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Topological Quantum Systems with odd TRS’s

Let B a topological space, (“Brillouin zone”). Assume that:
• B is a CW-complex (compact, Hausdorff and

path-connected);

DEFINITION (Topological Quantum System (TQS))

Let H be a separable Hilbert space and K(H) the algebra of
compact operators. A TQS is a self-adjoint map

B 3 k 7−→ H(k) = H(k)∗ ∈ K(H)

continuous with respect to the norm-topology.

� The spectrum σ(H(k)) = {Ej(k) | j ∈ I ⊆ Z} ⊂ R, is a
sequence of eigenvalues ordered according to

. . .E−2(k) 6 E−1(k) < 0 6 E1(k) 6 E2(k) 6 . . .

� The maps k 7→ Ej(k) are continuous (energy bands) ...



Topological Quantum Systems with odd TRS’s

... namely a band spectrum

H(k) ψj(k) = Ej(k) ψj(k) , k ∈ B

� Usually an energy gap separates the filled valence bands
from the empty conduction bands. The Fermi level EF
characterizes the gap.



Topological Quantum Systems with odd TRS’s

A homeomorphism τ : B→ B is called involution if τ2 = IdB.
The pair (B, τ) is called an involutive space and Bτ ⊂ B is the
subsetset of invariant points. Each space B admits (at least)
the trivial involution τtriv := IdB.

DEFINITION (TQS with time-reversal symmetry)

Let (B, τ) be an involutive space, H a separable Hilbert space
endowed with a complex conjugation C. A TQS B 3 k 7→ H(k)
has a time-reversal symmetry (TRS) of parity η ∈ {±1} if there
is a continuous unitary-valued map k 7→ U(k) such that

U(k) H(k) U(k)∗ = C H(τ(k)) C , C U(τ(k)) C = ηU(k)∗ .

A TQS with an odd TRS (i.e. η = −1) is called of class AII.



The Serre-Swan construction

• An isolated family of energy bands is any (finite) collection
{Ej1(·), . . . ,Ejm (·)} of energy bands such that

min
k∈B

dist

 m⋃
s=1

{Ejs (k)} ,
⋃

j∈I\{j1,...,jm}

{Ej(k)}

 = Cg > 0 .

This is usually called gap condition.

• An isolated family is described by the Fermi projection

PF (k) :=
m∑

s=1

|ψjs (k)〉〈ψjs (k)| .

This is a continuous projection-valued map

B 3 k 7−→ PF (k) ∈ K(H) .



The Serre-Swan construction
� For each k ∈ B

Hk := Ran PF (k) ⊂ H

is a subspace of H of fixed dimension m.

� The collection
EF :=

⊔
k∈B
Hk

is a topological space (said total space) and the map

π : EF −→ B

defined by π(k , v) = k is continuous (and open).

————————————————————————————
This is a (rank-m) complex vector bundle called Bloch-bundle.
————————————————————————————



The Serre-Swan construction

� An odd TRS induces a “Quaternionic” structure on the
Bloch-bundle.

DEFINITION (Atiyah, 1966 - Dupont, 1969)

Let (B, τ) be an involutive space and E → B a complex vector
bundle. Let Θ : E → E an homeomorphism such that

Θ : E |k −→ E |τ(k) is anti-linear .

[R] - The pair (E ,Θ) is a “Real”-bundle over (B, τ) if

Θ2 : E |k
+1−→ E |k ∀ k ∈ B ;

[Q] - The pair (E ,Θ) is a “Quaternionic”-bundle over (B, τ) if

Θ2 : E |k
−1−→ E |k ∀ k ∈ B .



The classification problem

DEFINITION (Topological phases)

Let B 3 k 7−→ H(k) be an odd TR-symmetric TQS with an
isolated family of m energy bands and associated “Quaternionic”
Bloch bundle EF −→ B. The topological phase of the system is
specified by

[(EF ,Θ)] ∈ Vecm
Q(B, τ) .

⇓⇓⇓

Main Question:

How to classify Vecm
Q(B, τ) at least for low-dimensional B?



The classification problem

————————————————————————————
Known results for dim(B) 6 3

• Vecm
C(B)

c1' H2(B,Z) (Peterson, 1959)

• Vecm
R(B, τ)

cR1' H2
Z2

(B,Z(1)) (Kahn, 1987 - D. & Gomi, 2014)

————————————————————————————

CAZ TRS Category VB

A 0 complex Vecm
C(B)

AI + “Real” Vecm
R(B, τ)

AII − “Quaternionic” Vecm
Q(B, τ)
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Electrons in a periodic environment

• Periodic quantum systems (e.g. absence of disorder):

- Rd-translations ⇒ free (Dirac) fermions;

- Zd-translations ⇒ crystal (Bloch) fermions.

