Bulk-edge correspondence in the presence of a mobility gap

Gian Michele Graf
ETH Zurich

Topological Matter, Strings, K-theory and related areas IGA/AMSI Workshop
26-30 September 2016
Adelaide

Bulk-edge correspondence in the presence of a mobility gap

Gian Michele Graf
ETH Zurich

Topological Matter, Strings, K-theory and related areas IGA/AMSI Workshop
26-30 September 2016
Adelaide
based on joint work with A. Elgart, J. Schenker; J. Shapiro

Outline

Goal of the talk

Quantum Hall systems

Chiral systems

Goal of the talk

Quantum Hall systems

Chiral systems

[^0]
Goals of the talk

- Difference between spectral and mobility gap
- Bulk-edge correspondence for quantum Hall Hamiltonians (2 dim)
- Bulk-edge correspondence for chiral Hamiltonians (1 dim)

Goal of the talk

Quantum Hall systems

Chiral systems

The experiment (von Klitzing, 1980)

Hall-Ohm law

$$
\vec{\jmath}=\underline{\sigma} \vec{E}, \quad \underline{\sigma}=\left(\begin{array}{cc}
\sigma_{\mathrm{D}} & \sigma_{\mathrm{H}} \\
-\sigma_{\mathrm{H}} & \sigma_{\mathrm{D}}
\end{array}\right)
$$

σ_{H} : Hall conductance
σ_{D} : ohmic (dissipative) conductance

The experiment (von Klitzing, 1980)

Hall-Ohm law

$$
\vec{\jmath}=\underline{\sigma} \vec{E}, \quad \underline{\sigma}=\left(\begin{array}{cc}
\sigma_{\mathrm{D}} & \sigma_{\mathrm{H}} \\
-\sigma_{\mathrm{H}} & \sigma_{\mathrm{D}}
\end{array}\right)
$$

σ_{H} : Hall conductance σ_{D} : ohmic (dissipative) conductance

The experiment (von Klitzing, 1980)

Hall-Ohm law

$$
\vec{\jmath}=\underline{\sigma} \vec{E}, \quad \underline{\sigma}=\left(\begin{array}{cc}
\sigma_{\mathrm{D}} & \sigma_{\mathrm{H}} \\
-\sigma_{\mathrm{H}} & \sigma_{\mathrm{D}}
\end{array}\right)
$$

σ_{H} : Hall conductance σ_{D} : ohmic (dissipative) conductance

Width of plateaus increases with disorder

Spectral vs. Mobility Gap

The spectrum of a single-particle Hamiltonian

Spectral vs. Mobility Gap

The spectrum of a single-particle Hamiltonian

- (integrated) density of states $n(\mu)$ is constant for μ in a Spectral Gap, and strictly increasing otherwise

Spectral vs. Mobility Gap

The spectrum of a single-particle Hamiltonian

- (integrated) density of states $n(\mu)$ is constant for μ in a Spectral Gap, and strictly increasing otherwise
- Hall conductance $\sigma_{\mathrm{H}}(\mu)$ is constant for μ in a Mobility Gap

Spectral vs. Mobility Gap

The spectrum of a single-particle Hamiltonian

μ : Fermi energy

- (integrated) density of states $n(\mu)$ is constant for μ in a Spectral Gap, and strictly increasing otherwise
- Hall conductance $\sigma_{\mathrm{H}}(\mu)$ is constant for μ in a Mobility Gap

Plateaus arise because of a Mobility Gap only!

Mobility gap, technically speaking

Hamiltonian H_{B} on $\ell^{2}\left(\mathbb{Z}^{d}\right)$
$P_{\mu}=E_{(-\infty, \mu)}\left(H_{B}\right)$ Fermi projection,

Assumption. Fermi projection has strong off-diagonal decay:

$$
\sup _{x^{\prime}} \mathrm{e}^{-\varepsilon\left|x^{\prime}\right|} \sum_{x} \mathrm{e}^{\nu \mid x-x^{\prime}}\left|P_{\mu}\left(x, x^{\prime}\right)\right|<\infty
$$

(some $\nu>0$, all $\varepsilon>0$)

Mobility gap, technically speaking

Hamiltonian H_{B} on $\ell^{2}\left(\mathbb{Z}^{d}\right)$
$P_{\mu}=E_{(-\infty, \mu)}\left(H_{B}\right)$ Fermi projection,
Assumption. Fermi projection has strong off-diagonal decay:

$$
\operatorname{supe}_{x^{\prime}} \mathrm{e}^{-\varepsilon\left|x^{\prime}\right|} \sum_{x} \mathrm{e}^{\nu\left|x-x^{\prime}\right|}\left|P_{\mu}\left(x, x^{\prime}\right)\right|<\infty
$$

(some $\nu>0$, all $\varepsilon>0$)

- Trivially true for H_{B} a multiplication operator in position space
- Trivially false for H_{B} a function of momentum $\left(P_{\mu}(x, 0) \sim|x|^{-d}\right)$
- Proven in (virtually) all cases where localization is known.

