

If  $\mathfrak{E} = (E, \phi)$  is a Higgs bundle, a quotient Q of E is a Higgs quotient if the corresponding kernel F is  $\phi$ -invariant,  $\phi(F) \subset F \otimes \Omega^1_X$ .

Fact: Q is a Higgs quotient if and only if the corresponding section  $\sigma_Q$  of  $\operatorname{Gr}_k(E)$  takes values in  $\mathfrak{Gr}_k(\mathfrak{E}) \subset \operatorname{Gr}_k(E)$ .

The universal quotient  $Q_k$  restricted to  $\mathfrak{Gr}_k(\mathfrak{E})$  has a natural Higgs field  $\Phi_k$ , so that we have a Higgs bundle  $\mathfrak{Q}_{k,\mathfrak{E}} = (Q_{k|\mathfrak{Gr}_k(\mathfrak{E})}, \Phi_k)$  on  $\mathfrak{Gr}_k(\mathfrak{E})$ , and

$$\mathfrak{Q} = (Q, \phi_Q) = \sigma_Q^* \mathfrak{Q}_{k,\mathfrak{E}}.$$

ヨッ イヨッ イヨッ

Let  $\mathfrak{E} = (E, \phi)$  be a Higgs bundle.

#### Definition

If rk E = 1,  $\mathfrak{E}$  is H-nef if E is nef in the usual sense.

If  $\mathsf{rk} E > 1$ ,  $\mathfrak{E}$  is H-nef if

- det E is nef in the usual sense
- Every universal quotient Higgs bundle  $\mathfrak{Q}_k$  is H-nef.
- $\mathfrak{E}$  is H-nflat if both  $\mathfrak{E}$  and  $\mathfrak{E}^*$  are H-nef.

-

A notion of semistability of Higgs bundles is introduced as for usual bundles, but checking the inequality between the slopes only for Higgs-invariant subsheaves.

### Definition

A Higgs bundle  $\mathfrak{E}$  on X is curve semistable if for all morphisms  $f: C \to X$  the pullback Higgs bundle  $f^*\mathfrak{E}$  is semistable.

#### Theorem (B - Hernández Ruipérez - Graña Otero, 2004, 2006)

If  $\mathfrak{E}$  is semistable (with respect to some polarization) and  $\Delta(E) = 0$ , then it is curve semistable.

The opposite implication is a conjecture (B – Graña Otero, 2010).

伺 ト く ヨ ト く ヨ ト

### Proposition

The previous conjecture is equivalent to the following statement: all Chern classes of an H-nflat Higgs bundle vanish.

Work done with A. Lo Giudice and V. Lanza shows that the conjecture holds for some classes of varieties, e.g.

- varieties whose tangent bundle is nef
- K3 surfaces (partial results)

and for some close relatives.

The challenge is to prove the conjecture for varieties of general type (canonical bundle is ample).

# The fundamental Higgs scheme

## Some properties of H-nflat Higgs bundles:

- a morphism of H-nflat Higgs bundles has constant rank;
- the kernel and cokernel of a morphism of H-nflat Higgs bundles are H-nflat Higgs bundles;
- the tensor product of two H-nflat Higgs bundles is H-nflat.

### Theorem (Biswas - B - Gurjar, 2016)

The category HNF(X) of H-nflat Higgs bundles on X is a neutral Tannakian category

We denote by  $\pi_1^H(X, x)$  the group scheme which represents it (the Higgs fundamental group scheme of X).

Since  $NF(X) \subset HNF(X)$ , there is a surjection

 $\pi_1^H(X,x) \twoheadrightarrow \pi_1^S(X,x)$ 

・ロト ・同ト ・ヨト ・ヨト

- if π<sub>1</sub><sup>H</sup>(X, x) = {e} then HNF(X) = Vect, so that all H-nflat Higgs bundles are trivial, and the conjecture holds for X;
- if π<sub>1</sub><sup>H</sup>(X, x) = π<sub>1</sub><sup>S</sup>(X, x) then HNF(X) = NF(X), and all H-nflat Higgs bundles are nflat, so that the conjecture holds for X;

Moreover there is a morphism

$$\pi_1^H(X \times Y, (x, y)) \to \pi_1^H(X, x) \times \pi_1^H(Y, y) \qquad (*)$$

We do not know if this is an isomorphism. This is related to the conjecture: indeed, if (\*) is an isomorphism (at least for products of curves), then the conjecture holds for products of curves.