• The Bloch-Floquet (or Fourier) theory exploits the invariance
under translations of a periodic structure to describe the
state of the system in terms of the quasi-momentum k on
the Brillouin zone B.

• Complex conjugation (TRS) endows B with an involution τ .

• Examples are:
- Gapped electronic systems,

- BdG superconductors,

- Photonic crystals (M. Lein talk).



Continuous case B ≡ S1,d

Sd θ1,d - Sd

(+k0,+k1, . . . ,+kd )
θ1,d- (+k0,−k1, . . . ,−kd )

S1,d := (Sd , θ1,d )



Periodic case B ≡ T0,d ,0

S1,1 × . . .× S1,1 τd := θ1,1 × . . .× θ1,1- S1,1 × . . .× S1,1

T0,d ,0 := S1,1 × . . .× S1,1︸ ︷︷ ︸
d - times

= (Td , τd )



Topological states for Bloch electrons

d = 1 d = 2 d = 3 d = 4

Vec2m
Q (S1,d ) 0 Z2 Z2 Z Free

Vec2m
Q (T0,d ,0) 0 Z2 Z4

2 Z10
2 ⊕Z Periodic

� First proof for d = 1,2 due to Fu, Kane and Mele (2005 -
2007) based on the

Fu-Kane-Mele index :=
∏

ki∈Bτ

√
det[W (ki)]

Pf[W (ki)]
.

Here Bτ 3 k 7→W (k) is an antisymmetric matrix built from
the Bloch functions.

————————————————————————————
! ! It makes sense only when Bτ is finite ! !

————————————————————————————



Topological states for Bloch electrons

An afterwards ...

� Computed by Kitaev (2009) for all d by K-theory (stable
range).

� “Handmade” frame construction for the case T0,2,0 by
Graf and Porta (2013) and for the case T0,3,0 by Fiorenza,
Monaco and Panati (2016) and Cornean, Monaco and
Teufel (2016).

� D. and Schulz-Baldes (2015) with spectral flux (disorder).

� Kennedy and Zirnbauer (2015) by the calculation of the
equivariant homotopy (very general but hard to compute).

� D. and Gomi (2015) by the introduction of the
FKMM-invariant (a characteristic class) and the
computation of the equivariant cohomology (very general
and not so hard to compute).



Why more general involutive spaces?

� The external triggering:
B can be interpreted as the space of control parameters
for a quantum system adiabatically perturbed.

� The Born-Oppenheimer approximation:
Many systems depend by slow and fast degrees of freedom
(e.g. the Molecular Dynamics). Under certain conditions the
slow and fast variables decouple adiabatically (i.e. the fast
variables adjust instantly to changes of the slow variables).
As a consequence, the fast dynamics is described by an
effective Hamiltonian which depends by the slow
(classical) degrees of freedom. “De facto” one is in a
situation described by a TQS

X 3 (q,p) 7−→ Hfast(q,p)

with X the classical phase space. The TR symmetry acts
on the classical variables and induces an involution on the
space X .



Why more general involutive spaces?

� Therefore (B, τ) can be very general. In particular the
fixed-point set Bτ could be empty (free action) or a
sub-manifold of whatever co-dimension (and not necessary
a discrete set of points).

� For instance there are family of involutive spheres
Sp,q := (Sp+q−1, θp,q) with θp,q defined by

(k0, k1, . . . , kp−1, kp, . . . , kp+q−1)
θp,q7→ (k0, k1, . . . , kp−1,−kp, . . . ,−kp+q−1)

and of involutive tori

T
a,b,c := S

2,0 × . . .× S2,0︸ ︷︷ ︸
a−times

× S1,1 × . . .× S1,1︸ ︷︷ ︸
b−times

× S0,2 × . . .× S0,2︸ ︷︷ ︸
c−times

� Recently Gat and Robbins (arXiv:1511.08994) considered
the cases B = S0,3 (rigid rotor) and B = T1,1,0 (phase
space of slow dynamic of a 1D periodic particle). In the
first case Bτ = ∅ and in the second Bτ = S1 t S1.