IQHE as a Bulk effect

Paradigm: Cyclotron orbit drifting under a electric field \vec{E}

Hamiltonian H_{B} in the plane. Kubo formula (linear response to \vec{E})

$$
\sigma_{\mathrm{B}}=\mathrm{itr} P_{\mu}\left[\left[P_{\mu}, \Lambda_{1}\right],\left[P_{\mu}, \Lambda_{2}\right]\right]
$$

where

$$
\Lambda_{i}=\Lambda\left(x_{i}\right),(i=1,2) \text { switches }
$$

IQHE as a Bulk effect (remarks)

$$
\sigma_{\mathrm{B}}=\mathrm{i} \operatorname{tr} P_{\mu}\left[\left[P_{\mu}, \Lambda_{1}\right],\left[P_{\mu}, \Lambda_{2}\right]\right]
$$

where $\Lambda_{i}=\Lambda\left(x_{i}\right),(i=1,2)$ switches. Supports of $\vec{\nabla} \Lambda_{i}$:

Remark. The trace is well-defined. Roughly: An operator has a well-defined trace if it acts non-trivially on finitely many states only. Here the intersection contains only finitely many sites.

IQHE as an edge effect (spectral gap)

Hamiltonian H_{E} on the upper half-plane: restriction of H_{B} through boundary conditions at $x_{2}=0$.

State $\rho\left(H_{E}\right)$: 1-particle density matrix, e.g. $\rho\left(H_{E}\right)=E_{(-\infty, \mu)}\left(H_{E}\right)$, or (actually) smooth

IQHE as an edge effect (spectral gap)

Hamiltonian H_{E} on the upper half-plane: restriction of H_{B} through boundary conditions at $x_{2}=0$.

State $\rho\left(H_{E}\right)$: 1-particle density matrix, e.g. $\rho\left(H_{E}\right)=E_{(-\infty, \mu)}\left(H_{E}\right)$, or (actually) smooth

Current operator across $x_{1}=0$: $\mathrm{i}\left[H_{E}, \Lambda_{1}\right]$

$$
I=\mathrm{i} \operatorname{tr}\left(\rho\left(H_{E}+V\right)-\rho\left(H_{E}\right)\right)\left[H_{E}, \Lambda_{1}\right]
$$

As $V \rightarrow 0: I / V \rightarrow \sigma_{\mathrm{E}}$

$$
\sigma_{\mathrm{E}}=\mathrm{i} \operatorname{tr}\left(\rho^{\prime}\left(H_{E}\right)\left[H_{E}, \Lambda_{1}\right]\right)
$$

Equality of conductances

Theorem (Schulz-Baldes, Kellendonk, Richter). Ergodic setting. If the Fermi energy μ lies in a Spectral Gap of H_{B}, then

$$
\sigma_{\mathrm{E}}=\sigma_{\mathrm{B}}
$$

In particular, σ_{E} does not depend on ρ^{\prime}, nor on boundary conditions.

What about the case of a Mobility Gap?
Is

$$
\sigma_{\mathrm{E}}=-\mathrm{i} \operatorname{tr}\left(\rho^{\prime}\left(H_{E}\right)\left[H_{E}, \Lambda_{1}\right]\right)
$$

well-defined?

What about the case of a Mobility Gap?

Is

$$
\sigma_{\mathrm{E}}=-\mathrm{i} \operatorname{tr}\left(\rho^{\prime}\left(H_{E}\right)\left[H_{E}, \Lambda_{1}\right]\right)
$$

well-defined?

\therefore the definition of σ_{E} needs to be changed in case of a Mobility Gap!

What about the case of a Mobility Gap?

\therefore the definition of σ_{E} needs to be changed in case of a Mobility Gap!
Guiding principle: Localized states should not contribute to the edge current

What about the case of a Mobility Gap?

\therefore the definition of σ_{E} needs to be changed in case of a Mobility Gap!
Analogy: Electrodynamics of continuous media

$$
\vec{\jmath}=\vec{\jmath} F+\text { curl } \vec{M} \equiv \text { free }+ \text { molecular currents }
$$

Localized states should not contribute to the (free) edge current

Equality of conductances

For a suitable definition of σ_{E} :
Theorem (Elgart, G., Schenker). If supp ρ^{\prime} lies in a Mobility Gap, then

$$
\sigma_{\mathrm{E}}=\sigma_{\mathrm{B}}
$$

In particular σ_{E} does not depend on ρ^{\prime}, nor on boundary conditions.

Definition of σ_{E} in case of a Mobility Gap

 Replace H_{E} to $H_{a}(a>0)$ as follows
edge: $x_{2}=-a$
(eventually: $-a \rightarrow-\infty$)

- Current across the portion \mathbf{N} of $x_{1}=0$:

$$
-i \operatorname{tr}\left(\rho^{\prime}\left(H_{a}\right)\left[H_{a}, \Lambda_{1}\right] \Lambda_{2}\right) \quad \text { (exists!) }
$$

- Current across the portion B :

Definition of σ_{E} in case of a Mobility Gap

 Replace H_{E} to $H_{a}(a>0)$ as follows

- Current across the portion $\$$ of $x_{1}=0$:

$$
\left.-\mathrm{itr}\left(\rho^{\prime}\left(H_{a}\right)\left[H_{a}, \Lambda_{1}\right] \Lambda_{2}\right) \quad \text { (exists! }\right)
$$

- Current across the portion: In the limit $a \rightarrow \infty$ pretend that

$$
\rho^{\prime}\left(H_{a}\right) \rightsquigarrow \rho^{\prime}\left(H_{B}\right)=\sum_{\lambda} \rho^{\prime}(\lambda) \psi_{\lambda}\left(\psi_{\lambda}, \cdot\right)
$$

(sum over eigenvalues λ of $H_{B}: H_{B} \psi_{\lambda}=\lambda \psi_{\lambda}$)

$$
\left(\psi_{\lambda},\left[H_{B}, \Lambda_{1}\right]\left(1-\Lambda_{2}\right) \psi_{\lambda}\right)=-\left(\psi_{\lambda},\left[H_{B}, \Lambda_{1}\right] \Lambda_{2} \psi_{\lambda}\right)
$$

Definition of σ_{E} in case of a Mobility Gap

 Replace H_{E} to $H_{a}(a>0)$ as follows- Current across the portion \triangle of $x_{1}=0$:

$$
\left.-\mathrm{itr}\left(\rho^{\prime}\left(H_{a}\right)\left[H_{a}, \Lambda_{1}\right] \Lambda_{2}\right) \quad \text { (exists! }\right)
$$

- Current across the portion In the limit $a \rightarrow \infty$ pretend that

$$
\rho^{\prime}\left(H_{a}\right) \rightsquigarrow \rho^{\prime}\left(H_{B}\right)=\sum_{\lambda} \rho^{\prime}(\lambda) \psi_{\lambda}\left(\psi_{\lambda}, \cdot\right)
$$

(sum over eigenvalues λ of $H_{B}: H_{B} \psi_{\lambda}=\lambda \psi_{\lambda}$)

$$
\left(\psi_{\lambda},\left[H_{B}, \Lambda_{1}\right]\left(1-\Lambda_{2}\right) \psi_{\lambda}\right)=-\left(\psi_{\lambda},\left[H_{B}, \Lambda_{1}\right] \Lambda_{2} \psi_{\lambda}\right)
$$

- Together:

$$
\begin{aligned}
\sigma_{\mathrm{E}}= & \lim _{a \rightarrow \infty}-\mathrm{itr}\left(\rho^{\prime}\left(H_{a}\right)\left[H_{a}, \Lambda_{1}\right] \Lambda_{2}\right)+ \\
& +\mathrm{i} \sum_{\lambda} \rho^{\prime}(\lambda)\left(\psi_{\lambda},\left[H_{B}, \Lambda_{1}\right] \Lambda_{2} \psi_{\lambda}\right)
\end{aligned}
$$

Sketch of proof of $\sigma_{\mathrm{E}}=\sigma_{\mathrm{B}}$

Technical tool: Representation of $\rho\left(H_{a}\right)$ by

- quasi-analytic extension $\rho(z),(z=x+\mathrm{i} y \in \mathbb{C})$
- resolvent $R(z)=\left(H_{a}-z\right)^{-1}$

Sketch of proof of $\sigma_{\mathrm{E}}=\sigma_{\mathrm{B}}$

Technical tool: Representation of $\rho\left(H_{a}\right)$ by

- quasi-analytic extension $\rho(z),(z=x+\mathrm{i} y \in \mathbb{C})$
- resolvent $R(z)=\left(H_{a}-z\right)^{-1}$

$$
\rho\left(H_{a}\right)=\frac{1}{2 \pi} \int_{\mathbb{C}} d^{2} z \partial_{\bar{z}} \rho(z) R(z)
$$

with $d^{2} z=d x d y, \partial_{\bar{z}}=\partial_{x}+\mathrm{i} \partial_{y}$.
Note: $\partial_{\bar{z}} \rho(z)$ supported near supp $\rho \subset(-\infty, 0] \subset \mathbb{C}$

Sketch of proof

$$
\begin{aligned}
R(z) & =\left(H_{a}-z\right)^{-1} \\
\rho\left(H_{a}\right) & =\frac{1}{2 \pi} \int d^{2} z \partial_{\bar{z}} \rho(z) R(z) \\
\rho^{\prime}\left(H_{a}\right) & =-\frac{1}{2 \pi} \int d^{2} z \partial_{\bar{z}} \rho(z) R(z)^{2}
\end{aligned}
$$