Why more general involutive spaces?

————————————————————————————

! ! Many of the previous approaches just fail when Bτ is not a
finite set ! !

————————————————————————————

⇓⇓⇓
————————————————————————————

Which object replaces the Fu-Kane-Mele index when Bτ is not
a finite set ?

————————————————————————————

⇓⇓⇓
————————————————————————————

A characteristic (cohomological) class called FKMM-invariant.

————————————————————————————
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Relative equivariant cohomology

The Borel’s construction

• (X , τ) any involutive space and (S∞, θ) the infinite sphere
(contractible space) with the antipodal (free) involution:

X∼τ :=
S∞ × X
θ × τ

(homotopy quotient) .

• Z any abelian ring (module, system of coefficients, ...)

H j
Z2

(X ,Z) := H j(X∼τ ,Z) (eq. cohomology groups) .

• Z(m) the Z2-local system on X based on the module Z

Z(m) ' X×Z endowed with (x , `) 7→ (τ(x), (−1)m`) .



Relative equivariant cohomology

• H•Z2
is a (generalized) cohomology theory which can be

extended to pairs of spaces Y ⊆ X in order to define
relative cohomology groups H•Z2

(X |Y ,Z).

• In [D. - Gomi, 2015] we showed that

Vec2m
Q (T0,d ,0) and Vec2m

Q (S1,d−1) , d 6 4

can be classified by a characteristic class with values in
H2
Z2

(B|Bτ ,Z(1)): the FKMM-invariant.

————————————————————————————

H1
Z2

(
B
τ ,Z(1)

) δ1- H2
Z2

(
B|Bτ ,Z(1)

) δ2- H2
Z2

(
B,Z(1)

) r- H2
Z2

(
B
τ ,Z(1)

)

' ' '

[Bτ ,S1,1]Z2 PicR(B, τ) PicR(Bτ )
———————————————————————————–
� The results in [D. - Gomi, 2015] only apply to the case of a Bτ finite. To

consider more general involutive spaces we need more generality !



The (generalized) FKMM-invariant

THEOREM (D. - Gomi, 2016 | Part I)

Given (B, τ) let

PicR
(
B|Bτ , τ

)
:=
{

[(L , s)] |L ∈ PicR(B, τ), s : L |Bτ → U(1)
}

with group structure given by the tensor product. Then

PicR
(
B|Bτ , τ

) κ̃' H2
Z2

(
B|Bτ ,Z(1)

)
.

This result extends the Kahn’s isomorphism

Vecm
R(B, τ) ' H2

Z2
(B,Z(1))

and indeed can be proved in a similar way.



The (generalized) FKMM-invariant

THEOREM (D. - Gomi, 2016 | Part II)

There is a group homomorphism

κ : Vec2m
Q (B, τ) −→ H2

Z2

(
B|Bτ ,Z(1)

)
called the FKMM-invariant.

(1) Determinant functor:
If (E ,Θ) ∈ Vec2m

Q (B, τ) then (detE , detΘ) ∈ PicR(B, τ);

(2) Canonical section:
It exists a unique (canonical) trivialization

hcan : detE |Bτ → Bτ × C
which define scan(k) := hcan

−1(k ,1) for all k ∈ Bτ .

(3) The mapping E 7→ (detE , scan) ∈ PicR
(
B|Bτ , τ

)
:

κ(E ,Θ) := κ̃(detE , sE ) .
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Properties of κ : Vec2m
Q (B, τ) −→ H2

Z2

(
B|Bτ ,Z(1)

)
(i) Isomorphic Q-bundles have the same FKMM-invariant;

(ii) If (E ,Θ) is Q-trivial then κ(E ,Θ) = 0;

(iii) κ is natural under the pullback induced by equivariant maps;

(iv) κ(E1 ⊕ E2,Θ1 ⊕Θ2) = κ(E1,Θ1) + κ(E2,Θ2);

(v) κ is the image of a universal class huniv ;

(vi) When Bτ = {finite collection of points}then

κ(E ,Θ) ' Fu-Kane-Mele invariants ;

(vii) When Bτ = Ø

κ(E ,Θ) ' cR1 (detE , detΘ) ;

(viii) When Bτ = Ø and PicQ(B, τ) 6= Ø then PicQ(B, τ) is a
torsor over PicR(B, τ). Hence

PicQ(B, τ) ' PicR(B, τ) ' H2
Z2

(B,Z(1)) .