Sketch of proof

$$
\begin{aligned}
\rho\left(H_{a}\right) & =\frac{1}{2 \pi} \int d^{2} z \partial_{\bar{z}} \rho(z) R(z) \\
\rho^{\prime}\left(H_{a}\right) & =-\frac{1}{2 \pi} \int d^{2} z \partial_{\bar{z}} \rho(z) R(z)^{2}
\end{aligned}
$$

Sketch of proof

$$
\begin{aligned}
\rho\left(H_{a}\right) & =\frac{1}{2 \pi} \int d^{2} z \partial_{\bar{z}} \rho(z) R(z) \\
\rho^{\prime}\left(H_{a}\right) & =-\frac{1}{2 \pi} \int d^{2} z \partial_{\bar{z}} \rho(z) R(z)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\rho^{\prime}\left(H_{a}\right)\left[H_{a}, \Lambda_{1}\right] & =-\frac{1}{2 \pi} \int d^{2} z \partial_{\bar{z}} \rho(z) R(z)^{2}\left[H_{a}, \Lambda_{1}\right] \\
{\left[\rho\left(H_{a}\right), \Lambda_{1}\right] } & =-\frac{1}{2 \pi} \int d^{2} z \partial_{\bar{z}} \rho(z) R(z)\left[H_{a}, \Lambda_{1}\right] R(z)
\end{aligned}
$$

Sketch of proof

$$
\begin{aligned}
\rho^{\prime}\left(H_{a}\right)\left[H_{a}, \Lambda_{1}\right] & =-\frac{1}{2 \pi} \int d^{2} z \partial_{\bar{z}} \rho(z) R(z)^{2}\left[H_{a}, \Lambda_{1}\right] \\
{\left[\rho\left(H_{a}\right), \Lambda_{1}\right] } & =-\frac{1}{2 \pi} \int d^{2} z \partial_{\bar{z}} \rho(z) R(z)\left[H_{a}, \Lambda_{1}\right] R(z)
\end{aligned}
$$

$$
\begin{aligned}
\rho^{\prime}\left(H_{a}\right)\left[H_{a}, \Lambda_{1}\right] \Lambda_{2} & =-\frac{1}{2 \pi} \int d^{2} z \partial_{\bar{z}} \rho(z) R(z)^{2}\left[H_{a}, \Lambda_{1}\right] \Lambda_{2} \\
{\left[\rho\left(H_{a}\right), \Lambda_{1}\right] \Lambda_{2} } & =-\frac{1}{2 \pi} \int d^{2} z \partial_{\bar{z}} \rho(z) R(z)\left[H_{a}, \Lambda_{1}\right] R(z) \Lambda_{2}
\end{aligned}
$$

Sketch of proof

$$
\begin{aligned}
\rho^{\prime}\left(H_{a}\right)\left[H_{a}, \Lambda_{1}\right] \Lambda_{2} & =-\frac{1}{2 \pi} \int d^{2} z \partial_{\bar{z}} \rho(z) R(z)^{2}\left[H_{a}, \Lambda_{1}\right] \Lambda_{2} \\
{\left[\rho\left(H_{a}\right), \Lambda_{1}\right] \Lambda_{2} } & =-\frac{1}{2 \pi} \int d^{2} z \partial_{\bar{z}} \rho(z) R(z)\left[H_{a}, \Lambda_{1}\right] R(z) \Lambda_{2}
\end{aligned}
$$

Sketch of proof

$$
\begin{array}{r}
\rho^{\prime}\left(H_{a}\right)\left[H_{a}, \Lambda_{1}\right] \Lambda_{2} \neq-\frac{1}{2 \pi} \int d^{2} z \partial_{\bar{z}} \rho(z) R(z)\left[H_{a}, \Lambda_{1}\right] \Lambda_{2} R(z) \\
{\left[\rho\left(H_{a}\right), \Lambda_{1}\right] \Lambda_{2}}
\end{array}=-\frac{1}{2 \pi} \int d^{2} z \partial_{\bar{z}} \rho(z) R(z)\left[H_{a}, \Lambda_{1}\right] R(z) \Lambda_{2} .
$$

- In first equation (RHS), move one power of $R(z)$ to the far right. Difference is $\left[R(z), R(z)\left[H_{a}, \Lambda_{1}\right] \Lambda_{2}\right]$

Sketch of proof

$$
\begin{array}{r}
\rho^{\prime}\left(H_{a}\right)\left[H_{a}, \Lambda_{1}\right] \Lambda_{2} \neq-\frac{1}{2 \pi} \int d^{2} z \partial_{\bar{z}} \rho(z) R(z)\left[H_{a}, \Lambda_{1}\right] \Lambda_{2} R(z) \\
{\left[\rho\left(H_{a}\right), \Lambda_{1}\right] \Lambda_{2}=-\frac{1}{2 \pi} \int d^{2} z \partial_{\bar{z}} \rho(z) R(z)\left[H_{a}, \Lambda_{1}\right] R(z) \Lambda_{2}}
\end{array}
$$