Low dimension (dim(B) 6 3)

(i) If dim(B) 6 2 and Bτ 6= ∅ then

Vec2m
Q (B, τ) ' H2

Z2

(
B|Bτ ,Z(1)

)
.

(ii) If dim(B) = 3 and Bτ 6= ∅ the map

κ : Vec2m
Q (B, τ) ↪→ H2

Z2

(
B|Bτ ,Z(1)

)
is only injective (even though in many situations like Sp,q

and Ta,b,c κ turns out to be bijective).

(iii) If dim(B) 6 3 and Bτ = ∅ then

Vec2m
Q (B, τ) ' H2

Z2

(
B,Z(1)

)
and

Vec2m+1
Q (B, τ) '

{
H2
Z2

(
B,Z(1)

)
if PicQ(B, τ) 6= ∅

∅ if PicQ(B, τ) = ∅.



Application to involutive spheres Sp,q := (Sp+q−1, θp,q)

p + q 6 4 q = 0 q = 1 q = 2 q = 3 q = 4

Vec2m+1
Q (S0,q) Ø ? ? 2Z+ 1 ?

Vec2m
Q (S0,q) Ø ? ? 2Z ?

Vec2m
Q (S1,q) 0 0 Z2 Z2 . . .

Vec2m
Q (S2,q) 0 ? ? . . .

Vec2m
Q (S3,q) 0 ? . . .

Vec2m
Q (S4,q) 0 . . .



Application to involutive spheres Sp,q := (Sp+q−1, θp,q)

p + q 6 4 q = 0 q = 1 q = 2 q = 3 q = 4

Vec2m+1
Q (S0,q) Ø 0 0 2Z+ 1 Ø

Vec2m
Q (S0,q) Ø 0 0 2Z 0

Vec2m
Q (S1,q) 0 0 Z2 Z2 . . .

Vec2m
Q (S2,q) 0 2Z 0 . . .

Vec2m
Q (S3,q) 0 0 . . .

Vec2m
Q (S4,q) 0 . . .



Application to involutive tori Ta,b,c (fixed points)

T
a,b,c := S

2,0 × . . .× S2,0︸ ︷︷ ︸
a−times

× S1,1 × . . .× S1,1︸ ︷︷ ︸
b−times

× S0,2 × . . .× S0,2︸ ︷︷ ︸
c−times

a + b 6 3, c = 0 a = 0 a = 1 a = 2 a = 3

Vec2m
Q (Ta,0,0) Ø 0 0 0

Vec2m
Q (Ta,1,0) 0 2Z ? . . .

Vec2m
Q (Ta,2,0) Z2 ? . . .

Vec2m
Q (Ta,3,0) Z4

2 . . .



Application to involutive tori Ta,b,c (fixed points)

T
a,b,c := S

2,0 × . . .× S2,0︸ ︷︷ ︸
a−times

× S1,1 × . . .× S1,1︸ ︷︷ ︸
b−times

× S0,2 × . . .× S0,2︸ ︷︷ ︸
c−times

a + b 6 3, c = 0 a = 0 a = 1 a = 2 a = 3

Vec2m
Q (Ta,0,0) Ø 0 0 0

Vec2m
Q (Ta,1,0) 0 2Z (2Z)2 . . .

Vec2m
Q (Ta,2,0) Z2 Z2 ⊕ (2Z)2 . . .

Vec2m
Q (Ta,3,0) Z4

2 . . .



Application to involutive tori Ta,b,c (free involution)

PROPOSITION (D. - Gomi, 2016)

Ta,b,c ' Ta+c−1,b,1 ∀ c > 2

a + b 6 2, c = 1 a = 0 a = 1 a = 2

Vecm
Q(Ta,0,1) 0 ? ?

Vecm
Q(Ta,1,1) ? ? . . .

Vecm
Q(Ta,2,1) ? . . .

For all m ∈ N odd or even.



Application to involutive tori Ta,b,c (free involution)

PROPOSITION (D. - Gomi, 2016)

Ta,b,c ' Ta+c−1,b,1 ∀ c > 2

a + b 6 2, c = 1 a = 0 a = 1 a = 2

Vecm
Q(Ta,0,1) 0 Z2 Z2

2

Vecm
Q(Ta,1,1) 2Z Z2 ⊕ (2Z)2 . . .

Vecm
Q(Ta,2,1) (2Z)2 . . .

For all m ∈ N odd or even.



Thank you for your attention
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