- In first equation (RHS), move one power of $R(z)$ to the far right. Difference is $\left[R(z), R(z)\left[H_{a}, \Lambda_{1}\right] \Lambda_{2}\right]$
- Second equation (LHS) is $\left[\rho\left(H_{a}\right) \Lambda_{2}, \Lambda_{1}\right.$]

Sketch of proof

$$
\begin{array}{r}
\rho^{\prime}\left(H_{a}\right)\left[H_{a}, \Lambda_{1}\right] \Lambda_{2} \neq-\frac{1}{2 \pi} \int d^{2} z \partial_{\bar{z}} \rho(z) R(z)\left[H_{a}, \Lambda_{1}\right] \Lambda_{2} R(z) \\
{\left[\rho\left(H_{a}\right), \Lambda_{1}\right] \Lambda_{2}}
\end{array}=-\frac{1}{2 \pi} \int d^{2} z \partial_{\bar{z}} \rho(z) R(z)\left[H_{a}, \Lambda_{1}\right] R(z) \Lambda_{2} .
$$

- In first equation (RHS), move one power of $R(z)$ to the far right. Difference is $\left[R(z), R(z)\left[H_{a}, \Lambda_{1}\right] \Lambda_{2}\right]$
- Second equation (LHS) is $\left[\rho\left(H_{a}\right) \Lambda_{2}, \Lambda_{1}\right]$
- Difference involves $\Lambda_{2} R(z)-R(z) \Lambda_{2}=\left[\Lambda_{2}, R(z)\right]=R(z)\left[H_{a}, \Lambda_{2}\right] R(z)$

The poor man's non-commutative geometry

$\operatorname{tr}[A, B]=0$
\leftrightarrow
$\int f^{\prime}(x) d x=0$
($A B, B A$ trace class)
(supp f compact)

The poor man's non-commutative geometry

$\operatorname{tr}[A, B]=0$
th) $\int f^{\prime}(x) d x=0$
($A B, B A$ trace class)
(supp f compact)
For $f=\chi_{(-\infty, 0]} \cdot g$ we have $f^{\prime}=-\delta \cdot g+\chi_{(-\infty, 0]} \cdot g^{\prime}$ and

$$
g(0)=\int_{-\infty}^{0} g^{\prime}(x) d x
$$

The poor man's non-commutative geometry

$\operatorname{tr}[A, B]=0$
th $\int f^{\prime}(x) d x=0$
($A B, B A$ trace class)
(supp f compact)
For $f=\chi_{(-\infty, 0]} \cdot g$ we have $f^{\prime}=-\delta \cdot g+\chi_{(-\infty, 0]} \cdot g^{\prime}$ and

$$
g(0)=\int_{-\infty}^{0} g^{\prime}(x) d x
$$

\therefore To add the trace of a commutator is to apply a non-commutative Stokes Theorem $\int_{\partial X} g=\int_{X} d g$

Picture of proof of $\sigma_{\mathrm{E}}=\sigma_{\mathrm{B}}$

To add a commutator is $\int_{\partial X} g=\int_{X} d g$

Picture of proof of $\sigma_{\mathrm{E}}=\sigma_{\mathrm{B}}$

To add a commutator is $\int_{\partial X} g=\int_{X} d g$
Let X be the non-commutative space $\left(x_{1}, x_{2}, E\right)$.

Picture of proof of $\sigma_{\mathrm{E}}=\sigma_{\mathrm{B}}$

To add a commutator is $\int_{\partial X} g=\int_{X} d g$
Let X be the non-commutative space $\left(x_{1}, x_{2}, E\right)$. Shown plane $x_{1}=0$

Picture of proof of $\sigma_{\mathrm{E}}=\sigma_{\mathrm{B}}$

To add a commutator is $\int_{\partial X} g=\int_{X} d g$

- Definition of σ_{E} is

$$
\begin{aligned}
& \sigma_{\mathrm{E}}+\text { spurious }:= \\
& \quad-\mathrm{i} \lim _{a \rightarrow \infty} \operatorname{tr} \rho^{\prime}\left(H_{a}\right)\left[H_{a}, \Lambda_{1}\right] \Lambda_{2}
\end{aligned}
$$

- Add

$$
\begin{aligned}
& 0=\operatorname{tr}\left(\left[R(z), R(z)\left[H_{a}, \Lambda_{1}\right] \Lambda_{2}\right]\right) \\
& (z \in \mathbb{C} \text { near }(-\infty, 0])
\end{aligned}
$$

- Add

$$
0=\operatorname{tr}\left(\left[\rho\left(H_{a}\right) \Lambda_{2}, \Lambda_{1}\right]\right)
$$

The operator is supported in the bulk, and equals

$$
\sigma_{\mathrm{B}}+\text { spurious }
$$

Goal of the talk

Quantum Hall systems

Chiral systems

The model (1 dimensional)

Alternating chain with nearest neighbor hopping

The model (1 dimensional)

Alternating chain with nearest neighbor hopping

Hilbert space: sites arranged in dimers

$$
\mathcal{H}=\ell^{2}\left(\mathbb{Z}, \mathbb{C}^{N}\right) \otimes \mathbb{C}^{2} \ni \psi=\binom{\psi_{n}^{+}}{\psi_{n}^{-}}_{n \in \mathbb{Z}}
$$

Hamiltonian

$$
H=\left(\begin{array}{ll}
0 & S^{*} \\
S & 0
\end{array}\right)
$$

with S, S^{*} acting on $\ell^{2}\left(\mathbb{Z}, \mathbb{C}^{N}\right)$ as

$$
\left(S \psi^{+}\right)_{n}=A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}, \quad\left(S^{*} \psi^{-}\right)_{n}=A_{n+1}^{*} \psi_{n+1}^{-}+B_{n}^{*} \psi_{n}^{-}
$$

$\left(A_{n}, B_{n} \in \mathrm{GL}(N)\right.$ almost surely)

Chiral symmetry

$$
\begin{gathered}
\Pi=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\{H, \Pi\} \equiv H \Pi+\Pi H=0
\end{gathered}
$$

hence

$$
E_{l}(H) \Pi+\Pi E_{-l}(H)=0 \quad\left(E_{l}(H) \text { spectral projection for } I \subset \mathbb{R}\right)
$$

Chiral symmetry

$$
\begin{gathered}
\Pi=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\{H, \Pi\} \equiv H \Pi+\Pi H=0
\end{gathered}
$$

hence

$$
E_{l}(H) \Pi+\Pi E_{-I}(H)=0 \quad\left(E_{l}(H) \text { spectral projection for } I \subset \mathbb{R}\right)
$$

Energy $\lambda=0$ is special:

- Eigenprojection $P_{0}:=E_{\{0\}}(H)$ has $\left\{P_{0}, \Pi\right\}=0$

Chiral symmetry

$$
\begin{gathered}
\Pi=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\{H, \Pi\} \equiv H \Pi+\Pi H=0
\end{gathered}
$$

hence

$$
E_{l}(H) \Pi+\Pi E_{-l}(H)=0 \quad\left(E_{l}(H) \text { spectral projection for } I \subset \mathbb{R}\right)
$$

Energy $\lambda=0$ is special:

- Eigenprojection $P_{0}:=E_{\{0\}}(H)$ has $\left\{P_{0}, \Pi\right\}=0$ Eigenspace ran P_{0} invariant under Π

Chiral symmetry

$$
\begin{gathered}
\Pi=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\{H, \Pi\} \equiv H \Pi+\Pi H=0
\end{gathered}
$$

hence

$$
E_{l}(H) \Pi+\Pi E_{-I}(H)=0 \quad\left(E_{l}(H) \text { spectral projection for } I \subset \mathbb{R}\right)
$$

Energy $\lambda=0$ is special:

- Eigenprojection $P_{0}:=E_{\{0\}}(H)$ has $\left\{P_{0}, \Pi\right\}=0$ Eigenspace ran P_{0} invariant under Π

- Eigenvalue equation $\boldsymbol{H} \psi=\lambda \psi$ is $\boldsymbol{S} \psi^{+}=\lambda \psi^{-}, \boldsymbol{S}^{*} \psi^{-}=\lambda \psi^{+}$, i.e.

$$
A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}=\lambda \psi_{n}^{-}, \quad A_{n+1}^{*} \psi_{n+1}^{-}+B_{n}^{*} \psi_{n}^{-}=\lambda \psi_{n}^{+}
$$

is one 2nd order difference equation, but two 1 st order for $\lambda \equiv 0$

Bulk index

Let

$$
\Sigma=\operatorname{sgn} H
$$

Definition. The Bulk index is

$$
\mathcal{N}=\frac{1}{2} \operatorname{tr}(\Pi \Sigma[\Lambda, \Sigma])
$$

with $\Lambda=\Lambda(n)$ a switch function (cf. Prodan et al.)

Bulk index

Let

$$
\Sigma=\operatorname{sgn} H
$$

Definition. The Bulk index is

$$
\mathcal{N}=\frac{1}{2} \operatorname{tr}(\Pi \Sigma[\Lambda, \Sigma])
$$

with $\Lambda=\Lambda(n)$ a switch function (cf. Prodan et al.)

Equivalently

$$
-\mathcal{N}=\operatorname{tr}\left(\Pi P_{+}\left[\Lambda, P_{-}\right]\right)+\operatorname{tr}\left(\Pi P_{-}\left[\Lambda, P_{+}\right]\right)
$$

using $P_{+}:=E_{(0,+\infty)}, P_{-}:=E_{(-\infty, 0)}$ and $\Sigma=P_{+}-P_{-}$

Edge Hamiltonian and index

Edge Hamiltonian H_{a} defined by restriction to $n \leq a$ (Dirichlet boundary condition $\psi_{a+1}^{-}=0$). Chiral symmetry preserved.

Edge Hamiltonian and index

Edge Hamiltonian H_{a} defined by restriction to $n \leq a$ (Dirichlet boundary condition $\psi_{a+1}^{-}=0$). Chiral symmetry preserved. Eigenspace ran $P_{0, a}$ invariant under Π.

Edge Hamiltonian and index

Edge Hamiltonian H_{a} defined by restriction to $n \leq a$ (Dirichlet boundary condition $\psi_{a+1}^{-}=0$). Chiral symmetry preserved. Eigenspace ran $P_{0, a}$ invariant under Π.

$$
\mathcal{N}_{a}^{ \pm}:=\operatorname{dim}\left\{\psi \mid H_{a} \psi=0, \Pi \psi= \pm \psi\right\}
$$

Edge Hamiltonian and index

Edge Hamiltonian H_{a} defined by restriction to $n \leq a$ (Dirichlet boundary condition $\psi_{a+1}^{-}=0$). Chiral symmetry preserved. Eigenspace ran $P_{0, a}$ invariant under Π.

$$
\mathcal{N}_{a}^{ \pm}:=\operatorname{dim}\left\{\psi \mid H_{a} \psi=0, \Pi \psi= \pm \psi\right\}
$$

Definition. The Edge index is

$$
\mathcal{N}_{a}=\mathcal{N}_{a}^{+}-\mathcal{N}_{a}^{-}=\operatorname{tr}\left(\Pi P_{0, a}\right)
$$

A vanishing lemma

$$
\mathcal{N}_{a}^{ \pm}=\operatorname{dim}\left\{\psi \mid H_{a} \psi=0, \Pi \psi= \pm \psi\right\}
$$

A vanishing lemma

Eigenvalue equation $H_{a} \psi=0$, i.e., two 1 st order eqs.

$$
A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}=0, \quad A_{n+1}^{*} \psi_{n+1}^{-}+B_{n}^{*} \psi_{n}^{-}=0
$$

Lemma.

$$
\begin{aligned}
& \mathcal{N}_{a}^{+}=\operatorname{dim}\left\{\psi^{+}: \mathbb{Z} \rightarrow \mathbb{C}^{N} \mid S \psi^{+}=0, \psi_{n}^{+} \text {is } \ell^{2} \text { at } n \rightarrow-\infty\right\} \\
& \mathcal{N}_{a}^{-}=0
\end{aligned}
$$

In particular \mathcal{N}_{a} is independent of a.

A vanishing lemma

Eigenvalue equation $H_{a} \psi=0$, i.e., two 1 st order eqs.

$$
A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}=0, \quad A_{n+1}^{*} \psi_{n+1}^{-}+B_{n}^{*} \psi_{n}^{-}=0
$$

Lemma.

$$
\begin{aligned}
& \mathcal{N}_{a}^{+}=\operatorname{dim}\left\{\psi^{+}: \mathbb{Z} \rightarrow \mathbb{C}^{N} \mid S \psi^{+}=0, \psi_{n}^{+} \text {is } \ell^{2} \text { at } n \rightarrow-\infty\right\} \\
& \mathcal{N}_{a}^{-}=0
\end{aligned}
$$

In particular \mathcal{N}_{a} is independent of a. Call it \mathcal{N}^{\sharp}.

Bulk-edge duality

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Bulk-edge duality

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Remark. Consider the dynamical system $A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}=0$ with Lyaponov exponents

$$
\gamma_{1} \geq \ldots \geq \gamma_{N}
$$

The assumption is satisfied if $\gamma_{i} \neq 0$; then $\mathcal{N}^{\sharp}=\sharp\left\{i \mid \gamma_{i}>0\right\}$

Bulk-edge duality

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Remark. Consider the dynamical system $A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}=0$ with Lyaponov exponents

$$
\gamma_{1} \geq \ldots \geq \gamma_{N}
$$

The assumption is satisfied if $\gamma_{i} \neq 0$; then $\mathcal{N}^{\sharp}=\sharp\left\{i \mid \gamma_{i}>0\right\}$ Phase boundaries correspond to $\gamma_{i}=0$ (cf. Prodan et al.)

Proof

Recall $\mathcal{N}_{a}=\operatorname{tr}\left(\Pi P_{0, a}\right)$

Proof

Recall $\mathcal{N}_{a}=\operatorname{tr}\left(\Pi P_{0, a}\right)$
Lemma. The common value of \mathcal{N}_{a} is

$$
\mathcal{N}^{\sharp}=\lim _{a \rightarrow+\infty} \operatorname{tr}\left(\Pi \wedge P_{0, a}\right)
$$

Proof

Lemma. The common value of \mathcal{N}_{a} is

$$
\mathcal{N}^{\sharp}=\lim _{a \rightarrow+\infty} \operatorname{tr}\left(\Pi \wedge P_{0, a}\right)
$$

Proof of Theorem. On the Hilbert space \mathcal{H}_{a} corresponding to $n \leq a$

$$
\operatorname{tr}(\Pi \wedge)=N\left(\sum_{n \leq a} \Lambda(n)\right) \operatorname{tr}_{\mathbb{C}^{2}} \Pi=0
$$

though $\|П \wedge\|_{1}=\|\wedge\|_{1} \rightarrow \infty,(a \rightarrow+\infty)$

Proof

Lemma. The common value of \mathcal{N}_{a} is

$$
\mathcal{N}^{\sharp}=\lim _{a \rightarrow+\infty} \operatorname{tr}\left(\Pi \wedge P_{0, a}\right)
$$

Proof of Theorem. On the Hilbert space \mathcal{H}_{a} corresponding to $n \leq a$

$$
\begin{gathered}
\frac{\operatorname{tr}(\Pi \wedge)=0}{0} \\
\operatorname{tr}(\Pi \Lambda)=\operatorname{tr}\left(\Pi \wedge P_{0, a}\right)+\operatorname{tr}\left(\Pi \wedge P_{+, a}\right)+\operatorname{tr}\left(\Pi \wedge P_{-, a}\right)
\end{gathered}
$$

Proof

Lemma. The common value of \mathcal{N}_{a} is

$$
\mathcal{N}^{\sharp}=\lim _{a \rightarrow+\infty} \operatorname{tr}\left(\Pi \wedge P_{0, a}\right)
$$

Proof of Theorem. On the Hilbert space \mathcal{H}_{a} corresponding to $n \leq a$

$$
\begin{aligned}
& \operatorname{tr}(\Pi \wedge)=0 \\
& \begin{array}{c}
\\
\hline
\end{array} \\
& \operatorname{tr}(\Pi \wedge)=\operatorname{tr}\left(\Pi \wedge P_{0, a}\right)+\operatorname{tr}\left(\Pi \wedge P_{+, a}\right)+\operatorname{tr}\left(\Pi \wedge P_{-, a}\right) \\
& \operatorname{tr}\left(\Pi \wedge P_{+, a}\right)=\operatorname{tr}\left(P_{+, a} \Pi \wedge P_{+, a}\right)=\operatorname{tr}\left(\Pi P_{-, a} \wedge P_{+, a}\right) \\
& =\operatorname{tr}\left(\Pi P_{-, a}\left[\Lambda, P_{+, a}\right]\right)
\end{aligned}
$$

Proof

Lemma. The common value of \mathcal{N}_{a} is

$$
\mathcal{N}^{\sharp}=\lim _{a \rightarrow+\infty} \operatorname{tr}\left(\Pi \wedge P_{0, a}\right)
$$

Proof of Theorem. On the Hilbert space \mathcal{H}_{a} corresponding to $n \leq a$

$$
\operatorname{tr}(\Pi \wedge)=0
$$

$$
\operatorname{tr}(\Pi \wedge)=\operatorname{tr}\left(\Pi \wedge P_{0, a}\right)+\operatorname{tr}\left(\Pi \wedge P_{+, a}\right)+\operatorname{tr}\left(\Pi \wedge P_{-, a}\right)
$$

$$
\begin{aligned}
\operatorname{tr}\left(\Pi \wedge P_{+, a}\right) & =\operatorname{tr}\left(P_{+, a} \Pi \Lambda P_{+, a}\right)=\operatorname{tr}\left(\Pi P_{-, a} \Lambda P_{+, a}\right) \\
& =\operatorname{tr}\left(\Pi P_{-, a}\left[\Lambda, P_{+, a}\right]\right) \rightarrow \operatorname{tr}\left(\Pi P_{-}\left[\Lambda, P_{+}\right]\right)
\end{aligned}
$$

$$
(a \rightarrow+\infty)
$$

Proof

Lemma. The common value of \mathcal{N}_{a} is

$$
\mathcal{N}^{\sharp}=\lim _{a \rightarrow+\infty} \operatorname{tr}\left(\Pi \wedge P_{0, a}\right)
$$

Proof of Theorem. On the Hilbert space \mathcal{H}_{a} corresponding to $n \leq a$

$$
\operatorname{tr}(\Pi \wedge)=0
$$

So,

$$
\operatorname{tr}(\Pi \Lambda)=\underbrace{\operatorname{tr}\left(\Pi \wedge P_{0, a}\right)}_{\rightarrow \mathcal{N}^{\sharp}}+\underbrace{\operatorname{tr}\left(\Pi \Lambda P_{+, a}\right)+\operatorname{tr}\left(\Pi \wedge P_{-, a}\right)}_{\rightarrow \operatorname{tr}\left(\Pi P_{-}\left[\Lambda, P_{+}\right]\right)+\operatorname{tr}\left(\Pi P_{+}\left[\Lambda, P_{-}\right]\right)=-\mathcal{N}}
$$

q.e.d.

Summary

Elementary methods used to establish bulk-edge correspondence in simple models of topological insulators in presence of a mobility gap

[^0]:

